Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis
-
摘要: 应用X射线荧光光谱半定量分析软件(SQX)分析未知样品时,SQX软件可对样品中的9F~92U元素进行半定量分析,而对H2O、C这些参数不能直接测定。对于烧失量和结晶水含量较高的铝土矿、CO2含量较高的碳酸盐矿物、硫碳含量较高的硫化物金属矿等样品,平衡归一化计算时,未测定参数对样品中的Al2O3、SiO2、CaO、MgO、Fe等主要元素分析结果影响较大,半定量分析数据的准确度较低。本文通过试验研究,提出了一种校正模式。该校正模式根据XRF半定量分析初步结果,选择性地对未知样品中的烧失量、结晶水、二氧化碳、硫等参数进行化学定量分析,将化学定量分析结果输入SQX,二次平衡归一计算得出新的半定量分析结果。实验结果表明,使用该校正模式分析铝土矿、碳酸盐矿物、硫化物金属矿中的多元素,平均准确度提高了2.6~4.5倍。本方法可快速、较为准确地测定铝土矿、碳酸盐矿物、硫化物金属矿等高烧失量矿物中的多元素。Abstract:
BACKGROUNDThe SQX, X-ray fluorescence spectrometry semi-quantitative analysis software, was used to analyze an unknown sample. The software can analyze the range of 9F-92U elements, but cannot directly analyze the parameters such as H2O and C. Employing the balanced normalized calculation to test a special sample, such as bauxite with high loss of ignition and high crystalliferous water content, carbonate minerals with higher CO2 content, sulfide metal minerals with higher sulfur and carbon content, the analysis results for main elements like Al2O3, SiO2, CaO, MgO and Fe are largely affected by undetermined parameters resulting in low accuracy of semi-quantitative analysis data. OBJECTIVESTo propose a new calibration mode through experimental research. METHODSThe calibration mode quantitatively and selectively analyzes the parameters such as loss of ignition, crystalliferous water, carbon dioxide and sulfur of an unknown sample, based on the preliminary results of semi-quantitative analysis. By putting the quantitative analysis result into SQX, the new semi-quantitative analysis results were obtained by using the second equilibrium normalization calculation. RESULTSThe experimental results show that the average accuracy of multi-element in bauxite, carbonate minerals and sulfide metal minerals was increased by 2.6 to 4.5 times using this calibration mode. CONCLUSIONSThe method can quickly and accurately determine multi-element in minerals with high loss of ignition, including bauxite, carbonate minerals, and sulfide metal minerals. -
Key words:
- bauxite /
- carbonate minerals /
- sulfide metal ore /
- X-ray fluorescence spectrometry /
- semi-quantitation
-
-
表 1 仪器测量条件
Table 1. Measuring conditions of the XRF equipment
分析元素 数据库 靶材 电流
(kV)电压
(mA)滤光片 衰减器 准直器 晶体 探测器 PHA 重元素 Standard Rh 50 60 OUT 1/1 S2 LiF(200) SC 100~300 重元素(1) Sta-Ni400 Rh 50 60 Ni-400 1/1 S2 LiF(200) SC 150~250 Ca-Kα Standard Rh 40 75 OUT 1/1 S4 LiF(200) PC 100~300 K-Kα Standard Rh 40 75 OUT 1/1 S2 LiF(200) PC 100~300 Cl-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300 S-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300 P-Kα Standard Rh 30 100 OUT 1/1 S4 Ge PC 150~300 Si-Kα Standard Rh 30 100 OUT 1/1 S4 PET PC 100~300 Al-Kα Standard Rh 30 100 OUT 1/1 S4 PET PC 100~250 Mg-Kα Standard Rh 30 100 OUT 1/1 S4 RX25 PC 100~250 Na-Kα Standard Rh 30 100 OUT 1/1 S4 RX25 PC 100~250 F-Kα Standard Rh 40 75 OUT 1/1 S4 RX25 PC 100~300 表 2 铝土矿标准物质GBW(E)70036各种校正模式计算值与认定值对比
