-
摘要:
黄铜矿是提炼铜的主要矿物原料,不同地质作用产生的黄铜矿,因其晶体结构和共伴生矿物等自然属性不同,导致黄铜矿的可浮性呈现差异化,在概述了矿物选别因素矿物晶体结构、矿浆pH、矿浆电位、难免离子对黄铜矿可浮性影响的基础上,进一步阐述了黄铁矿、闪锌矿、方铅矿和非金属脉石矿物等共伴生矿物对黄铜矿浮选的影响,并简述了黄铜矿浮选捕收剂的研究进展。
Abstract:Chalcopyrite is the most abundant copper sulfide mineral and the primary source of copper refining. The chalcopyrite ores occurred under various geological processes show different characteristics of crystal structures and associated minerals, leading to diverse floatability of chalcopyrite. On the basis of summarizing the influence of mineral crystal structure, pulp pH, pulp potential, unavoidable ions and other factors on the floatability of chalcopyrite, this paper also expounded in detail the influence of co-associated minerals such as pyrite, sphalerite, galena and non-metallic gangue minerals. The research progress of chalcopyrite flotation collector was further described.
-
Key words:
- chalcopyrite /
- flotation /
- surface characteristics /
- associated minerals /
- crystal structure
-
-
图 2 Fe-S(a)和Cu-S(b)体系的Eh-pH图[12]
Figure 2.
-
[1] 陈代雄. 铜铅锌矿选矿新技术[M]. 北京: 冶金工业出版社, 2019.
CHEN D X. New technology of copper-lead-zinc beneficiation[M]. Beijing: Metallurgical Industry Press, 2019.
[2] 朱阳戈, 陈建华, 柯宝霖, 等. 黄铜矿与孔雀石的电子结构及硫化作用的电化学研究[J]. 有色金属工程, 2018(4): 95-100. doi: 10.3969/j.issn.2095-1744.2018.04.019
ZHU Y G, CHEN J H, KE B L, et al. Electrochemical study on the electronic structure and sulfidation of chalcopyrite and malachite[J]. Nonferrous Metals Engineering, 2018(4): 95-100. doi: 10.3969/j.issn.2095-1744.2018.04.019
[3] MIKHLIN Y, TOMASHEVICH Y, TAUSON V, et al. A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2[J]. Journal of Electron Spectroscopy & Related Phenomena, 2005, 142(1): 83-88. https://www.sciencedirect.com/science/article/pii/S0368204804003597
[4] 孙乾予, 印万忠, 宋振国. 影响典型铜矿物可浮性的晶体化学基因研究[J]. 金属矿山, 2020(6): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202006008.htm
SUN G Y, YIN W Z, SONG Z G. Study on crystal chemical gene affecting the floatability of typical copper minerals[J]. Metal Mines, 2020(6): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202006008.htm
[5] 吴桂叶, 刘龙利, 张行荣, 等. 计算机辅助研究黄铜矿抑制剂的分子结构特征[J]. 有色金属(选矿部分), 2013(z1): 268-271+274. doi: 10.3969/j.issn.1671-9492.2013.z1.069
WU G Y, LIU L L, ZHANG X R, et al. Computer-aided research on molecular structure characteristics of chalcopyrite inhibitors[J]. Nonferrous Metals (Mineral Processing), 2013(z1): 268-271+274. doi: 10.3969/j.issn.1671-9492.2013.z1.069
[6] 邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013.
DENG J S. The release of chalcopyrite fluid inclusion components and their interaction with the relaxed surface[D]. Kunming: Kunming University of Science and Technology, 2013.
