大兴安岭中段塔尔气地区流纹岩年龄、地球化学特征及其地质意义
Geochronological and geochemical characteristics of the rhyolites in Taerqi of middle Da Hinggan Mountains and their geological significance
-
摘要: 塔尔气地区位于大兴安岭主脊中段,晚中生代广泛发育一套玄武岩、安山岩、英安岩、流纹岩及相应火山碎屑岩的岩石组合。以流纹岩为研究对象,进行了LA-ICP-MS锆石U-Pb年龄、岩石地球化学研究。测年结果显示,流纹岩形成于132±2Ma(MSWD=1.5,2σ),属早白垩世中期。岩石地球化学特征表明,流纹岩属于典型的弱过铝质高钾钙碱系列岩石,具有高硅(71.6%~77%)、富碱(Na2O+K2O=7.94%~9.64%)且富钾(K2O=4.5%~5.46%)的特征;轻、重稀土元素分馏明显,具中等Eu负异常(δEu=0.22~0.7),亏损高场强元素Nb、Ta、P、Ti,相对富Th、U、Zr、Hf,富集大离子亲石元素K、Rb,相对贫Ba、Sr,显示A型流纹岩特征。岩浆源区与硬质砂岩相似,具有较高的锆饱和温度,可能为地壳部分熔融的产物,形成于后碰撞伸展的大地构造环境。Abstract: Taerqi area is located in the middle main ridge of Da Hinggan Mountains, where there is developed a suite of late Mesozo-ic volcanic rocks, which include basalt, andesite, dacite, rhyolite and tuff. In this paper, detailed LA-ICP-MS zircon U-Pb geochro-nological and element geochemical studies were carried out for the rhyolites. The zircon U-Pb dating yielded a weighted average age of 132±2Ma(MSWD=1.5,2σ), indicating that the rhyolites were formed at the middle stage of the early Cretaceous. Rock geo-chemical characteristics show that the rocks are peraluminous cal-alkaline rhyolites, which are characterized by high SiO2(71.6%~77%), high potassium and alkali content (K2O=4.5%~5.46%, Na2O+K2O=7.94%~9.64%). Trace elements have a similar variation trend that systematic enrichment of LILE and depletion of HFSE as well as LREE fractionation are more obvious than that of HREE, and also show significant weak anomaly of Eu (δEu=0.22~0.7). In addition, there exist the depletion of Sr, Ba, P, Ti, Nb, Ta and en-richment of Rb, K, Th, U, Zr, Hf. The rocks belong genetically to A type with a high zirconium saturation temperature (TZr=842℃),and the magma source was probably similar to the metagrewacks. Accordingly, it is inferred that the A-type rhyolites were products of partial melting of the crust and formed in a post-collision environment and an extensional tectonic setting.
-
Key words:
- middle Da Hinggan Mountains /
- Taerqi area /
- zircon U-Pb dating /
- A-type rhyolites /
- post-orogenic
-
-
[1] 赵越,杨振宇,马醒华. 东亚大地构造发展的重要转折[J]. 地质科学, 1994, 2:105-119.
[2] 李锦轶,莫申国,和政军,等. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J]. 地学前缘, 2004, 3:157-168.
[3] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Pa-leo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224.
[4] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanero-zoic granitoids in northeastern China[J]. Journal of Asian Earth Sci-ences, 2011, 41(1):1-30.
[5] 许文良,王枫,裴福萍,等. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 2:339-353.
[6] Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Let-ters, 2006, 251(1/2):179-198.
[7] 张吉衡. 大兴安岭地区中生代火山岩的年代学格架[D]. 吉林大学硕士学位论文, 2006.
[8] 张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 中国地质大学博士学位论文, 2009.
[9] 苟军. 满洲里南部白音高老组火山岩的形成时代与岩石成因[D]. 吉林大学硕士学位论文, 2010.
[10] Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J]. Chemical Geology, 2010, 276(3/4):144-165.
[11] 佘宏全,李进文,向安平,等. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 2012, 2:571-594.
[12] 杨扬,高福红,陈井胜,等. 赤峰地区中生代火山岩锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2012, 2:257-268.
[13] 苟军. 满洲里南部中生代火山岩的时代、成因及构造背景[D]. 吉林大学博士学位论文, 2013.
[14] 董玉,葛文春,杨浩,等. 大兴安岭中段早白垩世白音高老组火山岩年代学与地球化学研究[C]//2014年中国地球科学联合学术年会, 2014.
[15] 张亚明,杜玉春,崔天日,等. 扎兰屯地区白音高老组火山岩特征及成因[J]. 金属矿山, 2014, 6:101-104.
[16] 秦涛,郑常青,崔天日,等. 内蒙古扎兰屯地区白音高老组火山岩地球化学、年代学及其地质意义[J]. 地质与资源, 2014, 2:146-153.
[17] 张乐彤,李世超,赵庆英,等. 大兴安岭中段白音高老组火山岩的形成时代及地球化学特征[J]. 世界地质, 2015, 1:44-54.
[18] 王雄,陈跃军,李勇,等. 大兴安岭中北段塔尔气地区早白垩世白音高老组火山岩地球化学特征及意义[J]. 世界地质, 2015, 1:25-33.
[19] 王兴安,徐仲元,刘正宏,等. 大兴安岭中部柴河地区钾长花岗岩的成因及构造背景:岩石地球化学、锆石U-Pb同位素年代学的制约[J]. 岩石学报, 2012, 28(8):2647-2655.
[20] 刘建辉,刘敦一,张玉海,等. 使用SHRIMP测定锆石铀-铅年龄的选点技巧[J]. 岩矿测试, 2011, 3:265-268.
[21] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 16:1589-1604.