Table 2. Calculated values and standard values of bauxite standard material GBW(E)70036 in various correction models
分析元素 氧化物模式测试
结果(%)添加LOI校正结果
(%)H2O作平衡
校正结果(%)GBW(E)70036
认定值(%)氧化物模式测试结果
相对误差(%)LOI校正结果
相对误差(%)MgO 0.136 0.121 0.116 0.120 13.33 0.83 Al2O3 76.94 67.51 64.46 69.74 10.32 -3.20 SiO2 7.91 6.62 6.12 4.88 62.09 35.66 P2O5 0.159 0.132 0.121 0.120 32.50 10.00 SO3 0.182 0.00 0.139 0.047 - - K2O 1.07 0.880 0.810 0.710 50.70 23.94 CaO 0.258 0.212 0.195 0.180 43.33 17.78 TiO2 5.10 4.17 3.81 3.97 28.46 5.04 Fe2O3 7.42 5.97 5.35 6.09 21.84 -1.97 LOI * 13.70 △ 13.74 - - H2O * △ 18.26 - - - 注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或H2O其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。 表 3 碳酸盐标准物质GBW07131各种校正模式计算值与认定值对比
Table 3. Calculated values and standard values of carbonate standard material GBW07131 in various correction models
分析元素 氧化物模式
测试结果(%)CO2平衡
校正结果(%)添加LOI
校正结果(%)钙镁元素以碳酸盐
计平衡计算(%)GBW07131
认定值(%)氧化物模式测试
结果相对误差(%)LOI校正结果
相对误差(%)MgO 29.73 19.57 19.18 20.4 20.14 47.62 4.77 Al2O3 0.759 0.454 0.449 0.451 0.290 161.72 -54.83 SiO2 2.18 1.29 1.27 1.28 1.15 89.57 -10.43 P2O5 0.051 0.030 0.030 0.030 0.016 218.75 -87.50 SO3 0.442 0.256 0.00 0.254 - - - K2O 0.292 0.161 0.160 0.160 0.160 82.50 0.00 CaO 64.54 31.76 32.07 31.50 30.93 108.66 -3.69 TiO2 0.045 0.018 0.0186 0.0178 0.013 246.15 -43.08 MnO 0.038 0.015 0.016 0.011 0.012 216.67 -33.33 Fe2O3 0.435 0.169 0.176 0.167 0.170 155.88 -3.53 CO2 * 45.66 △ - - - - LOI * △ 45.67 - 45.73 - 0.13 注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或CO2其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。 表 4 硫化矿多金属矿标准物质GBW07166各种校正模式计算值与认定值对比
Table 4. Calculated values and standard values of sulfide polymetallic ore standard material GBW07166 in various correction models
分析元素 氧化物模式测试
结果(%)总硫、总碳固定
平衡计算(%)LOI平衡计算
(%)Sulfide模式
校正结果(%)GBW07166
认定值(%)氧化物模式测试
结果相对误差(%)总硫、总碳校正
结果相对误差(%)MgO 0.360 0.350 0.675 0.505 0.310 16.13 12.90 Al2O3 1.60 1.55 3.03 2.29 1.25 28.00 24.00 SiO2 3.34 3.50 6.26 4.86 3.78 -11.64 7.41 S 18.43 33.80 0.00 27.75 33.80 - - K2O 0.306 0.433 0.387 0.484 0.320 -4.38 35.31 CaO 2.05 2.02 2.61 3.27 1.96 4.59 3.06 Fe 18.22 28.58 27.45 30.84 29.60 -38.45 -3.45 Cu 15.50 28.00 30.72 28.42 24.20 -35.95 15.70 Zn 0.025 0.057 0.049 0.055 0.057 -56.14 0.00 C * 0.138 △ - - - - LOI * △ 27.04 - - - - 注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI或C其中一项参数有测量结果时,另一项结果不参与校正计算;“-”表示未定值或未统计计算。 表 5 某未知样品各种校正模式的计算值与化学分析值对比
Table 5. Calculated values and chemical analysis values of various correction modes for the unknown sample
样品编号 分析元素 氧化物模式测试
结果(%)平衡校准计算
结果(%)化学法测定值
(%)氧化物模式测试
结果相对误差(%)平衡校准计算结果
相对误差(%)允许限Yc
