西藏仲巴地块加达钾质火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征
LA-ICP-MS zircon U-Pb age and geochemical characteristics of Jiada potas-sic volcanic rocks in Zhongba terrane, Tibet
-
摘要: 新生代青藏高原钾质火山岩发育,主要集中于藏北地区和拉萨地块内,仲巴地块中鲜见报道。对仲巴地块中发现的加达钾质火山岩进行研究,其岩石类型以粗面质为主,岩浆以溢流相-喷发相不间断喷发。样品普遍显示高钾高铝,低碱,偏酸性,富集轻稀土元素和大离子亲石元素,亏损高场强元素,具弱负Eu异常,贫Y和Yb,Sr含量较高,类似于典型的埃达克质岩的地球化学特征。粗面玄武安山岩样品LA-ICP-MS锆石U-Pb年龄为17.03±0.32Ma,形成时代为中新世。加达钾质火山岩浆来源于挤压增厚的下地壳部分熔融,其产出的构造背景是后碰撞伸展环境。Abstract: Cenozoic potassic volcanic rocks are widely distributed in the Tibetan Plateau, mainly in northern Tibet and Lhasa block with a few reports in Zhongba terrane. The study of Jiada potassic volcanic rocks found in Zhongba terrane shows that the rocks are almost exclusively trachyte, and the magma erupted incessantly by overflowing and erupting. These rocks are also characterized by high potassium and high aluminum, rich LILE, LREE and Sr, and poor HFSE,Y and Yb, with Eu negative anomaly. Their geochemi-cal characteristicss are similar to those of typical adkite rocks. The LA-ICP-MS zircon U-Pb age of trachyandesites is 17.03±0.32Ma, which means that these volcanic rocks were formed in Miocene. The Jiada potassic magma was derived from partial melting of thickened crust. The rocks represent post-collisional tectonic setting and extension environment.
-
-
[1] Turner S, Amaud N, Liu J, et al. Post-collision, shoshonitic volca-nism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37:45-71.
[2] Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental colli-sion zones:Melting of thickened lower crust beneanth southern Ti-bet[J]. Geology, 2003, 31:1021-1024.
[3] Zhao Z D, Mo X X, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic mag-maatism in S W Tibet:Petrogenesis and implication for India intracontinental subduction beneath southern Tibet[J]. Lithos, 2009, 113:190-212.
[4] 谭建政. 藏北布若错地区新生代火山岩及其成因探讨[J]. 桂林理工大学学报, 2013, 33(3):383-393.
[5] 陈建林, 许继峰, 康志强, 等. 青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因[J]. 岩石学报, 2006, 22(3):585-595.
[6] 胡文洁, 田世洪, 杨竹森, 等. 拉萨地块西段中新世查加寺钾质火山岩岩石成因——岩石地球化学、年代学和Sr-Nd同位素约束[J]. 矿床地质, 2012, 31(4):813-830.
[7] Lai S C, Liu C Y, Yi H S. Geochemistry and petrogenesis of Cenzo-ic and esite-dacite association from the Hoh Xil Region, Tibetan Plateau[J]. International Geology Reviews, 2003, 45(11):998-1019.
[8] 刘栋, 赵志丹, 朱第成, 等. 青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J]. 岩石学报, 2011, 27(7):2045-2059.
[9] 李才, 朱志勇, 迟效国. 藏北改则地区鱼鳞山组火山岩同位素年代学[J]. 地质通报, 2002, 21(11):732-734.
[10] 李光明. 藏北羌塘地区新生代火山岩岩石特征及其成因探讨[J]. 地质地球化学, 2000, 28(2):38-44.
[11] 黄勇, 牟世勇, 卢定彪, 等. 藏北鱼鳞山地区鱼鳞山组火山岩的特征及时代探讨[J]. 贵州地质, 2004, 21(3):148-151.
[12] 西藏地矿局. 西藏自治区区域地质志[M]. 北京:地质出版社, 1993.
[13] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibet-an orogen[J]. Annual Review of Earth and Planetary Sciences. 2000, 28(1):211-280.
[14] 潘桂棠, 李兴振. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11):701-707.
[15] 郭铁鹰. 西藏阿里地质[M]. 武汉:中国地质大学出版社, 1991.
[16] 张振利, 专少鹏, 李广栋, 等. 藏南仲巴地层分区才巴弄组变质玄武质火山岩的发现及其意义[J]. 地质通报, 2007, 26(4):410-416.
[17] Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classi-fication of volcanic rocks based on the total alkali-silica diagram[J]. J. Petrol., 1986, 27(3):745-750.
[18] Turner S, A maud N, Liu J, et al.Post-collision shoshonitic volca-nism on the Tibetan plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Petrolo-gy, 1996, 37(1):45-71.
[19] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Con-tributions to Mineralogy & Petrology, 1976, 58(1):63-81.