[7] 苏超, 刘殿文, 申培伦, 等. 黄铜矿和方铅矿的电化学特性及浮选行为研究进展[J]. 有色金属工程, 2020(9): 79-87. doi: 10.3969/j.issn.2095-1744.2020.09.013
SU C, LIU D W, SHEN P L, et al. Research progress on electrochemical properties and flotation behavior of chalcopyrite and galena[J]. Nonferrous Metals Engineering, 2020(9): 79-87. doi: 10.3969/j.issn.2095-1744.2020.09.013
[8] 肖静晶. N-丁氧基丙基-S-[2-(肟基)丙基]二硫代氨基甲酸酯对黄铜矿的浮选行为及吸附机理[J]. 中国有色金属学报, 2021, 31(8): 2247-2257. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202108024.htm
XIAO J J. Flotation behavior and adsorption mechanism of N-butoxypropyl-S-[2-(oximoyl)propyl] dithiocarbamate on chalcopyrite[J]. China Nonferrous Metals Chinese Journal, 2021, 31(8): 2247-2257. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202108024.htm
[9] 黄鹏亮, 杨丙桥, 胡杨甲, 等. 氧化预处理对铜钼浮选分离效果的影响[J]. 矿冶工程, 2021, 41(3): 46-50+56. doi: 10.3969/j.issn.0253-6099.2021.03.011
HUANG P L, YANG B Q, HU Y J, et al. Effect of oxidation pretreatment on copper and molybdenum flotation separation effect[J]. Mining and Metallurgy Engineering, 2021, 41(3): 46-50+56. doi: 10.3969/j.issn.0253-6099.2021.03.011
[10] 曾维能, 任浏祎, 曹雨琪, 等. 黄铜矿与磁黄铁矿浮选分离行为及机理研究[J]. 有色金属(选矿部分), 2020(6): 30-35. doi: 10.3969/j.issn.1671-9492.2020.06.006
ZENG W N, REN L Y, CAO Y Q, et al. Research on the flotation separation behavior and mechanism of chalcopyrite and pyrrhotite[J]. Nonferrous Metals (Beneficiation), 2020(6): 30-35. doi: 10.3969/j.issn.1671-9492.2020.06.006
[11] 刘承鑫, 付金涛, 云霞. 矿浆pH值对硫化铅锌矿浮选的影响[J]. 现代矿业, 2017, 33(11): 105-107+116. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201711029.htm
LIU C X, FU J T, YUN X. Effect of pulp pH value on flotation of lead-zinc sulfide ore[J]. Modern Mining, 2017, 33(11): 105-107+116. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201711029.htm
[12] E. C TODD, D. M SHERMAN, J. A PURTON. Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2-10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy[J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2137-2146. doi: 10.1016/S0016-7037(02)01371-6
[13] 孙水裕, 王淀佐, 李柏淡. 黄铜矿和黄铁矿无捕收剂浮选和分离的研究[J]. 中南矿冶学院学报, 1993(4): 466-471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD199304005.htm
SUN S Y, WANG D Z, LI B D. Research on collector-free flotation and separation of chalcopyrite and pyrite[J]. Journal of Central South University of Mining and Metallurgy, 1993(4): 466-471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD199304005.htm
[14] 耿连胜. 控制矿浆电位提高铜浮选回收率的研究[J]. 矿业快报, 2001(9): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200109006.htm
GENG L S. Study on Controlling Slurry Potential to Improve Copper Flotation Recovery[J]. Mining Express, 2001(9): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200109006.htm
[15] 陈勇, 宋永胜, 刘爽, 等. 镍黄铁矿和黄铜矿无捕收剂电位调控浮选分离[J]. 金属矿山, 2012(2): 86-88+98. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201202027.htm
CHEN Y, SONG Y S, LIU S, et al. Separation of pyrite and chalcopyrite by collector-free potential control flotation[J]. Metal Mines, 2012(2): 86-88+98. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201202027.htm
[16] 俞娟, 杨洪英, 范有静. 电位对天然黄铜矿表面膜层性质的影响(英文)[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8): 1880-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSY201108033.htm
YU J, YANG H Y, FAN Y J. Effect of electric potential on the properties of natural chalcopyrite surface film (English)[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8): 1880-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSY201108033.htm
[17] 杨绵延, 马英强, 谢材, 等. 不同磨矿体系下新生阳离子存在行为及其对黄铜矿可浮性的影响[J]. 金属矿山, 2022(2): 110-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202202016.htm
YANG M Y, MA Y Q, XIE C, et al. Existence behavior of nascent cations under different grinding systems and their effects on chalcopyrite floatability[J]. Metal Mines, 2022(2): 110-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202202016.htm
[18] 魏明安, 孙传尧. 矿浆中的难免离子对黄铜矿和方铅矿浮选的影响[J]. 有色金属, 2008(2): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200802022.htm
WEI M A, SUN C Y. Influence of inevitable ions in pulp on flotation of chalcopyrite and galena[J]. Nonferrous Metals, 2008(2): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200802022.htm
[19] 盛洁, 刘全军, 董敬申, 等. 典型金属离子对黄铜矿浮选效果的影响研究进展[J/OL]. 应用化工, 2022: 1-7. DOI: 10.16581/j.cnki.issn1671-3206.20211129.003.
SHENG J, LIU Q J, DONG J S, et al. Research progress on the effect of typical metal ions on chalcopyrite flotation effect[J/OL]. Applied Chemical Industry, 2022: 1-7. DOI: 10.16581/j.cnki.issn1671-3206.20211129.003.
