Accurate Multi-element Content and Ratio Analysis of Stalagmites by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry
-
摘要: 石笋样品的微量元素含量及Mg/Ca、Sr/Ca比值为高分辨的古气候重建提供重要指标。针对现有溶液分析技术易混合多个石笋微层、误差大的缺点,本文利用激光剥蚀电感耦合等离子体质谱技术(LA-ICP-MS)原位线扫描和点剥蚀方式对比分析了石笋生长轴方向的Mg/Ca和Sr/Ca空间分布趋势,研究表明二者均展现出显著的周期性变化特征,且周期性变化一致,其中40 μm束斑线扫描更具有稳定性强、分辨率高、快速简便的优点。通过探讨碳酸盐标准样品MASC-3与玻璃标准样品NIST 610、NIST 612、KL2G、ATHO-G的相对灵敏度系数关系和元素分馏行为,确定基体效应是造成相对灵敏度系数变化的主要原因。同时建立了以MASC-3、NIST 610和NIST 612多外标结合内标Ca归一定量分析石笋中45种元素方法,针对石笋碳酸盐样品,将主量元素Ca、Mg变形为碳酸盐形式,与其他元素加和归一,不仅改变了国内外研究中需要预先采用其他分析技术来测定内标元素含量的计算方法,而且有效地避免了C元素无法准确检测的问题,能够实现与Ca内标法校正结果的吻合。
-
关键词:
- 石笋 /
- Mg/Ca和Sr/Ca比值 /
- 激光剥蚀电感耦合等离子体质谱 /
- 线扫描 /
- 多外标结合内标归一定量法
Abstract: Mg/Ca, Sr/Ca ratios and trace element contents in stalagmites provide important indices for high resolution paleoclimate reconstruction. In situ LA-ICP-MS analysis is introduced here instead of solution methods due to their large errors and mixing with multi-micro layers. The spatial distributions of Mg/Ca and Sr/Ca parallel to the growth axis of stalagmite are compared in sampling ways of line scan and spot ablation respectively, which consistently show significant cyclical variations. The line scan ablation with 40 μm beam spot has the advantages of high stability, high resolution, and of being fast and simple. The relationship of relative sensitivity coefficients and element fractionation are discussed among NIST 610, NIST 612, KL2G, ATHO-G and MASC-3. Indications are that the matrix effect is the main reason for the relative sensitivity coefficient change. The calibration method of 45 major, minor and trace elements in stalagmites was established by using normalization with multi-external standards and internal standard element of Ca. The matrix normalization of Ca and Mg major elements in forms of CaCO3 and MgCO3 with other elements, not only changes the calculation method of the content of the internal standard elements in domestic and foreign studies, when using other analytical techniques, but also avoids the problem of inaccurate detection of carbon successfully, which is consistent with the result when using internal standard element Ca. -
-
表 1 仪器工作条件
Table 1. Working parameters of the MC-ICP-MS instrument
质谱工作参数 条件 激光工作参数 条件 射频功率 1207 W 波长 213 nm 模式 低分辨
(m/△m≈300)能量强度 80% 冷却气(Ar)流量 16.92 L/min 激光剥蚀频率 10 Hz 辅助气(Ar)流量 0.80 L/min 束斑 30 μm,40 μm 载气(He)流量 0.783 L/min 扫描方式 线扫、点剥蚀 样品气(Ar)流量 0.897 L/min 表 2 以Ca为内标的MASC-3、NIST610、NIST612、KL2G和ATHO-G相对灵敏度系数和精密度
Table 2. Ca-normalized relative sensitivity factors and precisions in MASC-3, NIST 610, NIST 612, KL2G and ATHO-G
