Application of Electron Probe Microanalyzer to Study the Textures and Compositions of Alteration Coronas of Monazite from the Longhuashan Granite, Northern Guangdong Province
-
摘要:
独居石是华南产铀花岗岩中常见的含铀副矿物。龙华山岩体是粤北诸广山复式岩体中一个重要的产铀花岗岩,该岩体的独居石具有蚀变晕圈现象。但是,该岩体中独居石蚀变晕圈的结构和成分特征以及对铀成矿的指示意义尚未开展研究。本文利用电子探针(EPMA)对龙华山岩体的独居石蚀变晕圈开展结构和成分研究。测试结果表明:独居石蚀变晕圈是从内到外由独居石、磷灰石(包括富钍矿物)和褐帘石-绿帘石构成的同心环带。质量平衡计算表明独居石在蚀变过程中,轻稀土(LREE)、Y、Th和U等元素发生活化迁移,流体带入Ca、Fe、Al、F等元素,形成了由磷灰石、褐帘石、绿帘石和富钍矿物组成的蚀变晕圈。EPMA面扫描图像显示独居石蚀变导致了铀发生活化,但铀主要在蚀变晕圈中富集。研究数据显示龙华山岩体中仅3.7%的铀赋存于独居石中,而80%以上的铀赋存在晶质铀矿中。本研究表明独居石对区域铀矿化贡献的成矿物质有限,晶质铀矿是龙华山岩体最重要的铀源矿物。
Abstract:BACKGROUND Monazite is a common uranium-bearing accessory mineral in granite-related uranium deposits in South China. The Longhuashan pluton is an important U-bearing granite in the Zhuguangshan batholith, Northern Guangdong. Distinct alteration coronas of monazite were observed in the pluton. However, textures and compositions of alteration coronas of monazite and their implications for uranium mineralization are still poorly understood.
OBJECTIVES To investigate the detailed textural and compositional evolution of monazite in granites during alteration, and to provide insights into uranium mobilization and enrichment in granite-related uranium deposits.
METHODS Textures and chemical compositions of alteration coronas of monazite were investigated using electron probe microanalyzer (EPMA).
RESULTS Alteration coronas of monazite in the Longhuashan granite consisted of newly formed apatite, allanite, epidote, and Th-rich phases. The monazite alteration coronas area was a concentric zone composed of monazite, apatite (including thorium-rich minerals), and monazite-epidote from the inside to the outside. Mass balance calculations showed that during the alteration of monazite, light rare earth (LREE), Y, Th, and U elements were remobilized and migrated, and the fluid brought in elements such as Ca, Fe, Al, and F to form alteration coronas composed of apatite, epidote, and thorium-rich minerals. The EPMA mapping showed that monazite alteration led to the remobilization of uranium, but the uranium was mainly enriched in the altered coronas. In this pluton, 3.7% U was located in monazite, and more than 80% U was hosted by uraninite.
CONCLUSIONS Monazite only contributes limited uranium to regional uranium mineralization, and uraninite is the most important host for uranium in the Longhuashan granite.
