藏东类乌齐地区辉长岩:冈瓦纳大陆北缘晚古生代裂解的记录

胡培远, 李才, 翟庆国, 王明, 解超明, 吴彦旺. 藏东类乌齐地区辉长岩:冈瓦纳大陆北缘晚古生代裂解的记录[J]. 地质通报, 2016, 35(11): 1845-1854.
引用本文: 胡培远, 李才, 翟庆国, 王明, 解超明, 吴彦旺. 藏东类乌齐地区辉长岩:冈瓦纳大陆北缘晚古生代裂解的记录[J]. 地质通报, 2016, 35(11): 1845-1854.
HU Peiyuan, LI Cai, ZHAI Qingguo, WANG Ming, XIE Chaoming, WU Yanwang. The gabbros from the Leiwuqi area, eastern Tibet: Records of the Late Paleozoic break-up of the northern Gondwana[J]. Geological Bulletin of China, 2016, 35(11): 1845-1854.
Citation: HU Peiyuan, LI Cai, ZHAI Qingguo, WANG Ming, XIE Chaoming, WU Yanwang. The gabbros from the Leiwuqi area, eastern Tibet: Records of the Late Paleozoic break-up of the northern Gondwana[J]. Geological Bulletin of China, 2016, 35(11): 1845-1854.

藏东类乌齐地区辉长岩:冈瓦纳大陆北缘晚古生代裂解的记录

The gabbros from the Leiwuqi area, eastern Tibet: Records of the Late Paleozoic break-up of the northern Gondwana

  • 青藏高原处于冈瓦纳大陆与劳亚大陆的交汇部位,是研究冈瓦纳大陆裂解与聚合过程的关键地区。晚古生代伴随着特提斯洋的打开与扩张,冈瓦纳大陆北缘发生了广泛的裂解作用。大陆板内岩浆作用是超大陆裂解的重要证据。在青藏高原内部已有二叠纪大陆板内特征基性岩的报道,它们是该裂解事件的记录。然而,根据目前的相关报道,这些岩石主要出露在青藏高原的西部,以羌塘和潘伽地区为主,在其他地区尚无相关报道。首次报道的藏东类乌齐地区早二叠世辉长岩LA-ICP-MS锆石U-Pb定年结果显示,辉长岩的形成年龄为280±2Ma。全岩地球化学资料表明,辉长岩具有与典型大陆板内玄武岩类似的地球特征。辉长岩具有明显正的锆石εHft)值(5.1~11.5),暗示其岩浆起源于亏损的地幔源区。结合区域地质资料,认为类乌齐辉长岩是冈瓦纳大陆北缘早二叠世裂解的产物。因此,早二叠世大陆板内基性岩浆作用在青藏高原东部也有出露,它们是在羌塘-潘伽地幔柱活动的作用下,冈瓦纳大陆北缘裂解与班公湖-怒江洋打开和扩张的结果。
  • 加载中
  • [1]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.

    [2]

    Metcalfe I. Late Palaeozoic and Mesozoic tectonic and palaeogeographic evolution of SE Asia[J]. Geological Society London Special Publications, 2009, 315:7-23.

    [3]

    Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33.

    [4]

    Stampfli G M, Borel G D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones[J]. Earth and Planetary Science Letters, 2002, 196(1/2):17-33.

    [5]

    Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.

    [6]

    Zhai Q G, Li C, Wang J, et al. SHRIMP U-Pb dating and Hf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtang area, Northern[J]. Chinese Science Bulletin, 2009, 54(13):2279-2285.

    [7]

    Zhai Q G, Jahn B M, Su L, et al. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications[J]. Lithos, 2013, 174:28-43.

    [8]

    Wang M, Li C, Wu Y W, et al. Geochronology, geochemistry, Hf isotopic compositions and formation mechanism of radial mafic dikes in northern Tibet[J]. International Geology Review, 2014, 56:187-205.

    [9]

    Zhu D C, Mo X X, Zhao Z D, et al. Presence of Permian extension-and arc-type magmatism in southern Tibet:Paleogeographic implications[J]. GSA Bulletin, 2010, 122:197-208.

    [10]

    Garzanti E, Le Fort B, Sciunnach D, et al. First report of Lower Permian basalts in South Tibet:tholeiitic magmatism during breakup and incipient opening of Neotethys[J]. Journal of Asian Earth Sciences, 1999, 17:533-546.

