西藏仲巴地块加达钾质火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征

杨硕, 向树元, 张先, 李志璇, 刘桢何. 西藏仲巴地块加达钾质火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J]. 地质通报, 2016, 35(6): 894-905.
引用本文: 杨硕, 向树元, 张先, 李志璇, 刘桢何. 西藏仲巴地块加达钾质火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J]. 地质通报, 2016, 35(6): 894-905.
YANG Shuo, XIANG Shuyuan, ZHANG Xian, LI Zhixuan, LIU Zhenhe. LA-ICP-MS zircon U-Pb age and geochemical characteristics of Jiada potas-sic volcanic rocks in Zhongba terrane, Tibet[J]. Geological Bulletin of China, 2016, 35(6): 894-905.
Citation: YANG Shuo, XIANG Shuyuan, ZHANG Xian, LI Zhixuan, LIU Zhenhe. LA-ICP-MS zircon U-Pb age and geochemical characteristics of Jiada potas-sic volcanic rocks in Zhongba terrane, Tibet[J]. Geological Bulletin of China, 2016, 35(6): 894-905.

西藏仲巴地块加达钾质火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征

LA-ICP-MS zircon U-Pb age and geochemical characteristics of Jiada potas-sic volcanic rocks in Zhongba terrane, Tibet

  • 新生代青藏高原钾质火山岩发育,主要集中于藏北地区和拉萨地块内,仲巴地块中鲜见报道。对仲巴地块中发现的加达钾质火山岩进行研究,其岩石类型以粗面质为主,岩浆以溢流相-喷发相不间断喷发。样品普遍显示高钾高铝,低碱,偏酸性,富集轻稀土元素和大离子亲石元素,亏损高场强元素,具弱负Eu异常,贫Y和Yb,Sr含量较高,类似于典型的埃达克质岩的地球化学特征。粗面玄武安山岩样品LA-ICP-MS锆石U-Pb年龄为17.03±0.32Ma,形成时代为中新世。加达钾质火山岩浆来源于挤压增厚的下地壳部分熔融,其产出的构造背景是后碰撞伸展环境。
  • 加载中
  • [1]

    Turner S, Amaud N, Liu J, et al. Post-collision, shoshonitic volca-nism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37:45-71.

    [2]

    Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental colli-sion zones:Melting of thickened lower crust beneanth southern Ti-bet[J]. Geology, 2003, 31:1021-1024.

    [3]

    Zhao Z D, Mo X X, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic mag-maatism in S W Tibet:Petrogenesis and implication for India intracontinental subduction beneath southern Tibet[J]. Lithos, 2009, 113:190-212.

    [4]

    谭建政. 藏北布若错地区新生代火山岩及其成因探讨[J]. 桂林理工大学学报, 2013, 33(3):383-393.

    [5]

    陈建林, 许继峰, 康志强, 等. 青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因[J]. 岩石学报, 2006, 22(3):585-595.

    [6]

    胡文洁, 田世洪, 杨竹森, 等. 拉萨地块西段中新世查加寺钾质火山岩岩石成因——岩石地球化学、年代学和Sr-Nd同位素约束[J]. 矿床地质, 2012, 31(4):813-830.

    [7]

    Lai S C, Liu C Y, Yi H S. Geochemistry and petrogenesis of Cenzo-ic and esite-dacite association from the Hoh Xil Region, Tibetan Plateau[J]. International Geology Reviews, 2003, 45(11):998-1019.

    [8]

    刘栋, 赵志丹, 朱第成, 等. 青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J]. 岩石学报, 2011, 27(7):2045-2059.

    [9]

    李才, 朱志勇, 迟效国. 藏北改则地区鱼鳞山组火山岩同位素年代学[J]. 地质通报, 2002, 21(11):732-734.

    [10]

    李光明. 藏北羌塘地区新生代火山岩岩石特征及其成因探讨[J]. 地质地球化学, 2000, 28(2):38-44.

    [11]

    黄勇, 牟世勇, 卢定彪, 等. 藏北鱼鳞山地区鱼鳞山组火山岩的特征及时代探讨[J]. 贵州地质, 2004, 21(3):148-151.

    [12]

    西藏地矿局. 西藏自治区区域地质志[M]. 北京:地质出版社, 1993.

    [13]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibet-an orogen[J]. Annual Review of Earth and Planetary Sciences. 2000, 28(1):211-280.

    [14]

    潘桂棠, 李兴振. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11):701-707.

    [15]

    郭铁鹰. 西藏阿里地质[M]. 武汉:中国地质大学出版社, 1991.

    [16]

    张振利, 专少鹏, 李广栋, 等. 藏南仲巴地层分区才巴弄组变质玄武质火山岩的发现及其意义[J]. 地质通报, 2007, 26(4):410-416.

    [17]

    Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classi-fication of volcanic rocks based on the total alkali-silica diagram[J]. J. Petrol., 1986, 27(3):745-750.

    [18]

    Turner S, A maud N, Liu J, et al.Post-collision shoshonitic volca-nism on the Tibetan plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Petrolo-gy, 1996, 37(1):45-71.

    [19]

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Con-tributions to Mineralogy & Petrology, 1976, 58(1):63-81.

    [20]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.

