晚上新世龙门山南段斜向逆冲作用和区域应力场转换

李志刚, 刘静, 贾东, 孙闯, 王伟, 姚文倩. 晚上新世龙门山南段斜向逆冲作用和区域应力场转换[J]. 地质通报, 2016, 35(11): 1829-1844.
引用本文: 李志刚, 刘静, 贾东, 孙闯, 王伟, 姚文倩. 晚上新世龙门山南段斜向逆冲作用和区域应力场转换[J]. 地质通报, 2016, 35(11): 1829-1844.
LI Zhigang, LIU Jing, JIA Dong, SUN Chuang, WANG Wei, YAO Wenqian. Late Pliocene oblique thrusting and regional stress field changes in southern Longmen Mountain, eastern Tibet[J]. Geological Bulletin of China, 2016, 35(11): 1829-1844.
Citation: LI Zhigang, LIU Jing, JIA Dong, SUN Chuang, WANG Wei, YAO Wenqian. Late Pliocene oblique thrusting and regional stress field changes in southern Longmen Mountain, eastern Tibet[J]. Geological Bulletin of China, 2016, 35(11): 1829-1844.

晚上新世龙门山南段斜向逆冲作用和区域应力场转换

Late Pliocene oblique thrusting and regional stress field changes in southern Longmen Mountain, eastern Tibet

  • 2008年汶川地震(Mw 7.9)同震滑移结果表明,今地壳缩短为近EW向,与龙门山褶皱冲断带斜交。这一斜向逆冲作用的准确起始时间一直未得到很好的约束。基于龙门山南段山前大邑背斜区三维地震解释和构造建模,结合野外地质调查和年代学数据,确定了晚新生代存在NE向和近NS向2期构造变形。120km长的NS向构造切割了NE向构造,表明近NS向构造形成时间较晚。山前大邑和邛西背斜区近NS向断层和褶皱的活动,均反映了龙门山南段局部或区域上水平最大主应力方向的转换过程,渐新世-早上新世的NW-SE向转变为晚上新世-全新世的近EW向。龙门山南段山前发育的NS向构造和汶川地震同震变形均反映出青藏高原东缘最新的EW向地壳缩短过程,为理解青藏高原东缘的隆升机制提供了新的视角。
  • 加载中
  • [1]

    Kuncoro A K, Cubas N, Singh S C, et al. Tsunamigenic potential due to frontal rupturing in the Sumatra locked zone[J]. Earth and Planetary Science Letters, 2015, 432:311-322.

    [2]

    Wang K L, He J H. Mechanics of low-stress forearcs:Nankai and Cascadia[J]. Journal of Geophysical Research, 1999, 104(B7):15191-15205.

    [3]

    Tsuji T, Ashi J, Strasser M, et al. Identification of the static backstop and its influence on the evolution of the accretionary prism in the Nankai Trough[J]. Earth and Planetary Science Letters, 2015, 431:15-25.

    [4]

    Angermann D, Klotz J, Reigber C. Space-geodetic estimation of the Nazca-South America Euler vector[J]. Earth and Planetary Science Letters, 1999, 171:329-324.

    [5]

    Ader T, Avouac J P, Liu-Zeng J, et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust:Implications for seismic hazard[J]. Journal of Geophysical Research, 2012, 117:1-16.

    [6]

    Kundu B, Yadav R K, Bali B S, et al. Oblique convergence and slip partitioning in the NW Himalaya:Implications from GPS measurements[J]. Tectonics, 2014, 33, doi:10.1002/2014TC003633.

    [7]

    Rosenberg C L, Brun J P, Cagnard F, et al. Oblique indentation in the Eastern Alps:Insights from laboratory experiments[J]. Tectonics, 2007, 26:TC2003, doi:10.1029/2006TC001960.

    [8]

    Castelltort S, Goren L, Willett S D, et al. River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain[J]. Nature Geoscience, 2012, doi:10.1038/NGEO1582.

    [9]

    Chang C P, Chang T Y, Angelier J, et al. Strain and stress field in Taiwan oblique convergent system:constraints from GPS observation and tectonic data[J]. Earth and Planetary Science Letters, 2003, 214:115-127.