    [11]

    Chauvet F, Lapierre H, Bosch D, et al. Geochemistry of the Panjal Traps basalts (NW Himalaya):records of the Pangea Permian break-up[J]. Bulletin de la Société Géologique de France, 2008, 179:383-395.

    [12]

    李才. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54:105-119.

    [13]

    李才, 谢尧武, 蒋光武, 等. 藏东吉塘地区冈瓦纳相冰海杂砾岩的特征及其意义[J]. 地质通报, 2008, 27(10):1654-1658.

    [14]

    曾庆高, 王保弟, 强巴扎西, 等. 藏东类乌齐地区花岗质片麻岩锆石Cameca U-Pb定年及其地质意义[J]. 地质通报, 2010, 29:1123-1128.

    [15]

    Hu P Y, Li C, Li J, et al. Zircon U-Pb-Hf isotopes and wholerock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China:Record of the closure of the Paleo-Tethys Ocean[J]. Tectonophysics, 2014, 623:83-99.

    [16]

    陶琰, 毕献武, 李金高, 等. 西藏吉塘花岗岩地球化学特征及成因[J]. 岩石学报, 2011, 27:2763-2774.

    [17]

    王保弟, 王立全, 强巴扎西, 等. 早三叠世北澜沧江结合带碰撞作用:类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据[J]. 岩石学报, 2011, 27:1178-1180.

    [18]

    邱军强, 强巴扎西, 李虎, 等. 澜沧江结合带中二叠世达弄岩片的发现及特征[J]. 地质调查与研究, 2011, 34:258-267.

    [19]

    强巴扎西, 谢尧武, 吴彦旺, 等. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义[J]. 地质通报, 2009, 28(9):1253-1258.

    [20]

    王玉静, 王建平, 裴放. 西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群[J]. 微体古生物学报, 2002, 19:323-336.

    [21]

    李才, 谢尧武, 董永胜, 等. 藏东类乌齐一带吉塘岩群时代讨论及初步认识[J]. 地质通报, 2009, 28(9):2752-2762.

    [22]

    Ludwing K R. Using Isoplot/Ex, Version 3.00:A Geochronology Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publications, 2003, 4:1-70.

    [23]

    Wu F Y, Yang J H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234:105-126.

    [24]

    Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geonmetries and concomitant age estimation[J]. Chemical Geology, 2004, 209:121-135.

    [25]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 8:1589-1604.

    [26]

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343.

    [27]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society London Special Publications, 1989, 42:313-345.

    [28]

    Rudnick R L, Fountain D M. Nature and composition of the continental crust:a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33:267-309.

    [29]

    Fitton J G, Saunders A D, Norry M J, et al. Thermal and chemical structure of the Iceland plume[J]. Earth and Planetary Science Letters, 1997, 153:197-208.

    [30]

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic-rocks[J]. Contribution to Mineralogy and Petrology, 1979, 69:603-627.

    [31]

    Cabanis B, Lecolle M. Le diagramme La/10-Y/15-Nb/8:un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes rendus de l'Académie des sciences[J]. Série Ⅱ. Mécanique, physique, chimie, sciences de l'univers, sciences de la terre, 1989, 309:2023-2029.

    [32]

    Lapierre H, Samper A, Bosch D, et al. The Tethyan plume:geochemical diversity of Middle Permian basalts from the Oman rifted margin[J]. Lithos, 2004, 74:167-198.

    [33]

    王明, 李才, 解超明, 等. 藏北羌塘南部冈玛错地区展金组玄武岩的成因及其构造意义[J]. 地质通报, 2014, 33(11):1768-1777.

    [34]

    王明, 李才, 翟庆国, 等. 青藏高原羌塘南部晚古生代地幔柱?——来自基性-超基性岩的地球化学证据[J]. 地质通报, 2010, 29(12):1754-1772.

    [35]

    Zhu D C, Zhao Z D, Niu Y L, et al. 2011. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 39:727-730.

    [36]

    Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23:1429-1454.

  • 加载中
计量
  • 文章访问数:  899
  • PDF下载数:  73
  • 施引文献:  0
出版历程
收稿日期:  2016-03-22
修回日期:  2016-06-08
刊出日期:  2016-11-15

目录