(%)Al2O3 86.97 76.11 78.01 11.49 -2.44 0.63 SiO2 2.94 1.82 1.31 124.43 38.93 4.17 Fe2O3 3.26 2.54 2.55 24.84 -0.46 5.11 TiO2 4.29 3.4 3.10 38.38 9.78 4.80 未知样品1 K2O 0.19 0.17 0.16 18.75 6.25 10.45 CaO 0.33 0.31 0.31 6.45 0.00 9.00 MgO 0.29 0.25 0.20 45.00 25.00 9.95 P2O5 0.28 0.22 0.14 100.00 61.37 10.76 LOI * 14.6 14.6 - - 2.58 Na2O 0.76 0.71 0.781 -2.59 -8.72 7.17 MgO 0.29 0.24 0.21 39.14 14.95 9.84 Al2O3 0.48 0.39 0.31 54.13 26.16 9.00 SiO2 1.15 0.93 0.83 38.66 12.45 7.05 P2O5 1.24 1.00 0.97 28.34 2.88 6.77 Fe2O3 1.70 1.21 1.18 44.18 2.13 6.41 未知样品2 S 4.72 △ 3.21 47.04 - 4.74 CaO 1.13 0.81 0.83 36.64 -2.40 7.05 Cr 18.49 13.09 12.89 43.46 1.53 2.75 Ni 22.81 16.18 16 42.55 1.12 2.47 Cu 14.53 10.31 10.33 40.62 -0.23 3.04 Zn 3.04 2.16 2.02 43.24 5.94 5.49 LOI * 37.00 37.00 - - - MgO 0.21 0.200 0.185 14.49 8.11 10.12 Al2O3 0.53 0.472 0.427 23.87 10.61 8.34 SiO2 2.18 1.818 1.650 32.00 10.15 5.83 P2O5 0.02 0.024 0.028 -34.29 -13.21 14.91 S 18.84 34.02 34.02 - - - K2O 0.05 0.048 0.042 15.44 13.31 13.77 未知样品3 CaO 0.15 0.127 0.137 7.72 -7.50 10.81 TiO2 0.03 0.031 0.026 30.98 20.78 15.18 Fe 4.52 6.942 6.720 -32.81 3.31 3.64 Cu 0.68 1.057 1.218 -44.37 -13.18 6.36 Zn 32.24 50.517 48.250 -33.18 4.70 1.15 Pb 1.58 2.505 2.646 -40.46 -5.33 5.05 C * 1.21 1.21 - - - 注:“*”表示XRF不能直接分析该参数,无数据;“△”表示在LOI有测量结果时,该项结果不参与校正计算;“-”表示未定值或未统计计算。 -
[1] Platbood G, Serbyns M, Quitin J M.Automated qualitative wavelength-dispersive X-ray fluorescence analysis[J].X-Ray Spectrometry, 1982, 11(2):83-88. doi: 10.1002/xrs.1300110211
[2] Vila E, Bermuder-Polonio J, Jimenez-Seco J L.Com-puter method for qualitative wavelength-dispersive X-ray fluorescence analysis[J].X-Ray Spectrometry, 1984, 13(4):187-191. doi: 10.1002/xrs.1300130413
[3] Jordanov J, Tsanov T, Stafanov R, et al.Problems of automatic qualitative X-ray fluorescence analysis:Part one[J].X-Ray Spectrometry, 1986, 16:255-259. http://cn.bing.com/academic/profile?id=c181e80588d21e794c16a2bfeea7b65c&encoded=0&v=paper_preview&mkt=zh-cn
[4] Jordanov J, Tsanov T, Stafanov R, et al.Problems of automated qualitative X-ray fluorescence analysis.2.Location of maxima and line identification[J].X-Ray Spectrometry, 1988, 17:117-121. doi: 10.1002/xrs.1300170308
[5] Janssens K, Espen P V.Implementation of an expert system for the qualitative interpretation of X-ray fluorescence spectra[J].Analytica Chimica Acta, 1986, 184:117-132. doi: 10.1016/S0003-2670(00)86475-2
[6] Janssens K, van Espen P.Evaluation of energy- dispersive X-ray spectra with the aid of expert systems[J].Analytica Chimica Acta, 1986, 191:169-180. doi: 10.1016/S0003-2670(00)86306-0
[7] Janssens K, Dorrine W, Espen P V.The development process of an expert system for the automated interpretation of large EMPA data sets[J].Chemometrics and Intelligent Laboratory Systems, 1988, 4:147-161. doi: 10.1016/0169-7439(88)80086-8
[8] 吉昂, 陶光仪, 卓尚军, 等.X射线荧光光谱分析[M].北京:科学出版社, 2005:145.
Ji A, Tao G Y, Zhuo S J, et al.X-ray Fluorescence Spectrum Analysis[M].Beijing:Science Press, 2005:145.