    [10]

    Chen Y G, Lai K Y, Lee Y H, et al. Coseismic fold scarps and their kinematic behavior in the 1999 Chi-Chi earthquake Taiwan[J]. Journal of Geophysical Research, 2007, 112:B03S02, doi:10.1029/2006JB004388.

    [11]

    Norabuena E, Leffler-Griffin L, Mao L, et al. Space Geodetic Observations of Nazca-South America Convergence Across the Central Andes[J]. Science, 1998, 279, doi:10.1126/science.279.5349.358.

    [12]

    Vargas G, Klinger Y, Rockwell T K, et al. Probing large intraplate earthquakes at the west flank of the Andes[J]. Geology, 2014, 42, 1083-1086.

    [13]

    Authemayou C, Chardon D, Bellier O, et al. Late Cenozoic partitioning of oblique plate convergence in the Zagros fold-andthrust belt (Iran)[J]. Tectonics, 2006, 25, doi:10.1029/2005TC001860.

    [14]

    Tavakoli F, Walpersdorf A, Authemayou C, et al. Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran):Evidence from presentday GPS velocities[J]. Earth and Planetary Science Letters, 2008, 275:342-347.

    [15]

    Bilham R, Gaur V K, Molnar P. Himalayan seismic hazard[J]. Science, 2001, 293:1442-1444.

    [16]

    Subarya C, Chlieh M, Prawirodirdjo L, et al. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake[J]. Nature, 2006, 440:46-51.

    [17]

    Murphy M A, Taylor M H, Gosse J, et al. Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal[J]. Nature Geoscience, 2014, 7:38-42.

    [18]

    McClay K R, Whitehouse P S, Dooley T, et al. 3D evolution of fold and thrust belts formed by oblique convergence[J]. Marine and Petroleum Geology, 2004, 21:857-877.

    [19]

    Upton P, Craw D. Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens[J]. Tectonophysics, 2016, http://dx.doi.org/10.1016/j.tecto.2016.01.015.

    [20]

    Burchfiel B C, Chen Z L, Liu Y P, et al. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 1995, 37:661-735.

    [21]

    Robert A, Pubellier M, de Sigoyer J, et al. Structural and thermal characters of the Longmen Shan (Sichuan, China)[J]. Tectonophysics, 2010, 491:165-173.

    [22]

    Wang Q, Zhang P Z, Freymueller J T, et al. Present-Day crustal deformation in China constrained by Global Positioning System measurements[J]. Science, 2001, 294:574-577.

    [23]

    Burchfiel B C, Royden L H, van der Hilst R D, et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China[J]. GSA Today, 2008, 18:4-11.

    [24]

    Jia D, Wei G Q, Chen Z X, et al. Longmen Shan fold-thrust belt and its relation to the western Basin in Central China:New insights from hydrocarbon exploration[J]. AAPG Bulletin, 2006, 90:1425-1447.

    [25]

    李勇, 周荣军, Densmore A L, 等. 青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应[J]. 地质学报, 2006, 24:153-164.

    [26]

    Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in Eastern Tibet[J]. Science, 1997, 276:788-790.

    [27]

    Royden L H, Burchfiel B C, Hilst R D, et al. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321:1054-1058.

    [28]

    Clark M K, Royden L H. Topographic ooze:building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28:703-706.

    [29]

    Hubbard J, Shaw J H. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 2009, 458:194-197.

    [30]

    Liuzeng J, Zhang Z, Wen L, et al. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan:East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet[J]. Earth and Planetary Science Letters, 2009, 286:355-370.

    [31]

    Zhang P Z, Wen X Z, Shen Z K, et al. Oblique, High-angle, listric-reverse faulting and associated development of strain:The Wenchuan earthquake of May 12, 2008, Sichuan, China[J]. Annual Review Earth and Planetary Sciences, 2010, 38:353-382.

    [32]

    Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294:1671-1677.

    [33]

    Guo X Y, Gao R, Keller G R, et al. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range[J]. Earth and Planetary Science Letters, 2013, 379:72-80.