[20] 王亮, 李育彪, 李万青. 不同价态杂质离子对黄铜矿浮选的影响机理研究[J]. 金属矿山, 2018(12): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201812016.htm
WANG L, LI Y B, LI W Q. Study on the influence mechanism of impurity ions of different valences on chalcopyrite flotation[J]. Metal Mines, 2018(12): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201812016.htm
[21] 谭欣, 孙传尧. 乙硫氮作捕收剂时无机调整剂加药顺序对典型硫化矿物浮选的影响[J]. 有色金属(选矿部分), 2021(5): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202105024.htm
TAN X, SUN C Y. Influence of dosing sequence of inorganic regulators on the flotation of typical sulfide minerals when ethyl sulfide nitrogen is used as collector[J]. Non-ferrous Metals (Beneficiation), 2021(5): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202105024.htm
[22] 方夕辉, 张村, 夏艳圆. 不同因素对黄铜矿、黄铁矿浮选分离动力学影响[J]. 有色金属科学与工程, 2016, 7(6): 110-114+123. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201606019.htm
FANG X H, ZHANG C, XIA Y Y. The influence of different factors on the flotation separation kinetics of chalcopyrite and pyrite[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 110-114+123. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201606019.htm
[23] KE B L, CHEN J H. Influence of galvanic interaction between chalcopyrite and galenaon electrochemical and flotation behaviour of chalcopyrite[J]. Applied Surface Science, 2022, 573, 151475.
[24] CLEMENT O, JONAS A, DANIEL F, et al. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour[J]. Advanced Powder Technology, 2013, 24(4): 801-809. https://www.sciencedirect.com/science/article/pii/S0921883113001210
[25] RICHARD L, JIE L, CHEN X M, et al. Flotation performance of chalcopyrite in the presence of an elevated pyrite proportion[J]. Minerals Engineering, 2022, 177, 107387.
[26] WU J J, MA W K, WANG X J, et al. The effect of galvanic interaction between chalcopyrite and pyrite on the surface chemistry and collector adsorption: Flotation and DFT study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125377.
[27] CLEMENT O, DANIEL F, JONAS A, et al. Influence of pulp aeration on the flotation of chalcopyrite with xanthate in chalcopyrite/pyrite mixtures[J]. International Journal of Mineral Processing, 2015, 134: 50-57. https://www.sciencedirect.com/science/article/pii/S0301751614001641
[28] SHEN Z H, WEN S M, HAN G, et al. Selective depression mechanism of locust bean gum in the flotation separation of chalcopyrite from pyrite in a low-alkalinity media[J]. Minerals Engineering, 2021, 170, 107044.
[29] 龚明光, 等. 浮游选矿[M]. 北京: 冶金工业出版社, 1959.
GONG M G. et al. Flotation beneficiation[M]. Beijing: Metallurgical Industry Press, 1959.
[30] LAI H, DENG J S, WEN S M, et al. Homogenization phenomena of surface components of chalcopyrite and sphalerite during grinding processing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123601.
[31] 冯博, 郭宇涛, 王涛, 等黄原胶在黄铜矿和闪锌矿浮选分离中的作用及机理[J]. 中国有色金属学报, 2020, 30(5): 1202-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202005025.htm
FENG B, GUO Y T, WANG T, et al. Effect and mechanism of xanthan gum in the flotation separation of chalcopyrite and sphalerite[J]. Chinese Journal of Nonferrous Metals, 2020, 30(5): 1202-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202005025.htm
[32] ZHOU H, GENG L, Zhang Y, et al. Selective flotation separation of chalcopyrite and sphalerite by thermal pretreatment under air atmosphere[J]. Physicochemical Problems of Mineral Processing, 2021, 57(1): 305-314. https://www.sciencedirect.com/science/article/pii/S0927776504001894
[33] M.K. YELLOJI RAO, K.A. NATARAJAN. Electrochemical effects of mineral-mineral interactions on the flotation of chalcopyrite and sphalerite[J]. International Journal of Mineral Processing, 1989, 27(3/4): 279-293. https://www.sciencedirect.com/science/article/pii/0301751689900690
[34] 唐林生, 黄开国, 王淀佐. 铜离子和硫化矿作用机理的研究[J]. 矿冶工程, 1989(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC198903006.htm
TANG L S, HUANG K G, WANG D Z. Study on the interaction mechanism between copper ions and sulfide minerals[J]. Mining and Metallurgy Engineering, 1989(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC198903006.htm
[35] 赵珊茸. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2017.
