-
摘要: 藏东类乌齐-左贡成矿带(简称类-左带)是三江特提斯成矿域内一条重要的成矿带,其整体的研究较为薄弱、零散。本文基于最新的研究成果,按照成矿时代、地质背景、成矿作用及成矿元素组合将带内矿床划分为了6个成矿系列,包括:(1)印支期晶质石墨矿系列;(2)印支期蛇绿岩相关风化淋滤型菱镁矿系列;(3)印支期沉积-改造型Fe-Cu多金属系列;(4)燕山期与中酸性岩浆岩相关的W-Sn-Mo-Cu多金属系列;(5)燕山期热液脉型Pb-Zn多金属系列;(6)喜山期MVT型Pb-Zn多金属系列。针对每一个成矿系列,作者选取了典型矿床对其成矿地质特征进行了简要论述,并对其成因机制进行了重点剖析。此外,作者深入探讨了类-左带内区域构造演化与成矿作用之间的关系,指出各类矿床在带内大量发育是古、中、新特提斯构造长期演化的结果。本项研究有助于深入认识类-左带内的成矿作用与成矿规律,并对区内未来的找矿勘查工作具有重要的参考价值。Abstract: The Leiwuqi-Zogang metallogenic belt (LZMB) in eastern Tibet is an important metallogenic belt in the Sanjiang Tethys metallogenic domain, but the related researches are poor and scattered. Based on the latest research results, the deposits in the belt can be divided into six metallogenic series mainly according to metallogenic age, geological background, metallogenesis, and metallogenic element association, including: (1) Indosinian crystalline graphite deposits; (2) Weathering leaching magnesite deposits related to Indosinian ophiolites; (3) Indosinian sedimentary-reformed type Fe-Cu polymetallic deposits; (4) Yanshanian W-Sn-Mo-Cu polymetallic deposits related to intermediate-acid magmatic rocks; (5) Yanshanian hydrothermal vein-type Pb-Zn polymetallic deposits; (6) Himalayan MVT-type Pb-Zn polymetallic deposits. For each metallogenic series, the metallogenic geology and genetic mechanism of a selected typical deposit have been introduced and analyzed. In addition, this paper thoroughly probes into the relationship between regional tectonic evolution and mineralization in the LZMB, and points out that the massive development of various deposits in this belt is the result of long-term evolution of Paleo-, Meso-, and Neo-Tethys. This study is helpful for us to deeply understand the metallogenesis and metallogenic regularity in the LZMB, and offers important referential value for future prospecting and exploration in this belt.
-
-
Baxter A T, Aitchison J C, Zyabrev S V, 2009. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for developmentof the Bangong-Nujiang suture, Tibet[J].Journal of the Geological Society, 166(4):689-694.
Cao H W, Zhang Y H, Pei Q M, et al., 2017. U-Pb dating of zircon and cassiterite from the Early Cretaceous Jiaojiguan iron-tin polymetallic deposit, implications for magmatism and metallogeny of the Tengchong area, western Yunnan, China[J].International Geology Review, 59(2):234-258.
Cao H W, Zhang Y H, Santosh M, et al., 2019. Petrogenesis and metallogenic implications of Cretaceous magmatism in Central Lhasa, Tibetan Plateau:A case study from the Lunggar Fe skarn deposit and perspective review[J].Geological Journal, 54:2323-2346.
Cao K, Yang Z M, Mavrogenes J, et al., 2019. Geology and genesis of the giant Pulang porphyry Cu-Au district, Yunnan, Southwest China[J].Economic Geology, 114(2):275-301.
Courtney-Davies, L., Zhu, Z Y., Ciobanu, C L, et al., 2016. Matrix-matched iron-oxide laser ablation ICP-MS U-Pb geochronology using mixed solution standards[J].Minerals, 6(3):1-18.
Deng J, Wang Q F, Li G M, et al., 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J].Earth-Science Reviews, 138:268-299.
Deng J, Wang Q F, Li G M, et al., 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J].Gondwana Research, 26(2):419-437.
He H Y, Li Y L, Wang C S, et al., 2019. Petrogenesis and tectonic implications of Late Cretaceous highly fractionated I-type granites from the Qiangtang block, central Tibet[J].Journal of Asian Earth Sciences, 176:337-352.
Hou Z Q, Ma H W, Zaw K, et al., 2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet[J].Economic Geology, 98(1):125-145.