元素 MASC-3(n=7) NIST 610(n=7) NIST 612(n=7) KL2G(n=7) ATHO-G(n=7) 平均值 RSD/% 平均值 RSD/% 平均值 RSD/% 平均值 RSD/% 平均值 RSD/% Li 0.0854 1.73 0.0926 2.42 0.0969 3.98 0.0805 3.37 0.0819 2.48 Be 0.4461 0.77 0.5296 2.84 0.5472 1.84 0.4027 41.13 0.6858 11.23 B - - 0.3944 2.79 0.4117 1.20 0.4827 5.24 0.4473 8.66 CO2 264.1 0.67 - - - - - - - - Na 0.0279 2.29 0.0280 1.91 0.0287 1.89 0.0294 1.30 0.0258 0.95 MgO 0.5888 0.85 0.5795 1.35 0.7395 0.94 0.6192 0.49 0.6199 0.93 Al - - 0.0447 0.53 0.0444 1.49 0.0455 1.03 0.0435 0.63 Si - - 1.7289 0.43 1.5947 1.79 1.7449 1.14 1.7568 0.69 P - - 0.2935 1.50 0.3378 4.54 0.3220 1.21 0.3121 2.37 K - - 0.0357 0.94 0.0548 12.95 0.0290 0.79 0.0299 0.52 CaO 1 0 1 0 1 0 1 0 1 0 Ti 0.3196 1.59 0.2878 0.72 0.3356 1.32 0.3052 0.44 0.3060 0.82 V 0.0174 1.81 0.0170 0.91 0.0173 2.24 0.0166 0.50 0.0181 2.30 Cr 0.0232 0.81 0.0221 1.29 0.0212 1.71 0.0247 0.34 0.0278 4.86 Mn 0.0200 1.98 0.0209 1.76 0.0183 0.99 0.0192 0.66 0.0190 0.90 Fe 1.0598 0.70 0.9844 1.63 1.3005 13.10 0.9861 0.62 0.9812 1.51 Co 0.0173 1.01 0.0160 2.33 0.0157 1.72 0.0148 0.46 0.0325 9.64 Ni 0.5657 0.96 0.5255 2.24 0.5179 1.13 0.4890 1.35 1.0932 16.26 Cu 0.0773 1.24 0.0671 2.73 0.0652 0.85 0.0672 0.65 0.0726 1.73 Zn 0.1450 2.21 0.1520 1.69 0.1788 2.06 0.1394 0.66 0.1564 1.01 As 0.1110 2.56 0.1062 1.02 0.1463 2.12 0.0272 91.88 0.0390 34.31 Rb - - 0.0145 1.51 0.0146 1.92 0.0139 0.90 0.0145 1.63 Sr 0.0122 1.15 0.0118 1.84 0.0124 1.46 0.0115 0.65 0.0110 0.59 Zr 0.0961 1.13 0.0927 2.34 0.0982 1.75 0.1039 0.84 0.0918 1.15 Cd 0.1764 1.91 0.1839 1.28 0.2189 2.76 0.1069 46.83 0.6344 71.48 Ba 0.0945 1.37 0.0890 2.13 0.0954 1.80 0.0893 0.88 0.0851 1.22 La 0.0107 0.58 0.0110 1.80 0.0110 0.70 0.0109 1.66 0.0101 1.27 Ce 0.0114 0.85 0.0105 2.44 0.0113 1.81 0.0103 0.77 0.0098 0.76 Pr 0.0101 1.38 0.0086 2.67 0.0095 1.35 0.0092 1.02 0.0083 0.93 Nd 0.0399 0.91 0.0374 3.06 0.0415 0.55 0.0389 1.39 0.0355 0.48 Sm 0.0491 0.84 0.0440 2.72 0.0487 1.08 0.0455 1.90 0.0413 1.57 Eu 0.0145 0.55 0.0138 2.11 0.0142 1.44 0.0132 1.21 0.0130 2.00 Gd 0.0518 1.06 0.0451 2.00 0.0478 0.85 0.0490 1.41 0.0435 1.21 Tb - - 0.0067 2.42 0.0070 1.71 0.0073 1.33 0.0062 0.61 Dy 0.0297 2.82 0.0269 2.85 0.0301 2.51 0.0298 1.10 0.0244 1.45 Ho 0.0077 1.10 0.0069 2.20 0.0075 1.07 0.0074 0.69 0.0062 1.63 Er 0.0225 2.23 0.0196 2.06 0.0224 1.11 0.0229 2.63 0.0185 0.54 Tm - - 0.0066 1.55 0.0076 0.79 0.0075 1.74 0.0062 1.07 Yb - - 0.0488 2.73 0.0538 1.29 0.0558 2.02 0.0451 2.12 Lu 0.0081 1.78 0.0074 3.00 0.0081 1.32 0.0082 1.90 0.0067 2.12 Hf 0.0283 1.69 0.0269 2.89 0.0279 2.53 0.0277 1.13 0.0236 1.66 Pb 0.0125 1.55 0.0121 3.16 0.0140 2.68 0.0125 1.88 0.0108 1.60 Th 0.0076 1.11 0.0073 3.20 0.0079 1.27 0.0074 1.15 0.0061 1.49 U 0.0078 2.38 0.0066 2.99 0.0072 1.37 0.0048 2.17 0.0057 2.18 注:“-”表示标准样品中没有该元素的标准值。 表 3 MASC-3、NIST 610、NIST 612、KL2G和ATHO-G中元素相对Ca的分馏因子
Table 3. Element fractionation factors normalized to Ca in MASC-3, NIST 610, NIST 612, KL2G and ATHO-G