-
Key words:
- monazite /
- alteration coronas /
- electron probe microanalyzer /
- Longhuashan granite /
- northern Guangdong
-
-
表 1 龙华山花岗岩中独居石蚀变晕圈矿物(包括独居石、磷灰石、绿帘石、褐帘石)和晶质铀矿代表性电子探针分析结果
Table 1. Representative EPMA chemical compositions of monazite alteration coronas (including monazite, apatite, epidote, and allanite) and uraninite from the Longhuashan granite
矿物 独居石(%) 磷灰石(%) 绿帘石(%) 褐帘石(%) 晶质铀矿(%) 点1 点2 点3 点1 点2 点1 点2 点3 点1 点2 点3 点1 点2 点3 CaO 1.38 0.47 2.25 42.29 46.07 16.38 16.78 15.61 10.89 11.83 12.76 0.00 0.01 0.00 P2O5 29.50 29.10 30.60 32.06 36.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ThO2 9.23 8.53 10.00 12.13 8.35 0.00 0.10 0.00 0.18 0.14 0.14 1.01 1.16 1.06 La2O3 12.03 11.23 10.67 0.26 0.05 1.76 1.50 2.13 3.76 5.12 5.65 0.00 0.00 0.02 Ce2O3 24.32 26.02 22.78 0.62 0.47 6.25 7.75 7.41 12.75 11.36 11.09 0.11 0.00 0.00 Nd2O3 7.50 7.72 6.97 0.29 0.27 0.97 0.88 1.08 2.89 2.68 1.36 0.00 0.02 0.00 Pr2O3 7.17 8.66 7.27 0.73 0.48 1.55 1.12 1.42 2.93 2.56 2.51 0.00 0.02 0.06 Sm2O3 3.42 1.90 1.21 0.10 0.01 0.74 0.62 0.69 1.01 0.92 0.89 0.24 0.00 0.00 Dy2O3 2.41 1.51 2.58 0.37 0.00 0.47 0.81 0.54 0.71 0.58 0.81 0.00 0.00 0.00 Lu2O3 0.34 0.00 0.30 0.38 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Y2O3 0.93 1.03 1.84 0.05 0.01 0.70 0.97 1.08 0.39 0.27 0.34 0.09 0.16 0.42 UO2 0.06 0.05 0.47 0.49 0.16 0.00 0.00 0.02 0.08 0.02 0.03 92.25 91.66 95.09 F 0.62 0.80 0.63 3.82 3.89 0.00 0.00 0.02 0.10 0.29 0.00 0.00 0.00 0.00 SiO2 0.73 1.03 0.40 3.63 2.54 33.57 32.88 33.77 31.68 31.87 32.05 0.00 0.00 0.04 Al2O3 0.00 0.00 0.00 0.00 0.00 21.76 21.63 21.76 18.05 19.31 19.68 0.00 0.00 0.00 FeO 0.00 0.00 0.00 0.00 0.00 9.40 8.83 9.49 11.74 10.83 10.14 0.09 0.00 0.00 MgO 0.00 0.00 0.00 0.00 0.00 0.04 0.06 0.06 0.08 0.10 0.06 0.01 0.00 0.00 PbO 0.03 0.00 0.05 0.08 0.07 0.00 0.00 0.00 0.00 0.00 0.00 2.78 2.78 2.85 总和 99.65 98.04 98.03 97.31 98.52 93.60 93.94 95.06 97.22 97.89 97.50 96.57 95.81 99.54 年龄(Ma) - - - - - - - - - - - 222 223 221 注:“-”表示未进行化学年龄计算。 表 2 龙华山花岗岩中独居石蚀变晕圈质量平衡计算结果
Table 2. Results of mass balance calculations of alteration coronas of monazite from the Longhuashan granite
元素 本文(%) 文献[13](%) 1 2 3 4 5 6 7 8 P2O5 9.16 9.16 31.70 29.90 7.96 7.96 30.37 28.45 SiO2 25.07 - - 0.70 27.26 - - 0.43 La2O3 2.98 2.98 10.32 11.45 3.24 3.24 12.37 12.66 Ce2O3 7.88 7.88 27.27 24.80 6.86 6.86 26.18 26.70 Pr2O3 1.80 1.80 6.23 7.68 0.98 0.98 3.74 3.67 Nd2O3 1.60 1.60 5.55 7.76 2.95 2.95 11.24 11.93 Sm2O3 0.65 0.65 2.24 2.44 0.66 0.66 2.51 2.42 Dy2O3 0.56 0.56 1.95 1.77 - - - - Lu2O3 0.07 0.07 0.24 0.19 - - - - Y2O3 0.37 0.37 1.28 1.47 0.68 0.68 2.61 2.24 ThO2 2.85 2.85 9.86 8.07 1.94 1.94 7.40 7.85 UO2 0.11 0.11 0.38 0.19 0.15 0.15 0.58 0.42 Al2O3 14.78 - - - 16.26 - - - FeO 8.04 - - - 7.13 - - - CaO 21.57 - - 1.21 21.39 - - 1.44 MgO 0.09 - - - 0.32 - - - F 1.14 - - 0.68 - - - 总和 98.72 28.02 97.00 98.31 97.78 25.43 97.00 98.20 注:第1列表示根据磷灰石、褐帘石、绿帘石所占体积和平均成分计算得到的这三个矿物的混合成分;第2列是指第1列元素成分减去SiO2、Al2O3、FeO、CaO、MgO、F的元素含量;第3列是指把第2列元素含量归一化为97%的标准化含量;第4列是指测试所得的独居石元素平均含量。第5、6、7、8列所代表的含义分别同第1、2、3、4列。“-”表示低于检出限。 -
[1] Bea F. Residence of REE, Y, Th and U in granites and crustal protoliths: Implications for the chemistry of crustal melts[J]. Journal of Petrology, 1996, 7: 521-552.