Hou Z Q, Zaw K, Pan G T, et al., 2007. Sanjiang Tethyan metallogenesis in SW China:Tectonic setting, metallogenic epochs and deposit types[J].Ore Geology Reviews, 31(1-4):48-87.
Jiang S H, Jiang Y, Liu Y M, et al., 2021. The Bangong-Nujiang Suture Zone, Tibet Plateau:Its role in the tectonic evolution of the eastern Tethys Ocean[J].Earth-Science Reviews, 218:103656.
Kapp P, DeCelles P G, Gehrels G E, et al., 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J].Geological Society of America Bulletin, 119(7-8):917-933.
Li S Z, Zhao S J, Liu X, et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J].Earth-Science Reviews, 186:37-75.
Li W C, Yu H J, Gao X, et al., 2017. Review of Mesozoic multiple magmatism and porphyry Cu-Mo (W) mineralization in the Yidun Arc, eastern Tibet Plateau[J].Ore Geology Reviews, 90:795-812.
Li X K, Chen J, Wang R C, et al., 2018. Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang, Tibet:Implications for crustal architecture, Meso-Tethyan evolution and regional mineralization[J].Earth-science reviews, 185:374-396.
Liang H Y, Campbell I H, Allen C, et al., 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J].Mineralium Deposita, 41(2):152-159.
Lin B, Wang L, Tang J, et al., 2018. Geology, geochronology, geochemical characteristics and origin of Baomai porphyry Cu (Mo) deposit, Yulong Belt,Tibet[J].Ore Geology Reviews, 92:186-204.
Liu J, Li W C, Zhu X P, et al., 2020a. Magmatic evolution and related W-Mo mineralization in the Larong deposit, eastern Tibet:Evidence from zircon U-Pb ages, geochemistry and Sr-Nd-Hf isotopes[J].Ore Geology Reviews, 120:103411.
Liu J, Li W C, Zhu X P, et al., 2020b. Ore genesis of the Late Cretaceous Larong porphyry W-Mo deposit, eastern Tibet:Evidence from in-situ trace elemental and S-Pb isotopic compositions[J].Journal of Asian Earth Sciences, 190:104199.
Liu J, Li W C, Zhu X P, et al., 2020c. Origin and evolution of ore-forming fluids of the Larong W-(Mo) deposit, eastern Tibet:Constraints from fluid inclusions, H-O isotopes, and scheelite geochemistry[J].Ore Geology Reviews, 124:103620.
Liu Y C, Hou Z Q, Yang Z S, et al., 2016. Geology and chronology of the Zhaofayong carbonate-hosted Pb-Zn ore cluster:Implication for regional Pb-Zn metallogenesis in the Sanjiang belt, Tibet[J].Gondwana Research, 35:15-26.
Liu Z, Liao S Y, Wang J R, et al., 2017. Petrogenesis of late Eocene high Ba-Sr potassic rocks from western Yangtze Block, SE Tibet:A magmatic response to the Indo-Asian collision[J].Journal of Asian Earth Sciences, 135:95-109.
Metcalfe I, 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J].Journal of Asian Earth Sciences, 66:1-33.
Peng T P, Zhao G C, Fan W M, et al., 2015. Late Triassic granitic magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau:Geochronology, petrogenesis and implications for the tectonic evolution of the Paleo-Tethys[J].Gondwana Research, 27(4):1494-1508.
Peng Y B, Yu S Y, Li S Z, et al., 2019. Early Jurassic and Late Cretaceous granites in the Tongka micro-block, Central Tibet:Implications for the evolution of the Bangong-Nujiang ocean[J].Journal of Asian Earth Sciences, 194:104030.
Pullen A, Kapp P, Gehrels G E, et al., 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J].Geology, 36(5):351-354.
Sheng X Y, Bi X W, Hu R Z, et al., 2019.The mineralization process of the Lanuoma Pb-Zn-Sb deposit in the Sanjiang Tethys region:Constraints from in situ sulfur isotopes and trace element compositions[J].Ore Geology Reviews, 111:102941.
Tang Y, Liu J, Tran M D, et al., 2013. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone:constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, Western Yunnan, China[J].International Journal of Earth Sciences, 102(3):605-626.
Tao Y, Bi X, Li C, et al., 2014. Geochronology, petrogenesis and tectonic significance of the Jitang granitic pluton in eastern Tibet, SW China[J].Lithos, 184:314-323.