元素 MASC-3 (n=7) NIST 610 (n=7) NIST 612 (n=7) KL2G (n=7) ATHO-G (n=7) 平均值 SD 平均值 SD 平均值 SD 平均值 SD 平均值 SD Li 0.948 0.030 1.000 0.018 0.937 0.096 0.935 0.043 0.799 0.022 Be 0.996 0.019 1.031 0.013 1.075 0.063 1.005 0.081 0.956 0.101 B - - 1.171 0.039 0.960 0.067 1.038 0.067 1.034 0.074 CO2 1.192 0.161 - - - - - - - - Na 0.948 0.047 1.024 0.029 0.932 0.031 0.950 0.009 0.862 0.025 MgO 0.989 0.042 1.008 0.014 1.004 0.040 0.978 0.026 0.965 0.012 Al - - 1.051 0.013 1.125 0.038 1.001 0.013 0.996 0.012 Si - - 1.026 0.039 0.977 0.063 0.993 0.014 0.954 0.013 P - - 1.193 0.034 1.021 0.084 1.086 0.030 1.073 0.035 K - - 1.005 0.016 0.344 0.147 0.947 0.033 0.883 0.017 CaO 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 Ti 0.980 0.038 1.043 0.036 1.016 0.037 0.988 0.013 0.979 0.019 V 0.994 0.024 1.012 0.010 0.937 0.048 0.974 0.009 0.985 0.030 Cr 1.006 0.043 1.016 0.038 0.937 0.080 0.967 0.011 0.956 0.057 Mn 0.986 0.036 1.021 0.030 0.979 0.047 0.959 0.009 0.926 0.024 Fe 0.977 0.027 1.005 0.015 0.818 0.335 0.982 0.014 0.916 0.036 Co 1.005 0.029 1.012 0.022 0.949 0.048 0.983 0.017 0.821 0.073 Ni 0.994 0.036 1.042 0.020 0.958 0.079 0.978 0.036 1.014 0.219 Cu 0.977 0.029 1.035 0.033 1.008 0.058 0.993 0.016 0.959 0.061 Zn 1.005 0.020 1.156 0.029 0.915 0.048 1.079 0.021 0.988 0.039 As 0.998 0.056 1.172 0.034 0.856 0.078 0.873 0.523 1.261 0.549 Rb - - 1.006 0.020 0.938 0.052 0.948 0.022 0.891 0.026 Sr 0.988 0.034 1.000 0.035 0.988 0.030 0.999 0.007 0.991 0.019 Zr 1.019 0.027 1.043 0.020 1.096 0.073 1.055 0.015 1.009 0.025 Cd 1.009 0.025 1.095 0.026 0.861 0.078 1.300 0.861 0.894 0.306 Ba 0.978 0.030 0.990 0.024 1.000 0.028 1.007 0.022 0.983 0.029 La 1.009 0.016 1.010 0.026 1.071 0.044 1.003 0.022 1.003 0.010 Ce 0.987 0.016 0.997 0.020 0.985 0.030 0.997 0.017 0.978 0.030 Pr 1.007 0.021 1.007 0.028 1.029 0.070 1.000 0.016 0.988 0.021 Nd 1.028 0.035 1.016 0.023 1.041 0.057 1.007 0.022 0.993 0.017 Sm 1.007 0.029 1.021 0.040 1.054 0.046 0.989 0.018 0.995 0.028 Eu 1.003 0.021 1.012 0.025 1.028 0.031 1.014 0.017 1.001 0.029 Gd 1.039 0.036 1.025 0.033 1.143 0.050 1.018 0.011 1.018 0.022 Tb - - 1.023 0.023 1.103 0.057 1.019 0.028 1.012 0.027 Dy 1.074 0.045 1.027 0.018 1.112 0.063 1.040 0.020 1.016 0.019 Ho 1.080 0.029 1.031 0.027 1.110 0.060 1.018 0.020 1.011 0.015 Er 1.076 0.035 1.036 0.031 1.117 0.075 1.030 0.028 1.013 0.040 Tm - - 1.024 0.026 1.133 0.065 1.066 0.023 1.024 0.032 Yb - - 1.009 0.028 1.096 0.070 1.010 0.043 1.010 0.019 Lu 1.088 0.040 1.033 0.046 1.126 0.093 1.069 0.068 1.021 0.029 Hf 0.998 0.047 1.037 0.036 1.149 0.083 1.039 0.028 1.002 0.014 Pb 0.988 0.023 1.192 0.023 0.969 0.027 1.086 0.051 1.039 0.036 Th 1.076 0.029 1.036 0.025 1.114 0.045 1.032 0.024 0.997 0.021 U 0.951 0.020 0.997 0.018 0.945 0.062 0.991 0.029 0.922 0.017 注:“-”表示未检测。 表 4 内标法与归一定量法分析石笋样品结果对照
Table 4. Comparison of results for stalagmites calibrated with internal standard and matrix normalization methods
元素 石笋1 石笋2 检出限
(n=7,3s)内标法 测定C
基体归一不测定C
基体归一内标法 测定C
基体归一不测定C
