Investigation on Recycling of Kaolin from Solid Waste in Weathered Rock and Preparation of ZSM-5 Molecular Sieve
-
摘要:
以广东省惠州市某矿山风化花岗岩残积土固体废弃物为原料,采用水热法合成了ZSM-5分子筛。首先采用水力旋流器回收风化岩中的高岭土,并采用还原—络合法对其进行化学除铁。然后对除铁后的高岭土进行热活化处理,以TPAOH为模板剂,水热法合成了ZSM-5分子筛。采用TEM、XRD和N2吸附—脱附法对样品进行了表征,结果表明,合成的ZSM-5分子筛结晶度好,孔道规整,具有一定的介孔结构。
Abstract:ZSM-5 molecular sieve was synthesized by water heat from a weathered rock in Huizhou, Guangdong Province。Firstly, the kaolin from the weathered rock was recovered by beneficiation. Reduction-complexation method was used to chemically remove iron from it. Next the kaolin was thermally activated and ZSM-5 molecular sieve was synthesized by hydrothermal method using TPAOH as a template. The samples were characterized by TEM, XRD and N2 adsorption-desorption. The results showed that the ZSM-5 molecular sieve had a certain mesoporous structure, good crystallinity and regular pores.
-
Key words:
- solid waste /
- mineral processing /
- molecular sieve /
- pore structure
-
-
表 1 原矿粒度组成及化学成分
Table 1. Analysis of size composition and chemical composition in raw ore
/% 粒度/mm 产率 SiO2 Al2O3 Fe2O3 K2O Na2O +2 19.04 86.55 5.19 1.31 2.14 0.20 0.5-2 23.65 79.45 9.62 1.69 5.33 0.33 0.35-0.5 5.28 72.10 12.53 1.60 8.08 0.36 0.154-0.35 8.73 67.90 16.32 1.80 9.36 0.39 0.071-0.154 3.69 64.75 17.71 1.87 11.62 0.31 0.025-0.071 2.22 54.15 26.12 2.21 4.23 0.26 -0.025 37.39 47.40 31.49 2.39 2.63 0.23 合计 100.00 66.31 18.35 1.90 4.42 0.27 表 2 捣浆除砂试验结果
Table 2. Results of sand removal
/% 产品 产率 SiO2 Al2O3 Fe2O3 K2O Na2O 溢流 45.50 54.45 27.42 1.90 3.80 0.17 底流 54.50 88.71 4.96 1.17 2.90 0.16 表 3 旋流器分级产品浓度及产率
Table 3. Concentration and yield of hydrocyclone products
/% 旋流器 产品名称 产率/% 固体浓度/% 溢流 68.98 8.22 FX150 底流 31.02 62.65 给矿 100.00 25.10 溢流 45.34 5.86 FX25 底流 23.64 16.75 给矿 68.98 9.59 表 4 旋流器分级产品的化学元素分析结果
Table 4. Chemical composition of hydrocyclone products
/% 元素分级产品 SiO2 Al2O3 Fe2O3 K2O Na2O FX150溢流 48.63 30.58 2.20 1.13 0.14 FX150底流 66.87 19.83 1.70 9.72 0.28 FX25溢流 47.31 32.73 2.25 0.87 0.24 FX25底流 52.32 28.94 2.43 1.63 0.21 表 5 除铁试验条件及结果
Table 5. Conditions and results of iron removal tests
/% 试验编号 固液比 温度/℃ W1 H1 Fe2O3 FX25溢流 2.25 1 1 : 5 30 1 1 1.20 2 1 : 5 30 1 2 1.12 3 1 : 5 30 2 2 0.53 4 1 : 5 30 2 3 0.55 5 1 : 5 30 3 2 0.55 注: W1和H1分别为Na2S2O4和稳定剂H2C2O4的用量(%)。 表 6 ZSM-5分子筛孔结构参数
Table 6. Pore strueture parameters of ZSM-5 molecular sieve
比表面积Surface Area /(m2·g-1) 孔容Pore volume /(cm3·g-1) 微孔孔容Micropore volume /(cm3·g-1) 孔径Pore diameter /nm 302 0.18 0.12 2.23 -
[1] WANG JQ, HUANG YX, PAN Y, et al. Hydrothermal synthesis of high purity zeolite a from natural kaolin without calcination[J]. Microporous and Mesoporous Materials, 2014, 199: 50-56. doi: 10.1016/j.micromeso.2014.08.002
[2] YANG KEYU, YAN SIYANG, SANG YUE, et al. Construction of Hierarchical ZSM-5 Zeolites by Chelating-Alkaline Medium[J]. Materials Today Sustainability, 2021(prepublish). http://www.sciencedirect.com/science/article/pii/S2589234721000117
[3] 刘粤, 车庆丰, 易为, 等. 微介孔Ni/ZSM-5分子筛对甲苯催化重整的影响[J]. 可再生能源, 2021, 39(4): 427-433. https://www.cnki.com.cn/Article/CJFDTOTAL-NCNY202104001.htm
[4] 黄国良. 全风化花岗岩的工程特性及工程措施[J]. 科技视界, 2015(15): 94. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201515071.htm
[5] 卢党军. 我国砂质高岭土资源特点与开发利用现状[J]. 非金属矿, 2009, 32(3): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK200903019.htm
[6] 曾利群, 鄢雨南, 陈信峰. 深圳地区风化花岗岩渣土资源化利用试验研究[J]. 非金属矿, 2020, 43(5): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202005024.htm
[7] 俞旺新, 张恩. 煤矸石粉掺量对花岗岩残积土的抗压性能研究[J]. 广西大学学报(自然科学版), 2020, 45(3): 598-605. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202003014.htm
[8] 田朋飞, 简文星, 宋治, 等. 赣南花岗岩残积土基本物理特性与路用性能研究[J]. 公路交通科技, 2020, 37(9): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202009006.htm
[9] 陈国华. 二氧化硫脲对高岭土增白试验分析[J]. 化工管理, 2019(33): 25-26. https://www.cnki.com.cn/Article/CJFDTOTAL-FGGL201933018.htm
[10] 郭春雷, 王维维, 金海龙, 等. 高岭土除铁增白研究进展[J]. 现代矿业, 2019, 35(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201901026.htm
[11] LI Y, SUN H, FENG R, et al. Synthesis of ZSM-5 zeolite from diatomite for fluid catalytic cracking(FCC) application[J]. Applied Petrochemical Research, 2015, 5(4): 347-353. http://link.springer.com/content/pdf/10.1007%2Fs13203-015-0113-2.pdf
[12] PAN F, LU X, ZHU Q, et al. Direct synthesis of HZSM-5 from natural clay[J]. Journal of Materials Chemistry A, 2015, 3(7): 4058-4066. http://www.onacademic.com/detail/journal_1000037358675510_0cea.html
-