藏东类乌齐地区辉长岩:冈瓦纳大陆北缘晚古生代裂解的记录
The gabbros from the Leiwuqi area, eastern Tibet: Records of the Late Paleozoic break-up of the northern Gondwana
-
摘要: 青藏高原处于冈瓦纳大陆与劳亚大陆的交汇部位,是研究冈瓦纳大陆裂解与聚合过程的关键地区。晚古生代伴随着特提斯洋的打开与扩张,冈瓦纳大陆北缘发生了广泛的裂解作用。大陆板内岩浆作用是超大陆裂解的重要证据。在青藏高原内部已有二叠纪大陆板内特征基性岩的报道,它们是该裂解事件的记录。然而,根据目前的相关报道,这些岩石主要出露在青藏高原的西部,以羌塘和潘伽地区为主,在其他地区尚无相关报道。首次报道的藏东类乌齐地区早二叠世辉长岩LA-ICP-MS锆石U-Pb定年结果显示,辉长岩的形成年龄为280±2Ma。全岩地球化学资料表明,辉长岩具有与典型大陆板内玄武岩类似的地球特征。辉长岩具有明显正的锆石εHf(t)值(5.1~11.5),暗示其岩浆起源于亏损的地幔源区。结合区域地质资料,认为类乌齐辉长岩是冈瓦纳大陆北缘早二叠世裂解的产物。因此,早二叠世大陆板内基性岩浆作用在青藏高原东部也有出露,它们是在羌塘-潘伽地幔柱活动的作用下,冈瓦纳大陆北缘裂解与班公湖-怒江洋打开和扩张的结果。
-
关键词:
- 藏东 /
- 辉长岩 /
- 锆石LA-ICP-MS定年 /
- 地球化学 /
- 大陆裂解
Abstract: The Tibetan Plateau, which is located in the transitional zone of the Gondwana and Laurasia, plays a key role in studying the supercontinental convergence and cracking of Gondwana. As a result of the opening of the Tethys Oceans, the northern Gondwana started to rift during Late Paleozoic. Continental intraplate basaltic magmatism is typically considered to have been linked with continental break-up. Permian continental intraplate basaltic rocks have been recognized in the Tibetan Plateau and are considered as recording the Late Paleozoic rift of the northern Gondwana. However, these rocks mainly occur in the Qiangtang and Panjal Traps of western Tibetan Plateau, but no coeval basaltic rocks have been reported in eastern Tibetan Plateau. In this paper the authors present the results of the study of the Early Permian gabbros in the Leiwuqi area of eastern Tibetan Plateau. LA-ICP-MS zircon U–Pb dating reveals that the gabbros formed at 280±2Ma. The geochemical features of these gabbros are comparable with those of continental intraplate basalts (WPB). They exhibit positive values of zircon εHf(t) (5.1~11.5), suggesting a depleted mantle origin. Taking into account previous data, the authors hold that these gabbros were related to the Early Permian Qiangtang-Panjal mantle plume. There-fore, Early Permian continental intraplate basaltic rocks developed in both western and eastern Tibetan Plateau and they were linked with the continental break-up of northern Gondwana and the opening of the Bangong Co-Nujiang Tethys ocean.-
Key words:
- eastern Tibet /
- gabbro /
- zircon LA-ICP-MS dating /
- geochemistry /
- continental break-up
-
-
[1] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
[2] Metcalfe I. Late Palaeozoic and Mesozoic tectonic and palaeogeographic evolution of SE Asia[J]. Geological Society London Special Publications, 2009, 315:7-23.
[3] Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33.
[4] Stampfli G M, Borel G D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones[J]. Earth and Planetary Science Letters, 2002, 196(1/2):17-33.
[5] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.
[6] Zhai Q G, Li C, Wang J, et al. SHRIMP U-Pb dating and Hf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtang area, Northern[J]. Chinese Science Bulletin, 2009, 54(13):2279-2285.
[7] Zhai Q G, Jahn B M, Su L, et al. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications[J]. Lithos, 2013, 174:28-43.
[8] Wang M, Li C, Wu Y W, et al. Geochronology, geochemistry, Hf isotopic compositions and formation mechanism of radial mafic dikes in northern Tibet[J]. International Geology Review, 2014, 56:187-205.