    [21]

    Boynton, W V. Geochemistry of the rare earth elements:meteorite studies[J]. Rare Earth Element Geochemistry, 1984.

    [22]

    Mcdonough W F, Sun S S, Ringwood A E, et al. Potassium, rubid-ium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica Et Cosmochimica Acta, 1992, 56(3):1001-1012.

    [23]

    Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zir-cons:Geochronology of the ivrea zone (Southern Alps)[J]. Contri-butions to Mineralogy and Petrology, 1999, 134(4):380-404

    [24]

    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on inter-pretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569.

    [25]

    李再会, 郑来林, 李军敏, 等. 冈底斯中段林子宗火山岩岩石地球化学特征[J]. 矿物岩石地球化学通报, 2008, 27(1):20-27.

    [26]

    陈德潜, 陈刚. 实用稀土地球化学[M]. 北京:冶金工业出版社, 1990.

    [27]

    Taylor S R, McLennan S M. The continental crust:its composition and evolution[J]. Physics of the Earth and Planetary Interiors, 1986, 42:196-197.

    [28]

    Sun S S, Mc Donough W F. Chemical and isotopic systematic of oce-anic basalts:Implication for mantle composition and processes[C]//Saunders A D, Norry M J (Magmatism in the Ocean Basins. Geologi-cal Society, London, Special Publication, 1989, 42(1):313-345.

    [29]

    Zhao Z, Mo X, Zhang S. Post-collisional magmatism in Wuyu ba-sin, central Tibet:evidence for recycling of subducted Tethyan oce-anic crust[J]. Science in China (series D), 2001, 44(supp.):27-34.

    [30]

    Ding L, Paul K, Zhong D L, et al. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction[J]. J. Petrol., 2003, 44(10):1833-1865.

    [31]

    Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and pet-rogenesis[J]. J. Petrol., 1999, 40(9):1399-1424.

    [32]

    Rollison H R. 杨学明, 杨晓勇, 等, 译.岩石地球化学[M]. 合肥:中国科技大学出版社, 2000.

    [33]

    Ding L, Kapp P, Yue Y H, et al. Postcollisional calc-alka-line la-vas and xenoliths from the southern Qiangtang terrane, central Ti-bet[J]. Earth and Planetary Science Letters, 2007, 254:28-38.

    [34]

    Hacker B R, Edwin G, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet[J]. Science, 2000, 287:2463-2466.

    [35]

    Wyllie P J. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Journal of the Geological Society, 1977, 134:215-234.

    [36]

    候增谦, 高永丰, 孟祥金, 等. 西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J]. 岩石学报, 2004, 20(2):239-248.

    [37]

    莫宣学, 潘桂棠. 从特提斯到青藏高原形成:构造-岩浆事件的约束[J]. 地学前缘,2006,13(6):43-51.

    [38]

    Wang Q, McDcermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area,northern Tibet:Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6):465-468.

    [39]

    Defant M J, Drumond M S. Derivation of some modem arc mag-mas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665.

    [40]

    王焰, 张旗, 钱青. 埃达克岩(adakite)的地球化学特征及其构造意义[J]. 地质科学, 2000, 35(2):251-256.

    [41]

    张旗, 王焰. 埃达克岩的特征及其意义[J]. 地质通报, 2002, 21(7):431-435.

    [42]

    Castillo P R. An overview of adakite petrogenesis[J]. Chinese Bulle-tin, 2006, 51(3):257-268

    [43]

    Drummond M S, Defant M J. A model for Trondhjemite-Tonal-ite-Dacite Genesis and crustal growth via slab melting:Archean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95(B13):21503-21521.

    [44]

    Müller D, Groves D I. Direct and indirect associations between po-tassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 5:383-406.

    [45]

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45:29-44.

    [46]

    Harris N B W, Pearce J B, Tindle A G. Geochemicalcharacteristics of collision-zone magmatism[C]//Coward M P, Ries A C. Colli-sion tectonics. Geo. Soc. Spec.Publ., 1986, 19:67-81

    [47]

    Philip E, Le F P, Peter M, et al. Heat sources for the Teriary meta-morphism and anatexis in the Annapurna-Manaslu region, Central Nepal[J]. Journal of Geophysical Research Solid Earth, 1992, 97:2107-2128.

    [48]

    Bellieni G, Cavazzini G, Fioretti A M, et al. The Cima di Vila (Zin-snock) intrusion, eastern alps:Evidence for crustal melting, acidmafic magma mingling and wall-rock fluid effects[J]. Mineralogy and Petrology, 1996, 56(1/2):125-146.

    [49]

    Guillot S, Le Fort P. Geochemical constraints on the bimodal ori-gin of High Himalayan leucogranites[J]. Lithos, 1995, 35:221-234.

    [50]

    Armijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research Solid Earth, 1986, 91:13803-13872.

    [51]

    Colem M, Hodges K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimumage for east-west extension[J]. Na-ture, 1995, 374:49-52.

    [52]

    Hou Z Q, Gao Y F, Qu X M,et al. Origin of adakitic intrusive generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220:139-155.

  • 加载中
计量
  • 文章访问数:  1106
  • PDF下载数:  85
  • 施引文献:  0
出版历程
收稿日期:  2015-07-09
修回日期:  2015-12-01
刊出日期:  2016-06-15

目录