    [34]

    Zhang P Z. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 2013, 584:7-22.

    [35]

    Liu Q Y, van der Hilst R D, Li Y, et al. Eastward expansion of the Tibetan Plateau by crustal fl ow and strain partitioning across faults[J]. Nature Geoscience, 2014, 7:361-365.

    [36]

    Avouac J P, Tapponnier P. Kinematical model of active deformation in central Asia[J]. Geophysical Research Letters, 1993, 20:895-898.

    [37]

    Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32:809-812.

    [38]

    Xu X W, Wen X Z, Yu G H, et al. Coseismic reverse-and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China[J]. Geology, 2009, 37:515-518.

    [39]

    Wang Q, Qiao X J, Lan Q G, et al. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nature Geoscience, 2011, 4:634-640.

    [40]

    Chen S F, Wilson C J L. Emplacement of the Longmen Shan thrustnappe belt along the eastern margin of the Tibetan Plateau[J]. Journal of Structural Geology, 1996, 18:413-430.

    [41]

    Li Y, Allen P A, Densmore A L, et al. Evolution of the Longmen Shan foreland basin (western Sichuan, China) during the late Triassic Indosinian orogeny[J]. Basin Research, 2003, 15:117-138.

    [42]

    Jones L M, Han W B, Hausson E, et al. Focal mechanism and aftershock locations of the Songpan earthquakes of August 1976 in Sichuan, China[J]. Journal of Geophysical Research, 1984, 89:7697-7707.

    [43]

    Li Z G, Jia D, Chen W, et al. Late Cenozoic east-west crustal shortening in the southern Longmen Shan, eastern Tibet:Implications for regional stress field changes[J]. Tectonophysics, 2014, 623:169-186.

    [44]

    Du Y, Xie F R, Zhang X L, et al. The mechanics of fault slip of Ms 8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysical, 2009, 52:464-473.

    [45]

    Shen Z K, Sun J B, Zhang Z P, et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2009, 2:718-724.

    [46]

    Liu Z J, Sun J, Wang P, et al. Surface ruptures on the transverse Xiaoyudong fault:A significant segment boundary breached during the 2008 Wenchuan earthquake, China[J]. Tectonophysics, 2012, 580:218-241.

    [47]

    Jia D, Li Y Q, Lin A M, et al. Structural model of 2008 Mw 7.9 Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China[J]. Tectonophysics, 2010, 491:174-184.

    [48]

    Li Y Q, Jia D, Shaw J H, et al. Structural interpretation of the coseismic faults of the Wenchuan earthquake:Three-dimensional modeling of the Longmen Shan fold-and-thrust belt[J]. Journal of Geophysical Research, 2010, 115:1-26.

    [49]

    Jin W Z, Tang L J, Yang K M, et al. Segmentation of the Longmen Mountains thrust belt, Western Sichuan Foreland Basin, SW China[J]. Tectonophysics, 2010, 485:107-121.

    [50]

    Hubbard J, Shaw J H, Klinger Y. Structural setting of the 2008Mw 7.9 Wenchuan, China, earthquake[J]. Bulletin of the Seismological Society of America, 2010, 100:2713-2735.

    [51]

    Li Z G, Jia D, Chen W, et al. Structural geometry and deformation mechanism of the Longquan anticline in the Longmen Shan foldand-thrust belt, eastern Tibet[J]. Journal of Asian Earth Sciences, 2013, 64:223-234.

    [52]

    Wang M M, Jia D, Lin A M, et al. Active fault-related folding beneath an alluvial terrace in the southern Longmen Shan range front, Sichuan basin, China:Implications for seismic hazard[J]. Bulletin of the Seismological Society of America, 2013, 103:2369-2385.

    [53]

    Densmore A L, Ellis M A, Li Y, et al. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 2007, 26:1-17.

    [54]

    Tang R, Han W. Active Faults and Earthquakes in Sichuan Province[M]. Seismological Press, Beijing, 1993.

    [55]

    Richardson N J, Densmore A L, Seward D, et al. Extraordinary denudation in the Sichuan Basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research, 2008, 113:1-23.