[9] Zhu D C, Mo X X, Zhao Z D, et al. Presence of Permian extension-and arc-type magmatism in southern Tibet:Paleogeographic implications[J]. GSA Bulletin, 2010, 122:197-208.
[10] Garzanti E, Le Fort B, Sciunnach D, et al. First report of Lower Permian basalts in South Tibet:tholeiitic magmatism during breakup and incipient opening of Neotethys[J]. Journal of Asian Earth Sciences, 1999, 17:533-546.
[11] Chauvet F, Lapierre H, Bosch D, et al. Geochemistry of the Panjal Traps basalts (NW Himalaya):records of the Pangea Permian break-up[J]. Bulletin de la Société Géologique de France, 2008, 179:383-395.
[12] 李才. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54:105-119.
[13] 李才, 谢尧武, 蒋光武, 等. 藏东吉塘地区冈瓦纳相冰海杂砾岩的特征及其意义[J]. 地质通报, 2008, 27(10):1654-1658.
[14] 曾庆高, 王保弟, 强巴扎西, 等. 藏东类乌齐地区花岗质片麻岩锆石Cameca U-Pb定年及其地质意义[J]. 地质通报, 2010, 29:1123-1128.
[15] Hu P Y, Li C, Li J, et al. Zircon U-Pb-Hf isotopes and wholerock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China:Record of the closure of the Paleo-Tethys Ocean[J]. Tectonophysics, 2014, 623:83-99.
[16] 陶琰, 毕献武, 李金高, 等. 西藏吉塘花岗岩地球化学特征及成因[J]. 岩石学报, 2011, 27:2763-2774.
[17] 王保弟, 王立全, 强巴扎西, 等. 早三叠世北澜沧江结合带碰撞作用:类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据[J]. 岩石学报, 2011, 27:1178-1180.
[18] 邱军强, 强巴扎西, 李虎, 等. 澜沧江结合带中二叠世达弄岩片的发现及特征[J]. 地质调查与研究, 2011, 34:258-267.
[19] 强巴扎西, 谢尧武, 吴彦旺, 等. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义[J]. 地质通报, 2009, 28(9):1253-1258.
[20] 王玉静, 王建平, 裴放. 西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群[J]. 微体古生物学报, 2002, 19:323-336.
[21] 李才, 谢尧武, 董永胜, 等. 藏东类乌齐一带吉塘岩群时代讨论及初步认识[J]. 地质通报, 2009, 28(9):2752-2762.
[22] Ludwing K R. Using Isoplot/Ex, Version 3.00:A Geochronology Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publications, 2003, 4:1-70.
[23] Wu F Y, Yang J H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234:105-126.
[24] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geonmetries and concomitant age estimation[J]. Chemical Geology, 2004, 209:121-135.
[25] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 8:1589-1604.
[26] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343.
[27] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society London Special Publications, 1989, 42:313-345.
[28] Rudnick R L, Fountain D M. Nature and composition of the continental crust:a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33:267-309.
[29] Fitton J G, Saunders A D, Norry M J, et al. Thermal and chemical structure of the Iceland plume[J]. Earth and Planetary Science Letters, 1997, 153:197-208.
[30] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic-rocks[J]. Contribution to Mineralogy and Petrology, 1979, 69:603-627.
[31] Cabanis B, Lecolle M. Le diagramme La/10-Y/15-Nb/8:un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes rendus de l'Académie des sciences[J]. Série Ⅱ. Mécanique, physique, chimie, sciences de l'univers, sciences de la terre, 1989, 309:2023-2029.
[32] Lapierre H, Samper A, Bosch D, et al. The Tethyan plume:geochemical diversity of Middle Permian basalts from the Oman rifted margin[J]. Lithos, 2004, 74:167-198.
[33] 王明, 李才, 解超明, 等. 藏北羌塘南部冈玛错地区展金组玄武岩的成因及其构造意义[J]. 地质通报, 2014, 33(11):1768-1777.
[34] 王明, 李才, 翟庆国, 等. 青藏高原羌塘南部晚古生代地幔柱?——来自基性-超基性岩的地球化学证据[J]. 地质通报, 2010, 29(12):1754-1772.
[35] Zhu D C, Zhao Z D, Niu Y L, et al. 2011. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 39:727-730.
[36] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23:1429-1454.
-
计量
- 文章访问数: 899
- PDF下载数: 73
- 施引文献: 0