ZHAO S R. Crystallography and Mineralogy[M]. Beijing: Higher Education Press, 2017.
[36] DONG Z L, JIANG T, XU B, et al. Density functional theory study on electronic structure of tetrahedrite and effect of natural impurities on its flotation property[J]. Minerals Engineering, 2021, 169, 106980.
[37] 赖浩. 黄铜矿和方铅矿浮选过程中的同质化效应研究[D]. 昆明: 昆明理工大学, 2021.
LAI H. Study on the homogenization effect during the flotation process of chalcopyrite and galena[D]. Kunming: Kunming University of Science and Technology, 2021.
[38] CHEN X M, Enrico Hadde, LIU S Q, et al. The effect of amorphous silica on pulp rheology and copper flotation[J]. Minerals Engineering, 2017, 11: 41-46. https://www.sciencedirect.com/science/article/pii/S0892687517302005
[39] S. FARROKHPAY, B. NDLOVU. Effect of phyllosilicate minerals on the rheology, colloidal and flotation behaviour of chalcopyrite mineral[C]//Chemeca 2013: Australasian Conference on Chemical Engineering. Brisbane: 2013: 1-7.
[40] RICARDO I. JELDRES, LINA URIBE, LUIS A. CISTERNAS, et al. The effect of clay minerals on the process of flotation of copper ores-A critical review[J]. Applied Clay Science, 2019, 170: 57-69.
[41] 李桂金, 赵平, 白志民. 蛇纹石表面特性[J]. 硅酸盐学报, 2017, 45(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201708022.htm
LI G J, ZHAO P, BAI Z M. Surface Properties of Serpentine[J]. Journal of Silicates, 2017, 45(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201708022.htm
[42] FENG B, ZHANG W P, Guo Y T, et al. Synergistic effect of acidified water glass and locust bean gum in the flotation of a refractory copper sulfide ore[J]. Journal of Cleaner Production, 2018, 202: 1077-1084. https://www.sciencedirect.com/science/article/pii/S0959652618325630
[43] LU J W, SUN M J, YUAN Z T, et al. Innovative insight for sodium hexametaphosphate interaction with serpentine[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 35-41. https://www.sciencedirect.com/science/article/pii/S0927775718312329
[44] YANG B, LIU J, WANG L, et al. Enhanced collection of chalcopyrite by styrene-butyl acrylate polymer nanospheres in the presence of serpentine[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128408.
[45] 朱永谊. 黄铜矿浮选工艺及捕收剂研究进展[J]. 世界有色金属, 2020(18): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202018028.htm
ZHU Y Y. Research progress on chalcopyrite flotation process and collectors[J]. World Nonferrous Metals, 2020(18): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202018028.htm
[46] 黄真瑞, 钟宏, 王帅, 等. 黄铜矿浮选工艺及捕收剂研究进展[J]. 应用化工, 2013, 42(11): 2048-2051+2055. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201311035.htm
HUANG Z R, ZHONG H, WANG S, et al. Research progress on chalcopyrite flotation process and collectors[J]. Applied Chemical Industry, 2013, 42(11): 2048-2051+2055. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201311035.htm
[47] 孙传尧. 选矿工程师手册(第1册)[M]. 北京: 冶金工业出版社, 2015: 518-529.
SUN C Y. Handbook of mineral processing engineers (volume 1)[M]. Beijing: Metallurgical Industry Press, 2015: 518-529.
[48] 孙乾予. 铜矿物的晶体化学基因特征及浮选机理研究[D]. 沈阳: 东北大学, 2019.
SUN G Y. Crystal chemical genetic characteristics and flotation mechanism of copper minerals[D]. Shenyang: Northeastern University, 2019.
[49] BU X Z, FENG Y Y, XUE J W, et al. Effective recovery of chalcopyrite at low temperatures using modified ester collector[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 296-306.
[50] PEACE P. MKHONTO, ZHANG X R, LU L, et al. Unravelling the performance of oxycarbonyl-thiocarbamate collectors on chalcopyrite using first-principles calculations and micro-flotation recoveries[J]. Applied Surface Science, 2021, 563, 150332.
[51] 钟宏, 张湘予, 马鑫, 等. 酰氨基黄药的制备及其对黄铜矿、黄铁矿的浮选性能研究[J]. 矿产保护与利用, 2021, 41(2): 13-22. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c224e886-f769-43f4-a907-df9fc072e779
ZHONG H, ZHANG X Y, MA X, et al. Preparation of amido xanthate and its flotation performance for chalcopyrite and pyrite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 13-22. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c224e886-f769-43f4-a907-df9fc072e779
-