浙江舟山群岛首次发现二叠纪变质岩
The first discovery of Permian metamorphic rocks in Zhoushan Islands, Zhejiang Province
-
摘要: 浙江舟山群岛大衢岛及周边若干小岛出露少量变质岩系,包括斜长角闪岩、片麻岩、片岩、大理岩等,以往被归为陈蔡岩群。LAICP-MS锆石U-Pb测年结果表明,黑云斜长片麻岩变质新生锆石或岩浆锆石的变质边年龄在260~270Ma之间,大理岩的变质年龄为261.1±1.3Ma,侵入变质岩的未变形伟晶岩脉年龄为258.0±1.6Ma,表明该套变质岩系的变质时代约为260Ma,不能归入加里东期变质的陈蔡岩群。这是在华南东北缘地区首次发现二叠纪变质岩,为探讨华南东吴运动和全球海西运动,甚至泛大陆的重建提供了重要新信息。Abstract: There are some metaphoric rocks such as amphibolite, genesis, schist and marble exposed in Daqu Island of Zhoushan Is-lands, Zhejiang Province. In the past, they are assigned to Chencai Formation. Nevertheless, new LA-ICP-MS zircon U-Pb analysis yielded the ages of metamorphic neogenic zircon and metamorphic rim in biotite-plagioclase gneiss ranging from 260Ma to 270Ma, whereas the metamorphic age of marble and the formation age of undeformed pegmatite veins which intruded into metamorphic rocks are 261.1±1.3Ma and 258.0±1.6Ma respectively, indicating that the metamorphic age of the rocks in Daqu Island is~260Ma. This is the first reported Permian metamorphic rock on the northeastern margin of South China Block, which may provide some im-portant new information for Dongwu movement in South China, global Hercynian movement and even the Pangaea reconstruction.
-
Key words:
- metamorphic rocks /
- Permian /
- LA-ICP-MS zircon U-Pb age /
- Zhoushan Islands
-
-
[1] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to ear-liest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precam-brian Research, 2006, 151:79-100.
[2] 靳松, 张利, 钟增球, 等. 浙闽地区华夏地块新元古代变沉积岩地球化学特征及地质意义[J]. 地球科学——中国地质大学学报, 2008, 33(6):764-774.
[3] 于津海, 王丽娟, 魏震洋, 等. 华夏地块显生宙的变质作用期次和特征[J]. 高校地质学报, 2007, 13(3):474-483.
[4] Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb zircon geochro-nology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China:Tectonic im-plications and the need to redefine lithostratigraphic units[J]. Gond-wana Research, 2007, 12:166-183.
[5] 曾雯, 张利, 周汉文, 等. 华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约[J]. 科学通报, 2008, 53(3):335-344.
[6] 陈正宏, 李寄嵎, 谢佩珊, 等. 利用EMP独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄[J]. 高校地质学报, 2008, 14(1):1-15.
[7] 向华, 张利, 周汉文, 等. 浙西南变质基底基性-超基性变质岩锆石U-Pb年龄、Hf同位素研究:华夏地块变质基底对华南印支期造山的响应[J]. 中国科学(D辑), 2008, 38(4):401-413.
[8] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeast-ern South China:New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 2010, 122:772-793.
[9] Liu R, Zhou H W, Zhang L, et al. Zircon U-Pb ages and Hf iso-tope compositions of the Mayuan migmatite complex,NW Fujian Province, Southeast China:Constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian orog-eny[J]. Lithos, 2010, 119:163-180.
[10] Yu J H, Suzanne Y. O'Reilly, Zhou M F, et al. U-Pb geochronol-ogy and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China:Implications for the Precambrian crustal evolu-tion and paleogeography of the Cathaysia Block[J]. Precambrian Research, 2012, 222/223:424-449.
[11] Zhao L, Zhai M G, Zhou Z W, et al. Geochronology and geo-chemistry of a suite of mafic rocks in Chencai area, South China:Implications for petrogenesis and tectonic setting[J]. Lithos, 2015, 236/237:226-244.
[12] 陈多福, 李献华, 潘晶铭, 等. 浙江景宁鹤溪群斜长角闪岩变质新生锆石特征、离子探针(SHRIMP) U-Pb年龄及地质意义[J]. 矿物学报,1998,18(4):396-400.
[13] 卢良兆. 中国的变质岩系与地壳演化[J]. 长春地质学院学报, 1986, 2:1-28.
[14] 金翔龙. 东海海洋地质[M]. 北京:海洋出版社, 1992.
[15] 张惠民, 赵风清, 王富福, 等. 华南地区古地磁研究初步成果及其地质意义[J]. 安徽地质, 1994, 4(1/2):112-121.