[20] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[21] Boynton, W V. Geochemistry of the rare earth elements:meteorite studies[J]. Rare Earth Element Geochemistry, 1984.
[22] Mcdonough W F, Sun S S, Ringwood A E, et al. Potassium, rubid-ium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica Et Cosmochimica Acta, 1992, 56(3):1001-1012.
[23] Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zir-cons:Geochronology of the ivrea zone (Southern Alps)[J]. Contri-butions to Mineralogy and Petrology, 1999, 134(4):380-404
[24] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on inter-pretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569.
[25] 李再会, 郑来林, 李军敏, 等. 冈底斯中段林子宗火山岩岩石地球化学特征[J]. 矿物岩石地球化学通报, 2008, 27(1):20-27.
[26] 陈德潜, 陈刚. 实用稀土地球化学[M]. 北京:冶金工业出版社, 1990.
[27] Taylor S R, McLennan S M. The continental crust:its composition and evolution[J]. Physics of the Earth and Planetary Interiors, 1986, 42:196-197.
[28] Sun S S, Mc Donough W F. Chemical and isotopic systematic of oce-anic basalts:Implication for mantle composition and processes[C]//Saunders A D, Norry M J (Magmatism in the Ocean Basins. Geologi-cal Society, London, Special Publication, 1989, 42(1):313-345.
[29] Zhao Z, Mo X, Zhang S. Post-collisional magmatism in Wuyu ba-sin, central Tibet:evidence for recycling of subducted Tethyan oce-anic crust[J]. Science in China (series D), 2001, 44(supp.):27-34.
[30] Ding L, Paul K, Zhong D L, et al. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction[J]. J. Petrol., 2003, 44(10):1833-1865.
[31] Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and pet-rogenesis[J]. J. Petrol., 1999, 40(9):1399-1424.
[32] Rollison H R. 杨学明, 杨晓勇, 等, 译.岩石地球化学[M]. 合肥:中国科技大学出版社, 2000.
[33] Ding L, Kapp P, Yue Y H, et al. Postcollisional calc-alka-line la-vas and xenoliths from the southern Qiangtang terrane, central Ti-bet[J]. Earth and Planetary Science Letters, 2007, 254:28-38.
[34] Hacker B R, Edwin G, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet[J]. Science, 2000, 287:2463-2466.
[35] Wyllie P J. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Journal of the Geological Society, 1977, 134:215-234.
[36] 候增谦, 高永丰, 孟祥金, 等. 西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J]. 岩石学报, 2004, 20(2):239-248.
[37] 莫宣学, 潘桂棠. 从特提斯到青藏高原形成:构造-岩浆事件的约束[J]. 地学前缘,2006,13(6):43-51.
[38] Wang Q, McDcermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area,northern Tibet:Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6):465-468.
[39] Defant M J, Drumond M S. Derivation of some modem arc mag-mas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665.
[40] 王焰, 张旗, 钱青. 埃达克岩(adakite)的地球化学特征及其构造意义[J]. 地质科学, 2000, 35(2):251-256.
[41] 张旗, 王焰. 埃达克岩的特征及其意义[J]. 地质通报, 2002, 21(7):431-435.
[42] Castillo P R. An overview of adakite petrogenesis[J]. Chinese Bulle-tin, 2006, 51(3):257-268
[43] Drummond M S, Defant M J. A model for Trondhjemite-Tonal-ite-Dacite Genesis and crustal growth via slab melting:Archean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95(B13):21503-21521.
[44] Müller D, Groves D I. Direct and indirect associations between po-tassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 5:383-406.
[45] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45:29-44.
[46] Harris N B W, Pearce J B, Tindle A G. Geochemicalcharacteristics of collision-zone magmatism[C]//Coward M P, Ries A C. Colli-sion tectonics. Geo. Soc. Spec.Publ., 1986, 19:67-81
[47] Philip E, Le F P, Peter M, et al. Heat sources for the Teriary meta-morphism and anatexis in the Annapurna-Manaslu region, Central Nepal[J]. Journal of Geophysical Research Solid Earth, 1992, 97:2107-2128.
[48] Bellieni G, Cavazzini G, Fioretti A M, et al. The Cima di Vila (Zin-snock) intrusion, eastern alps:Evidence for crustal melting, acidmafic magma mingling and wall-rock fluid effects[J]. Mineralogy and Petrology, 1996, 56(1/2):125-146.
[49] Guillot S, Le Fort P. Geochemical constraints on the bimodal ori-gin of High Himalayan leucogranites[J]. Lithos, 1995, 35:221-234.
[50] Armijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research Solid Earth, 1986, 91:13803-13872.
[51] Colem M, Hodges K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimumage for east-west extension[J]. Na-ture, 1995, 374:49-52.
[52] Hou Z Q, Gao Y F, Qu X M,et al. Origin of adakitic intrusive generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220:139-155.
-
计量
- 文章访问数: 1106
- PDF下载数: 85
- 施引文献: 0