[2] Dini A, Rocchi S, Westerman D S. Reaction microtextures of REE-Y-Th-U accessory minerals in the Monte Capanne pluton (Elba Island, Italy): A possible indicator of hybridization processes[J]. Lithos, 2004, 78: 101-118. doi: 10.1016/j.lithos.2004.04.045
[3] Förster H J, Rhede D, Hecht L. Chemical composition of radioactive accessory minerals: Implications for the evolution, alteration, age, and uranium fertility of the Fichtelgebirge granites (NE Bavaria, Germany)[J]. Neues Jahrbuch Für Mineralogie-Abhandlungen, 2008, 185(2): 161-182. doi: 10.1127/0077-7757/2008/0117
[4] 胡欢, 王汝成, 陈卫锋, 等. 桂东北豆乍山产铀花岗岩的铀源矿物研究[J]. 地质论评, 2012, 58(6): 1056-1068. doi: 10.3969/j.issn.0371-5736.2012.06.006
Hu H, Wang R C, Chen W F, et al. Study on resource minerals of Douzhashan uranium-bearing granite, northeastern Guangxi[J]. Geological Review, 2012, 58(6): 1056-1068. doi: 10.3969/j.issn.0371-5736.2012.06.006
[5] Montel J M, Foret S, Veschambre M, et al. Electron microprobe dating of monazite[J]. Chemical Geology, 1996, 131: 37-53. doi: 10.1016/0009-2541(96)00024-1
[6] Poitrasson F, Chenery S, Shepherd T J. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3283-3297. doi: 10.1016/S0016-7037(00)00433-6
[7] 张雅, 李全忠, 闫俊, 等. LA-ICP-MS独居石U-Th-Pb测年方法研究[J]. 岩矿测试, 2021, 40(5): 637-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202101130005
Zhang Y, Li Q Z, Yan J, et al. Analytical conditions for U-Th-Pb dating of monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202101130005
[8] Cuney M, Mathieu R. Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville Basin, Gabon[J]. Geology, 2000, 28: 743-746.