[22] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace el-ements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
[23] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refine-ment of zircon U-Pb isotope and trace element analyses by LAICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.
[24] Ludwig K R.. User's Manual for Isoplot/Ex, Version 3.00. a geo-chronological toolkit for Microsoft Excel[J]. Berkeley Geochronolo-gy Center Special Publication, 2003, 4(2):1-70
[25] Gao S, Liu X M, Yuan H L, et al. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by La-ser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2002, 26(2):181-196.
[26] 高剑峰,陆建军,赖鸣远,等. 岩石样品中微量元素的高分辨率等离子质谱分析[J]. 南京大学学报(自然科学版), 2003, 6:844-850.
[27] 钟玉芳,马昌前,佘振兵. 锆石地球化学特征及地质应用研究综述[J]. 地质科技情报, 2006, 1:27-34.
[28] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 3:161-174.
[29] Le Bas M J, Le Maitre R W. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of petrolo-gy, 1986, 27(3):745-750.
[30] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Scienc-es, 1971, 8(5):523-548.
[31] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Con-tributions to Mineralogy and Petrology, 1976, 58(1):63-81.
[32] Le Maitre R W, Bateman P, A D. A classification of igneous rocks and glossary of terms:Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Oxford:Blackwell, 1989.
[33] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[34] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[35] 王中刚,于学元,赵振华. 稀土元素地球化学[M].北京:科学出版社, 1989:133-246.
[36] 熊兴国,岳龙,徐安全,等. 西藏羌塘达尔应强过铝花岗岩地球化学特征及地球动力学意义[J]. 沉积与特提斯地质, 2006, 4:40-46.
[37] Wedepohl K H. The composition of the continental crust[J]. Geo-chimica et cosmochimica Acta, 1995, 59(7):1217-1232.
[38] 刘一鸣,李才,王明,等. 藏北羌塘盆地望湖岭组流纹岩地球化学特征及其地质意义[J]. 地质通报, 2014, 30(11):1759-1767.
[39] 陈根文,邓腾,刘睿,等. 西天山阿吾拉勒地区二叠系塔尔得套组双峰式火山岩地球化学研究[J]. 岩石学报, 2015,(01):105-118.
[40] 李莉,白云山,牛志军,等. 藏北羌塘中部劳日特错花岗斑岩体的特征及构造意义[J]. 地质通报, 2004, 23(2/3):1040-1045.
[41] 李宁波,单强,张永平,等. 西天山阿吾拉勒地区A型流纹斑岩的初步研究[J]. 大地构造与成矿学, 2012, 4:624-633.
[42] Whalen J B, Currie K L, Chappell B W. A-type granites:geo-chemical characteristics, discrimination and petrogenesis[J]. Contri-butions to Mineralogy and Petrology, 1987, 95(4):407-419.
[43] 邱检生,俆夕生. 火成岩岩石学[M]. 北京:科学出版社, 2010:207-235.
[44] Frost B R, Barnes C G, Collins W J, et al. A geochemical classifica-tion for granitic rocks[J]. Journal of petrology, 2001, 42(11):2033-2048.
[45] Loiselle M C, Wones D R. Characteristics and origin of anorogen-ic granites[J]. Geological Society of America Abstracts with Pro-grams, 1979, 11(7):468.
[46] 吴福元,李献华,杨进辉,等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 6:1217-1238.
[47] King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 1997, 3(38):371-391.
[48] Watson E B, Harrison T M. Zircon saturation revisited:tempera-ture and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2):295-304.
[49] 李献华,周汉文,李正祥,等. 川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义[J]. 地质科学, 2002, 3:264-276.
[50] Mushkin A. The Petrogenesis of A-type Magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5):815-832.
[51] 陈志洪,邢光福,姜杨,等. 华夏陆块古元古代A型流纹斑岩的发现及其地质意义[J]. 大地构造与成矿学, 2013, 3:499-510.
[52] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1):143-173.
[53] 丁烁,黄慧,牛耀龄,等. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因[J]. 岩石学报, 2011, (12):3603-3614.
[54] Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qian-shan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1):89-106.
[55] 苟军,孙德有,赵忠华,等. 满洲里南部白音高老组流纹岩锆石U-Pb定年及岩石成因[J]. 岩石学报, 2010, 26(1):333-344.
[56] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3):347-359.
[57] Hofmann A W. Chemical differentiation of the earth:the relation-ship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3):297-314.
[58] 张玉涛,张连昌,英基丰,等. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J]. 岩石学报, 2007, 23(11):2811-2822.
[59] Kerrich R, Polat A, Wyman D, et al. Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province:impli-cations for Archean mantle reservoirs and greenstone belt genesis[J]. Lithos, 1999, 46(1):163-187.
[60] 李昌年. 火成岩微量元素岩石学[M]. 武汉:中国地质大学出版社, 1992:1-195.
[61] Douce A E P. What do experiments tell us about the relative con-tributions of crust and mantle to the origin of granitic magmas[J]. Geological Society, London, Special Publication, 1999, 168(1):55-75.
[62] 张本仁. 大陆造山带地球化学研究:Ⅰ岩石构造环境地球化学判别的改进[J]. 西北地质, 2001, 3:1-17.
[63] 林强,葛文春,吴福元,等. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 2004, 3:403-412.
[64] 葛文春,吴福元,周长勇,等. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 2005, 3:749-762.
[65] Pearce J A, Harris N B W, Tindle A G. Trace element discrimina-tion diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983.
[66] Eklund O, Konopelko D, Rutanen H, et al. 1.8 Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian shield[J]. Lithos, 1998, 45(1):87-108.
-
计量
- 文章访问数: 1377
- PDF下载数: 113
- 施引文献: 0