    [56]

    黎兵, 李勇, 张开均, 等. 青藏高原东缘晚新生代大邑砾岩的物源分析与水系变迁[J]. 第四纪研究, 2007, 27:64-73.

    [57]

    Li Z W, Liu S G, Chen H D, et al. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt (eastern Tibetan Plateau) and the adjacent western Sichuan basin:Constraints from fi ssion track thermochronology[J]. Journal of Asian Earth Sciences, 2012, 47:185-203.

    [58]

    Kong P, Zheng Y, Fu B H. Cosmogenic nuclide burial ages and provenance of Late Cenozoic deposits in the Sichuan Basin:Implications for Early Quaternary glaciations in east Tibet[J]. Quaternary Geochronology, 2011, 6:304-312.

    [59]

    董绍鹏, 韩竹军, 尹金辉, 等. 龙门山山前大邑断裂活动时代与最新构造变形样式初步研究[J]. 地震地质, 2008, 30:996-1003.

    [60]

    李永昭, 郭兵. 成都平原的晚新生代构造[J]. 成都理工大学学报(自然科学版), 2008, 35:371-376.

    [61]

    Suppe J, Connors C D, Zhang Y K, et al. Shear fault-bend folding[C]//McClay K R. Thrust Tectonics and Hydrocarbon Systems:AAPG Memoir, 2004, 82:303-323.

    [62]

    Shaw J H, Connors C D, Suppe J, et al. Seismic interpretation of contractional fault-related folds[M]. An AAPG Seismic Atlas Studies in Geology #53, 2005:8-56.

    [63]

    Graveleau F, Malavieille J, Dominguez S. Experimental modelling of orogenic wedges:A review[J]. Tectonophysics, 2012, 538/540:1-66.

    [64]

    Couzens-Schultz B A, Vendeville B C, Wiltschko D V. Duplex style and triangle zone formation:insights from physical modeling[J]. Journal of Structural Geology, 2003, 25:1623-1644.

    [65]

    Ruh J B, Kaus B J P, Burg J P, et al. Numerical investigation of deformation mechanics in fold-and-thrust belts:Influence of rheology of single and multiple décollements[J]. Tectonics, 2012, 31:1-32.

    [66]

    Medwedeff D A, Suppe J. Multibend fault-bend folding[J]. Journal of Structural Geology, 1997, 19:279-292.

    [67]

    Bahorich M S, Farmer S L. 3-D seismic discontinuity for faults and stratigraphic features[J]. The Leading Edge, 1995, 14:1053-1058.

    [68]

    Bahorich M S, Farmer S L. Methods of seismic signal processing and exploration[J]. U.S. Patent No. 5, 1996, 563:949.

    [69]

    Mallet J L. Discrete smooth interpolation in geometric modeling[J]. Computer Aided Design, 1992, 24:178-191.

    [70]

    Plesch A, Shaw J H, Benson C, et al. Community fault model (CFM) for southern California[J]. Bulletin of the Seismological Society of America, 2007, 97:1793-1802.

    [71]

    Luna L M, Hetland E A. Regional stresses inferred from coseismic slip models of the 2008 Mw 7.9 Wenchuan, China, earthquake[J]. Tectonophysics, 2013, 584:43-53.

    [72]

    Arne D, Worley B, Wilson C, et al. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau[J]. Tectonophysics, 1997, 280:239-256.

    [73]

    Kirby E, Reiners P W, Krol M A, et al. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Tectonics, 2002, 21:1-20.

    [74]

    Zhang Y Q, Dong S W, Yang N, et al. Active faulting pattern, present-day tectonic stress field and block kinematics in the east Tibetan Plateau[J]. Acta geological Sincia, 2009, 83:694-712.

    [75]

    Zhu A L, Xu X W, Zhou Y S, et al. Relocation of small earthquakes in western Sichuan, China and its implications for active tectonics[J]. Chinese Journal of Geophysics, 2005, 48:629-636.

  • 加载中
计量
  • 文章访问数:  865
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2016-03-30
修回日期:  2016-06-06
刊出日期:  2016-11-15

目录