Wang C M, Bagas L, Lu Y J, et al., 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping[J].Earth-Science Reviews, 156:39-65.
Wang X Y, Wang S F, Wang C, et al., 2018. Permo-Triassic arc-like granitoidsalong the northern Lancangjiang zone, eastern Tibet:Age, geochemistry, Sr-Nd-Hf isotopes, and tectonic implications[J].Lithos, 308:278-293.
Xu R, Li W C, Deng M G, et al., 2019. Genesis of the superlarge Luziyuan Zn-Pb-Fe(-Cu) distal skarn deposit in western Yunnan (SW China):Insights from ore geology and C-H-O-S isotopes[J].Ore Geology Reviews, 107:944-959.
Yalikun Y, Xue C J, Symons D T A, 2018. Paleomagnetic age and tectonic constraints on the genesis of the giant Jinding Zn-Pb deposit, Yunnan, China[J].Mineralium Deposita, 53:245-259.
Yang T N, Zhang H R, Liu Y X, et al., 2011. Permo-Triassic arc magmatism in central Tibet:evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry[J].Chemical Geology, 284(3-4):270-282.
Yin A, Harrison T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J].Annual Review of Earth and Planetary Sciences, 28(1):211-280.
Zeng M, Zhang X, Cao H, et al., 2016. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed:stratigraphic and geochronological evidence from Gaize, Tibet[J].Basin Research, 28(1):147-157.
Zhai Q G, Jahn B M, Su L, et al., 2013. Triassic arc magmatism in the Qiangtang area, northern Tibet:Zircon U-Pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications[J].Journal of Asian Earth Sciences, 63:162-178.
Zhai Q G, Zhang R Y, Jahn B M, et al., 2011. Triassic eclogites from central Qiangtang, northern Tibet, China:petrology, geochronology and metamorphic P-T path[J].Lithos, 125(1-2):173-189.
Zhang K J, Tang X C, Wang Y, et al., 2011. Geochronology, geochemistry, and Nd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China:Constraints on the exhumation of the central Qiangtang metamorphic belt[J].Lithos, 121(1-4):167-175.
Zhang Y X, Li Z W, Yang W G, et al., 2017. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction:Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China[J].Journal of Asian Earth Sciences, 135:212-242.
Zhou H Y, Sun X M, Wu Z W, et al., 2017. Hematite U-Pb geochronometer:insights from monazite and hematite integrated chronology of the Yaoan gold deposit, southwest China[J].Economic Geology, 112(8):2023-2039.
Zhu D C, Li S M, Cawood P A, et al., 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J].Lithos, 245:7-17.
Zhu D C, Zhao Z D, Niu Y, et al., 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J].Gondwana Research, 23(4):1429-1454.
白建科, 陈隽璐, 彭素霞, 2018. 新疆奇台县黄羊山岩浆热液型石墨矿床含矿岩体年代学与地球化学特征[J].岩石学报, 34(8):129-142.
毕献武, 唐永永, 陶琰, 等, 2019. 西南三江碰撞造山带沉积岩容矿Pb-Zn-Ag-Cu贱金属复合成矿与深部过程[J].岩石学报, 35(5):1341-1371.
陈毓川, 1994. 矿床成矿系列[J].地学前缘, 1(3-4):90-94.
陈毓川, 裴荣富, 王登红, 2006. 三论矿床的成矿系列问题[J].地质学报, 80(10):1501-1507.
丁建华, 陈正海, 杨国俊,等, 2013. 中国菱镁矿成矿规律及资源潜力分析[J].中国地质, 40(6):1699-1711.
樊炳良, 白涛, 冯德新, 等, 2018. 藏东纽多黑云母二长花岗岩锆石U-Pb年龄及成因[J].地质通报, 3(77):1226-1235.
韩春明, 肖文交, 万博, 等, 2018. 东天山晚古生代-中生代构造演化和内生金属矿床成矿系列[J].岩石学报, 34(7):1914-1932.
何亮, 代顺军, 邵锐, 等, 2020a. 藏东类乌齐-左贡成矿带地果大型石墨矿床含矿岩体时代与矿床成因[J].地球科学, 45(8):2932-2944.
何亮, 林彬, 扎西平措, 等, 2020b. 西藏首例大型石墨矿床——青果矿床地质特征及含矿岩体U-Pb年龄[J].中国地质, 48(2):359-373.