基体归一Li < < < < < < 0.13 CO2① 36.49 39.47 - 41.62 42.39 - 3.32 Na 24.1 26.0 24.0 27.8 28.3 27.4 3.8 0.63 0.68 1.3 0.54 0.55 1.1 0.0001 Al < < < < < < 3.7 Si 110 119 110 90.7 92.4 89.7 16.5 P 163 176 163 48.6 49.5 48.1 1.6 K 3.2 3.5 3.2 1.2 1.3 1.2 0.18 55.31 59.82 98.65 55.99 57.02 98.84 0.0013 Ti < < < < < < 0.11 V 0.025 0.027 0.025 0.0065 0.0066 0.0064 0.0014 Cr 2.5 2.7 2.5 3.2 3.2 3.1 0.14 Mn 0.13 0.14 0.13 < < < 0.021 Fe 9.5 10.2 9.4 < < < 1.8 Co < < < 0.038 0.038 0.037 0.011 Ni 2.1 2.3 2.1 < < < 0.37 Cu 0.66 0.71 0.66 0.20 0.21 0.20 0.019 Zn 1.9 2.0 1.9 0.23 0.23 0.22 0.043 As < < < 0.70 0.71 0.69 0.058 Rb < < < < < < 0.0083 Sr 70.3 76.0 70.2 117 119 116 0.26 Zr 0.11 0.11 0.11 < < < 0.033 Cd 0.15 0.16 0.15 < < < 0.021 Ba 17.1 18.5 17.1 42.3 43.0 41.8 0.028 La 0.0035 0.0037 0.0034 0.0047 0.0048 0.0047 0.0009 Ce 0.0035 0.0038 0.0035 < < < 0.0009 Pr 0.0008 0.0009 0.0008 0.0028 0.0028 0.0028 0.0001 Nd 0.016 0.017 0.016 < < < 0.0046 Sm < < < < < < 0.0004 Eu 0.012 0.013 0.012 < < < 0.0024 Gd 0.057 0.061 0.056 0.087 0.088 0.087 0.0061 Tb 0.0026 0.0028 0.0026 < < < 0.0005 Dy 0.0067 0.0072 0.0067 0.025 0.025 0.024 0.0021 Ho < < < 0.0011 0.0011 0.0011 0.0002 Er 0.018 0.020 0.018 0.0087 0.0089 0.0087 0.0017 Tm < < < < < < 0.0008 Yb < < < < < < 0.0061 Lu 0.0026 0.0029 0.0026 < < < 0.0004 Hf 0.0051 0.0056 0.0051 < < < 0.0021 Pb 0.011 0.011 0.010 < < < 0.0008 Th 0.0010 0.0011 0.0010 < < < 0.0002 U 0.14 0.16 0.14 0.10 0.11 0.10 0.0004 注:①CO2的含量单位为%,其他元素含量单位为μg/g;“<”表示未检出;“-”表示未检测。
②测定C基体归一计算时,以氧化物MgO和CaO的形式表示;不测定C基体归一计算时,以碳酸盐MgCO3和CaCO3的形式表示;检出限是以氧化物MgO和CaO的形式计量。 -
[1] 张海伟,蔡演军,谭亮成.石笋矿物类型、成因及其对气候和环境的指示[J].中国岩溶, 2010,29(3): 222-228. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201003003.htm
[2] 殷建军,覃嘉铭,林玉石,杨琰,唐伟.中国近2000年来气候变化石笋记录研究进展[J].中国岩溶,2010,29(3): 258-266. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201003009.htm
[3] Fairchild I J, Treble P C.Trace elements in speleothems as recorders of environmental change [J].Quaternary Science Reviews,2009,28: 449-468. doi: 10.1016/j.quascirev.2008.11.007
[4] Finch A A, Shaw P A, Weedon G P, Holmgren K.Trace element variation in speleothem aragonite: Potential for palaeoenvironmental reconstruction [J].Earth and Planetary Science Letters,2001,186: 255-267. doi: 10.1016/S0012-821X(01)00253-9
[5] Cruz F R, Burns S J, Jercinovic M, Karmann I, Sharp W D, Vuille M. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite [J].Geochimica et Cosmochimica Acta,2007,71: 2250-2263. doi: 10.1016/j.gca.2007.02.005
[6] Farichild I J, McMillan E A. Speleothems as indicators of wet and dry periods [J].International Journal of Speleology,2007,36(2): 69-74. doi: 10.5038/1827-806X
[7] Borsato A, Frisia S, Farichild I J, Somogyi A, Susini J. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: Implications for incorporation of environmentally significant species [J]. Geochimica et Cosmochimica Acta,2007, 71: 1494-1512. doi: 10.1016/j.gca.2006.12.016
[8] Frisia S, Borsato A, Fairchild I J, Susini J. Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro-XRF and XANES analyses [J].Earth and Planetary Science Letters,2005,235: 729-740. doi: 10.1016/j.epsl.2005.03.026