[9] 吉昂.X射线荧光光谱30年[J].岩矿测试, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002 http://www.ykcs.ac.cn/article/id/ykcs_20120302
Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002 http://www.ykcs.ac.cn/article/id/ykcs_20120302
[10] 刘敏, 庹先国, 李哲, 等.SDD-EDXRF中FP法无标样校正钒钛铁间吸收增强效应[J].核电子学与探测技术, 2012, 32(10):1192-1195. doi: 10.3969/j.issn.0258-0934.2012.10.020
Liu M, Tuo X G, Li Z, et al.The application of fundamental parameters method in EDXRF based on SDD[J].Nuclear Electronics & Detection Technology, 2012, 32(10):1192-1195. doi: 10.3969/j.issn.0258-0934.2012.10.020
[11] 刘岩, 孙杨, 李冬梅, 等.X射线荧光光谱无标样分析法在催化剂检测中的应用[J].分析试验室, 2017, 36(12):1398-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201712008
Liu Y, Sun Y, Li D M, et al.Application of X-ray fluorescence spectrometry in catalyst composition determination without standard[J].Chinese Journal of Analysis Laboratory, 2017, 36(12):1398-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201712008
[12] 张红菊, 张丁非, 余大亮, 等.X射线荧光光谱无标样分析在轻合金中的应用[J].分析试验室, 2017, 36(2):147-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201702006
Zhang H J, Zhang D F, Yu D L, et al.Application of X-ray fluorescence spectrometer in the determination of light alloys[J].Chinese Journal of Analysis Laboratory, 2017, 36(2):147-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201702006
[13] 张淑英, 卜赛斌.X射线荧光光谱无标半定量分析稀土元素方法的改进[J].岩矿测试, 2003, 22(1):37-39. doi: 10.3969/j.issn.0254-5357.2003.01.008 http://www.ykcs.ac.cn/article/id/ykcs_20030110
Zhang S Y, Bu S B.A semi-quantitative method improved for rare-earth element analysis by XRF without standards[J].Rock and Mineral Analysis, 2003, 22(1):37-39. doi: 10.3969/j.issn.0254-5357.2003.01.008 http://www.ykcs.ac.cn/article/id/ykcs_20030110
[14] 宋焕玲, 吴亲娟, 张兵.分析有机物中钾的IQ+无标样定量分析软件[J].科学技术与工程, 2006, 6(18):2981-2982. doi: 10.3969/j.issn.1671-1815.2006.18.049
Song H L, Wu Q J, Zhang B.Analysis of potassium in organic compounds by using IQ+ standardless quantitative analysis program[J].Science Technology and Engineering, 2006, 6(18):2981-2982. doi: 10.3969/j.issn.1671-1815.2006.18.049
[15] 朱志秀, 冯健, 李晨, 等.X射线荧光光谱无标样分析技术在出入境矿产品检验中的应用[J].理化检验(化学分册), 2009, 45(7):832-835. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201602042
Zhu Z X, Feng J, Li C, et al.Application of XRFS without using standard samples to inspection of mineral products in exits and entrances at customs[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(7):832-835. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201602042
[16] 梁述廷, 刘玉纯, 胡浩.X射线荧光光谱法同时测定土壤样品中碳氮等多元素[J].岩矿测试, 2004, 23(2):102-108. doi: 10.3969/j.issn.0254-5357.2004.02.005 http://www.ykcs.ac.cn/article/id/ykcs_20040229
Liang S T, Liu Y C, Hu H.Determination of C, N and other 36 elements in soil samples by XRF[J].Rock and Mineral Analysis, 2004, 23(2):102-108. doi: 10.3969/j.issn.0254-5357.2004.02.005 http://www.ykcs.ac.cn/article/id/ykcs_20040229
[17] 张勤, 樊守忠, 潘宴山, 等.X射线荧光光谱法测定化探样品中主、次和痕量组分[J].理化检验, 2005, 41(8):547-552. doi: 10.3321/j.issn:1001-4020.2005.08.003
Zhang Q, Fan S Z, Pan Y S, et al.X-ray fluorescence spectrometric determination of major, minor and trace elements in geochemical samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(8):547-522. doi: 10.3321/j.issn:1001-4020.2005.08.003
[18] 修凤凤, 樊勇, 李俊雨, 等.波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J].岩矿测试, 2018, 37(5):526-532. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704170061
Xiu F F, Fan Y, Li J Y, et al.Determination of 18 minor elements in the structural superimposed Halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2018, 37(5):526-532. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704170061
[19] 刘玉纯, 林庆文, 马玲, 等.粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J].岩矿测试, 2018, 37(6):671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
Liu Y C, Lin Q W, Ma L, et al.Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J].Rock and Mineral Analysis, 2018, 37(6):671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
[20] 卜兆杰, 蒋春宏, 陶泽秀, 等.粉末压片制样-X射线荧光光谱法测定稀土镁中间合金中镁锰硅钛钙铁[J].冶金分析, 2018, 38(3):61-64. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803012
Bu Z J, Jiang C H, Tao Z X, et al.Determination of magnesium, manganese, silicon, titanium, calcium, iron in rare earth-magnesium intermediate alloy by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2018, 38(3):61-64. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803012
[21] 李强, 张学华.粉末压片-X射线荧光光谱法快速分析多金属核和富钴结壳中22种组分[J].冶金分析, 2014, 34(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201401005
Li Q, Zhang X H.Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2014, 34(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201401005
[22] 曾江萍, 李小莉, 张楠, 等.粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟[J].岩矿测试, 2019, 38(1):71-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804060038
Zeng J P, Li X L, Zhang N, et al.Determination of high concentration of fluorine in lithium mica by X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2019, 38(1):71-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804060038
[23] 《岩石矿物分析》编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:234.