何亮, 王海勇, 胡俊文, 等, 2017. 西藏类乌齐县南越拉铅锌矿地质特征及矿床成因[J].四川有色金属, (3):41-46.
李凯月, 陈衍景, 佘振兵, 等, 2018. 胶北荆山群张舍石墨矿碳同位素特征及其地质意义[J].地学前缘, 25(5):19-33.
李文昌, 潘桂棠, 侯增谦, 等, 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M].北京:地质出版社.
李文昌, 薛迎喜, 卢映祥, 等, 2014. 中国斑岩铜矿成矿规律及找矿方向[M].北京:地质出版社.
李小亮, 2011. 西藏东部类乌齐-左贡构造带铅锌多金属成矿规律与成矿潜力研究[D].成都:成都理工大学.
刘俊, 2020. 藏东拉荣大型钨(钼)矿床:岩浆作用与矿床成因[D].武汉:中国地质大学(武汉).
刘俊, 李文昌, 周清, 等, 2021. 斑岩型钨矿床研究进展[J].中国地质, 48(3):732-748.
刘俊, 祝向平, 李文昌, 等, 2019. 藏东拉荣斑岩钨钼矿床辉钼矿Re-Os 定年及地质意义[J].地质学报, 93(7):1708-1719.
刘英超, 侯增谦, 于玉帅, 等, 2013. 西藏昌都地区拉拢拉类 MVT 铅锌矿床矿化特征与成因研究[J].岩石学报, 29(4):1407-1426.
罗梅, 潘凤雏, 李巨初, 等, 2014. 西藏羌塘-三江区金属矿床成矿系列研究[J].地质学报, 88(12):2556-2571.
潘桂棠, 徐强, 侯增谦, 等, 2003. 西南"三江"多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社.
邱军强, 丁希国, 李虎, 2012. 藏东类乌齐地区始新世钾玄质侵入岩特征及构造环境[J].合肥工业大学学报(自然科学版), 35(4):520-525+576.
芮宗瑶, 李光明, 张立生, 等, 2004. 西藏斑岩铜矿对重大地质事件的响应[J].地学前缘, 11(1):145-152.
申屠保涌, 王增, 1991. 藏东类乌齐赛北弄锡矿床地质特征及成因类型[J].矿物岩石, (4):76-84.
宋玉财, 侯增谦, 刘英超, 等, 2017. 特提斯域的密西西比河谷型(MVT)铅锌矿床[J].中国地质, 44(4):664-689.
宋玉财, 侯增谦, 杨天南, 等, 2011. "三江"喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J].岩石矿物学杂志, 30(3):355-380.
陶琰, 毕献武, 辛忠雷, 等, 2011. 西藏昌都地区拉诺玛铅锌锑多金属矿床地质地球化学特征及成因分析[J].矿床地质, 30(4):599-615.
王剑, 谭富文, 李亚林, 等, 2004. 青藏高原重点沉积盆地沉积特征及其油气资源潜力分析[C]//全国沉积学大会论文集. 北京:地质出版社.
王新雨, 2018. 北澜沧江带二叠-三叠纪花岗岩类对古特提斯洋俯冲、闭合过程的约束[D].北京:中国地质大学(北京).
向天秀, 雍永源, 1992. 西藏赛北弄锡床锡石的成因矿物学研究[J].西藏地质, (1):69-79.
薛建平, 李成元, 董明明, 2017. 内蒙古索伦山地区风化淋滤型菱镁矿找矿前景[J].中国矿业, 26(S1):261-266.
尹福光, 潘桂棠, 孙志明, 2021. 西南三江构造体系及演化、成因[J].沉积与特提斯地质, 41(2):265-282.
张民, 2014. 西藏察雅县谢坝锌多金属矿床成矿机制探讨[D].成都:成都理工大学.
周新, 樊炳良, 余佳树, 等, 2020. 藏东纽多石墨矿床含矿花岗岩锆石U-Pb年龄及岩石地球化学特征[J].地质通报, 39(10):1518-1526.
周新, 冯德新, 樊炳良, 等, 2020. 藏东纽多石墨矿床地质特征及成因[J].现代矿业, 35(11):57-60.
朱弟成, 王青, 詹琼窑, 等, 2021. 三江北段晚三叠世构造-岩浆作用和几个相关的科学问题[J].沉积与特提斯地质, 41(2):232-245.
-
计量
- 文章访问数: 1132
- PDF下载数: 127
- 施引文献: 0