[16] 兰玉琦,叶瑛,兰翔,等. 浙江陈蔡群孔兹岩系的变质地质学研究[J]. 浙江大学学报(自然科学版), 1995, 3(29):303-309.
[17] 兰玉琦, 叶瑛, 兰翔. 浙江陈蔡群孔兹岩系的原岩建造和变质作用[J]. 浙江地质, 1995, 11(2):7-13.
[18] 水涛, 周乐尧, 钱俊峰, 等. 浙江若干重要基础地质问题及深部找矿勘查建议[C]//浙江省地质学会2012年学术年会论文集. 2012:10-15.
[19] 李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP MS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, 增刊:600-601.
[20] Payne J L, Lehrmann D J, Wei J, et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction[J]. Science, 2004, 305:506-509.
[21] 殷鸿福, 宋海军. 古、中生代之交生物大灭绝与泛大陆聚合[J]. 中国科学:地球科学, 2013, 43(10):1539-1552.
[22] Jin Y, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China[J]. Science, 2000, 289:432-436.
[23] Xie S, Pancost R D, Huang J, et al. Changes in the global carbon cy-cle occurred as two episodes during the Permian-Triassic crisis[J]. Geology, 2007, 35:1083-1086.
[24] Yin H F, Feng Q L, Lai X L, et al. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary[J]. Global Planet Change, 2007, 55:1-20.
[25] Algeo T J, Chen Z Q, Fraiser M L, et al. Terrestrial-marine tele-connections in the collapse and rebuilding of Early Triassic marine ecosystems[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2011, 308:1-11.
[26] Cocks L R M, Torsvik T H. Siberia, the wandering northern ter-rane, and its changing geography through the Palaeozoic[J]. Earth-Science Reviews, 2007, 82:29-74.
[27] Nance R D, Gutiérrez-Alonsob G, Keppie J D, et al. Evolution of the Rheic Ocean[J]. Gondwana Research, 2010, 17(2/3):194-22.
[28] Metcalfe I. Tectonic framework and Phanerozoic evolution of Sun-daland[J]. Gondwana Research, 2011, 19:3-21
[29] 王清晨, 孙枢, 李继亮, 等. 秦岭的大地构造演化[J]. 地质科学, 1989, 2:130-142.
[30] Yakubchuk A. Architecture and mineral deposit settings of the Al-taid orogenic collage:a revised model[J]. Journal of Asian Earth Sci-ences, 2004, 23:761-779.
[31] Collins W J. Slab pull, mantle convection, and Pangaean assembly and dispersal[J]. Earth and Planetary Science Letters, 2003, 205:225-237.
[32] 李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, 2004, 50(3):304-322.
[33] Abrajevitch A V, Vander Voo R, Bazhenov M L, et al. Paleomag-netism of the mid-Devonian Kurgasholak Formation, Southern Ka-zakhstan:constraints on the Devonian paleogeography and orocli-nal bending of the Kazakhstan volcanic arc[J]. Tectonophysics, 2007, 441:67-84.
[34] 朱夏. 中国大陆边缘构造和盆地演化[J]. 石油实验地质, 1982, 4(3):153-160.
[35] Li S G. Variscan orogeny of the southeast of China[J]. Bull. Geol. Soc. China, 1931, 11(2):200-217.
[36] Zhou M F, Malpas J, Xie Y S, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadal-upian mass extinction[J]. Earth and Planetary Science Letters, 2002, 196(3/4):113-122.
[37] 何斌, 徐义刚, 肖龙, 等. 峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J].地质学报, 2003, 77(2):194-202.
[38] 何斌, 徐义刚, 王雅玫, 等. 东吴运动性质的厘定及其时空演变规律[J]. 地球科学, 2005, 30(1):89-96.
[39] Shellnutt J G, Zhou M F. Rifting-related, Permian ferrosyenites in the Panxi region of the Emeishan large Igneous province, SW Chi-na[J]. Geochmica et Cosmochimica Acta, 2006, 70(18):579.
[40] Xu Y G, He B, Chung S L, et al. Geologic, geochemical, and geo-physical consequences of plume involvement in the Emeishan flood-basalt province[J]. Geology, 2004, 32(10):917-920.
[41] Xu Y G, He B, Huang X L, et al. Testing plume hupothesis in the Emeishan large igneous province[J]. Eposode, 2007, 27(30):32-42.
[42] Shellnutt J G, Denyszyn S W, Mundil R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China)[J]. Gondwana Research, 2012, 22(1):118-126.
-
计量
- 文章访问数: 1266
- PDF下载数: 836
- 施引文献: 0