[9] Hecht L, Cuney M. Hydrothermal alteration of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada): Implications for the formation of unconformity-related uranium deposits[J]. Mineralium Deposita, 2000, 35: 791-795. doi: 10.1007/s001260050280
[10] 张丽, 孙立强, 陈卫锋, 等. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究[J]. 高校地质学报, 2018, 24(1): 13-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201801002.htm
Zhang L, Sun L Q, Chen W F, et al. Study on chlorites and uranium-source minerals of uranium-ore-bearing Changjiang granite in southern Zhuguang composite[J]. Geological Journal of China Universities, 2018, 24(1): 13-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201801002.htm
[11] 祁家明, 黄国龙, 朱捌, 等. 粤北棉花坑铀矿床蚀变花岗岩副矿物特征研究[J]. 地质学报, 2014, 88(9): 1691-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409006.htm
Qi J M, Huang G L, Zhu B, et al. Compositions study of auxiliary minerals in altered granitic rocks of the Mianhuakeng uranium deposit in northern Guangdong[J]. Acta Geologica Sinica, 2014, 88(9): 1691-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409006.htm
[12] Poitrasson F, Chenery S, Bland D J. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications[J]. Earth and Planetary Science Letters, 1996, 145(1-4): 79-96. doi: 10.1016/S0012-821X(96)00193-8
[13] Finger F, Broska I, Roberts M P, et al. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps[J]. American Mineralogist, 1998, 83: 248-258. doi: 10.2138/am-1998-3-408
[14] Broska I, Williams C T, Janák M, et al. Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the western Carpathians, Slovakia[J]. Lithos, 2005, 82(1-2): 71-83. doi: 10.1016/j.lithos.2004.12.007
[15] Budzyń B, Hetherington C J, Williams M L, et al. Fluid-mineral interactions and constraints on monazite alteration during metamorphism[J]. Mineralogical Magazine, 2010, 74(4): 659-681. doi: 10.1180/minmag.2010.074.4.659
[16] Harlov D E, Wirth R, Hetherington C J. Fluid-mediated partial alteration in monazite: The role of coupled dissolution-reprecipitation in element redistribution and mass transfer[J]. Contributions to Mineralogy and Petrology, 2011, 162: 329-348. doi: 10.1007/s00410-010-0599-7
[17] Kelly N M, Harley S L, Möller A. Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration[J]. Chemical Geology, 2012, 322-323: 192-208. doi: 10.1016/j.chemgeo.2012.07.001
[18] Seydoux-Guillaume A M, Montel J M, Bingen B, et al. Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers[J]. Chemical Geology, 2012, 330: 140-158.
[19] Skrzypek E, Sakata S, Sorger D. Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences[J]. American Mineralogist, 2020, 105(4): 538-554. doi: 10.2138/am-2020-7025
[20] Zhang L, Chen Z Y, Wang F Y, et al. Release of uranium from uraninite in granites through alteration: Implications for the source of granite-related uranium ores[J]. Economic Geology, 2021, 116(5): 1115-1139. doi: 10.5382/econgeo.4822
[21] 朱捌. 地幔流体与铀成矿作用研究——以诸广山南部铀矿田为例[D]. 成都: 成都理工大学, 2010.
Zhu B. The study of mantle liquid and uranium metallogenesis—Take uranium ore field of south Zhuguang mountain as an example[D]. Chengdu: Chengdu University of Technology, 2010.
[22] Deng P, Ren J S, Ling H F, et al. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China[J]. Chinese Science Bulletin, 2012, 57: 1542-1552. doi: 10.1007/s11434-011-4951-8
[23] Zhang L, Chen Z Y, Li X F, et al. Zircon U-Pb geo-chronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization[J]. Lithos, 2018, 308-309: 19-33. doi: 10.1016/j.lithos.2018.02.029
[24] 张龙, 陈振宇, 田泽瑾, 等. 电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J]. 岩矿测试, 2016, 35(1): 98-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.016
Zhang L, Chen Z Y, Tian Z J, et al. The application of electron microprobe dating method on uranium minerals in Changjiang granite, northern Guangdong[J]. Rock and Mineral Analysis, 2016, 35(1): 98-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.016
[25] Zhang L, Chen Z Y, Li S R, et al. Isotope geochronology, geochemistry, and mineral chemistry of the U-bearing and barren granites from the Zhuguangshan complex, South China: Implications for petrogenesis and uranium mineralization[J]. Ore Geology Reviews, 2017, 91: 1040-1065. doi: 10.1016/j.oregeorev.2017.07.017
[26] 钟福军, 严杰, 夏菲, 等. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J]. 岩石学报, 2019, 35(9): 2727-2744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909007.htm