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (The Fourth Edition:Vol.Ⅲ)[M].Beijing:Geological Publishing House, 2011:234.
[24] 杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社, 1993:5-6.
Yang Z Y.Alumina Production Technology[M].Beijing:Metallurgical Industry Press, 1993:5-6.
[25] 刘静, 马慧侠, 彭展, 等.浅析铝土矿烧失量放入差异在X射线荧光光谱(XRF)分析中造成的影响[J].中国无机分析化学, 2018, 8(4):26-29. doi: 10.3969/j.issn.2095-1035.2018.04.007
Liu J, Ma H X, Peng Z, et al.Influence of measurement on the ignition loss difference of bauxite by X-ray fluorescence (XRF)[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4):26-29. doi: 10.3969/j.issn.2095-1035.2018.04.007
[26] 孙晓飞, 文孟喜, 杨丹丹.康普顿散射线结合经验系数法校正在X射线荧光光谱测定石灰石和白云石中的应用[J].冶金分析, 2016, 36(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/yjfx201601003
Sun X F, Wen M X, Yang D D.Application of Compton scatter and empirical coefficient correction in X-ray fluorescence spectrometric determination of limestone and dolomite[J].Metallurgical Analysis, 2016, 36(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/yjfx201601003
[27] 田琼, 张文昔, 宋嘉宁, 等.波长色散X射线荧光光谱法测定锌精矿中主次量成分[J].岩矿测试, 2012, 31(3):463-467. doi: 10.3969/j.issn.0254-5357.2012.03.015 http://www.ykcs.ac.cn/article/id/ykcs_20120315
Tian Q, Zhang W X, Song J N, et al.Determination of major and minor components in zinc concentrate by wavelength dispersive-X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2012, 31(3):463-467. doi: 10.3969/j.issn.0254-5357.2012.03.015 http://www.ykcs.ac.cn/article/id/ykcs_20120315
[28] 王谦, 应晓浒, 张建波.X射线荧光光谱分析样品烧增量的影响及校正[J].光谱学与光谱分析, 2011, 31(9):2574-2577. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201109059
Wang Q, Ying X H, Zhang J B.The influence of the gain on ignition and correction in X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2011, 31(9):2574-2577. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201109059
[29] 曲月华, 王一凌, 张悫, 等.熔融制样-X射线荧光光谱法测定锰矿中9种组分[J].冶金分析, 2011, 31(9):24-29. doi: 10.3969/j.issn.1000-7571.2011.09.006
Qu Y H, Wang Y L, Zhang Q, et al.Determination of nine components in manganese ore by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2011, 31(9):24-29. doi: 10.3969/j.issn.1000-7571.2011.09.006
[30] 曾江萍, 张莉娟, 李小莉, 等.超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J].冶金分析, 2015, 35(7):37-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201507007
Zeng J P, Zhang L J, Li X L, et al.Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J].Metallurgical Analysis, 2015, 35(7):37-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201507007
[31] 宫嘉辰, 白小叶, 姜炳南.熔融制样-X射线荧光光谱法测定钒钛磁铁矿中12种组分[J].冶金分析, 2019, 39(2):66-70. http://d.old.wanfangdata.com.cn/Periodical/jsyj201704008
Gong J C, Bai X Y, Jiang B N.Determination of twelve components in vanadium-titanium magnetite ore by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2019, 39(2):66-70. http://d.old.wanfangdata.com.cn/Periodical/jsyj201704008
-