[9] Zhou H, Greig A, You C F, Lai Z, Tang J, Guan Y, Yuan D. Arsenic in a speleothem from Central China: Stadial-Interstadial variations and implications [J]. Environmental Science and Techonology,2011,45: 1278-1283. doi: 10.1021/es1032103
[10] Farichild I J, Smith C L, Baker A, Fuller L, Spötl C, Mattey D, McDernott F. Modification and preservation of environmental signals in speleothems [J].Earth-Science Reviews,2006, 75: 105-153. doi: 10.1016/j.earscirev.2005.08.003
[11] 刘浴辉,Belshaw N,胡超涌.疏松质石笋碳酸盐的精确微区取样[J].岩矿测试,2012,31(1): 103-112. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201201017.htm
[12] Desmarchelier J A, Hellstrom J C, McCulloch M T. Rapid trace element analysis of speleothems by ELA-ICP-MS [J].Chemical Geology,2006,231: 102-117. doi: 10.1016/j.chemgeo.2006.01.002
[13] 胡明月,何红蓼,詹秀春,樊兴涛,王广,贾泽荣.基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用[J].分析化学,2008,36(7): 947-953. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200807021.htm
[14] 贾泽荣,詹秀春,何红蓼,胡明月.归一化定量技术在激光烧蚀-等离子体质谱测定石榴子石多元素中有关问题的讨论[J].岩矿测试,2009,28(5): 411-415. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200905006.htm
[15] Chen L, Liu Y, Hu Z, Gao S, Zong K, Chen H. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100% [J]. Chemical Geology,2011,284: 283-295. doi: 10.1016/j.chemgeo.2011.03.007
[16] Jochum K P, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob D E, Stracke A, Birbaum K, Frick D A, Günther D, Enzweiler J. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines [J].Geostandards and Geoanalytical Research,2011,35: 397-429. doi: 10.1111/ggr.2011.35.issue-4
[17] Jochum K P, Stoll B, Herwig K, Willbold M, Hofmann A W, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker, St, Dücking M, Brätz H, Klemd R, de Bruin D, Canil D, Cornell D, de Hoog J C M, Dalpé C, Danyushevsky L V, Eisenhauer A, Gao Y, Snow J E, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri E, Höfer H E, Lahaye Y, Horz K, Jacob D E, Kasemann S, Kent A J R, Zack T, Ludwig T, Mason P R D, Meixner A, Rosner M, Misawa K, Nash B P, Pfänder J A, Premo W R, Sun Weidong D, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead J D. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios [J].Geochemistry Geophysics Geosystems, 2006,7,Q02008,doi: 10.1029/2005GC001060.
[18] 谭明.石笋微层气候学的几个重要问题[J].第四纪研究,2005,25(2): 164-169. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200502004.htm
[19] Hathorne E C, James R H, Savage P, Alard O. Physical and chemical characteristics of particles produced by laser ablation of biogenic calcium carbonate [J]. Journal of Analytical Atomic Spectrometry, 2008, 23: 240-243. doi: 10.1039/B706727E
[20] Fryer B J, Jackson S E, Longerich H P. The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the Earth sciences [J].Canadian Mineralogist,1995,33: 303-312.
[21] Klaus P J, Denis S, Brigitte S, Ulrike W, Stephen A W, Qichao Y, Antje S, Nicole B, Dorrit E J, Meinrat O A. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS [J].Chemical Geology,2012,318-319: 31-44.
-