Zhong F J, Yan J, Xia F, et al. In-situ U-Pb isotope geochronology of uraninite for Changjiang granite-type uranium ore field in northern Guangdong, China: Implications for uranium mineralization[J]. Acta Petrologica Sinica, 2019, 35(9): 2727-2744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909007.htm
[27] 李献华, 胡瑞忠, 饶冰. 粤北白垩纪基性岩脉的年代学和地球化学[J]. 地球化学, 1997, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
Li X H, Hu R Z, Rao B. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China[J]. Geochimica, 1997, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
[28] Shu L S, Deng P, Wang B, et al. Lithology, kinematics and geochronology related to Late Mesozoic Basin-mountain evolution in the Nanxiong—Zhuguang area, South China[J]. Science in China (Series D: Earth Sciences), 2004, 47(8): 673-688. doi: 10.1360/03yd0113
[29] Zhang C, Cai Y, Xu H, et al. Mechanism of mineralization in the Changjiang uranium ore field, South China: Evidence from fluid inclusions, hydrothermal alteration, and H-O isotopes[J]. Ore Geology Reviews, 2017, 86: 225-253. doi: 10.1016/j.oregeorev.2017.01.013
[30] 黄国龙, 吴烈勤, 邓平, 等. 粤北花岗岩型铀矿找矿潜力及找矿方向[J]. 铀矿地质, 2006, 22(5): 267-275. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200605001.htm
Huang G L, Wu L Q, Deng P, et al. Prospecting potential and direction for granite uranium deposit in north Guangdong, China[J]. Uranium Geology, 2006, 22(5): 267-275. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200605001.htm
[31] 陈跃辉, 陈祖伊, 蔡煜琦, 等. 华东南中新生代伸展构造时空演化与铀矿化时空分布[J]. 铀矿地质, 1997, 13(3): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199703000.htm
Chen Y H, Chen Z Y, Cai Y Q, et al. Space-time evolution of Meso—Cenozoic extensional tectonics and distributions of uranium mineralization in southeastern China[J]. Uranium Geology, 1997, 13(3): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199703000.htm
[32] Bonnetti C, Liu X D, Mercadier J, et al. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China: Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralization[J]. Ore Geology Reviews, 2018, 92: 588-612. doi: 10.1016/j.oregeorev.2017.12.010
[33] Montel J M, Giot R. Fracturing around radioactive minerals: Elastic model and applications[J]. Physics and Chemistry of Minerals, 2013, 40: 635-645. doi: 10.1007/s00269-013-0599-z
[34] Geisler T. ChemAge: A 32-bit Windows program for chemical age calculations and the graphical data presentation[J]. Beiheftzum European Journal of Mineralogy, 1999, 11: 154.
[35] Bowles J F. Age dating of individual grains of uraninite in rocks from electron microprobe analyses[J]. Chemical Geology, 1990, 83: 47-53. doi: 10.1016/0009-2541(90)90139-X
[36] 张龙, 陈振宇, 田泽瑾, 等. 粤北产铀与不产铀花岗岩中铀矿物特征的电子探针研究及其找矿意义[J]. 岩矿测试, 2016, 35(3): 310-319. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.015
Zhang L, Chen Z Y, Tian Z J, et al. EPMA study on characteristics of uranium minerals in uranium-bearing and uranium-barren granites in northern Guangdong and its prospecting significance[J]. Rock and Mineral Analysis, 2016, 35(3): 310-319. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.015
[37] 张龙, 陈振宇, 李胜荣, 等. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究[J]. 岩石学报, 2018, 34(9): 2657-2670.
Zhang L, Chen Z Y, Li S R, et al. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No. 302) uranium deposit, northern Guangdong, South China[J]. Acta Petrologica Sinica, 2018, 34(9): 2657-2670.
[38] 徐争启, 欧阳鑫东, 张成江, 等. 电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义[J]. 岩矿测试, 2017, 36(6): 641-648. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704280071
Xu Z Q, Ouyang X D, Zhang C J, et al. Application of electron microprobe chemical dating to Datian uraninite in Panzhihua and its significance[J]. Rock and Mineral Analysis, 2017, 36(6): 641-648. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704280071
[39] Kempe U. Precise electron microprobe age determination in altered uraninite: Consequences on the intrusion age and the metallogenic significance of the Kirchberg granite (Erzgebirge, Germany)[J]. Contributions to Mineralogy and Petrology, 2003, 145: 107-118.
[40] Cuney M, Friedrich M. Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: Implications for uranium metallogenesis[J]. Bulletin de Minéralogy, 1987, 110: 235-247.
-