Separation with P507 Levextrel Resin for Rapid Determination of Ag in Geochemical Exploration Samples by ICP-MS
-
摘要: 应用电感耦合等离子体质谱法(ICP-MS)测定化探样品中低含量的Ag时,常受到Zr、Nb氧化物离子91Zr16O和93Nb16O的严重干扰,使得低含量Ag结果误差较大。本文报道了一个简易的测定化探样品中Ag的新方法,将用于ICP-MS测定常规微量元素的溶液通过P507萃淋树脂交换柱,Zr、Nb等干扰元素被P507树脂强烈吸附,而Ag和内标元素Rh通过交换柱,实现了化探样品中待测元素Ag和内标元素Rh与干扰元素Zr、Nb的有效分离,Ag和Rh的回收率达到95%以上,检出限为0.05 μg/g,标准样品的测定结果准确可靠。该方法在测定常规微量元素的基础上,不需要另外称样及处理样品,相对于其他方法,流程简单、快速,适合化探样品Ag的测定,且树脂经氢氟酸处理后可重复使用,降低了实验成本。
-
关键词:
- 化探样品 /
- 银 /
- P507萃淋树脂 /
- 电感耦合等离子体质谱法
Abstract: The oxide ion of Zr and Nb (91Zr16O and 93Nb16O) shows serious interferences in the determination of low level of Ag by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), which leads to large errors in the results. A simple normal method is being reported here to determine Ag in geochemical exploration samples by ICP-MS. The solution for trace element measurements was passed through the P507 levextrel resin column. Zr and Nb were retained on the resin, while Ag and the internal element of Rh, passed through the resin. The analyzed element Ag in geochemical exploration sample was effectively separated with the interference elements Zr and Nb. The recovery of Ag and Rh is more than 95%, the detection limit of Ag is 0.05 μg/g. The results of reference materials agree well with the certified values. The proposed method is very simple and can be used for routine determination of Ag in large quantities of geochemical exploration samples. The resin can be re-used by using hydrofluoric acid as the eluting solution, and thus reducing the cost. -
-
表 1 仪器工作参数
Table 1. nstrumental operating parameters of ICP-MSI
工作参数 设定值 射频功率 1400 W 反射功率 < 2 W 等离子体气 15 L/min 辅助气 0.90 L/min 护鞘气 0.25 L/min 雾化气 0.95 L/min 扫描次数 5 测定次数 5 每个质量通道数 1 测定方式 Peak Hopping 停留时间 10 ms 样品锥孔径 1 mm 截取锥孔径 0.4 mm 雾化室温度 3℃ 表 2 各元素在P507萃淋树脂上的回收率
Table 2. The recovery of elements for P507 levextrel resin
元素 回收率/% Zr 0.93 Nb 1.44 Mo 2.83 Sn 0.43 Hf 0.58 Ta 0.42 W 3.32 Cd 103.0 Ag 95.8 Rh 97.5 表 3 方法的空白值
Table 3. Blank level of the method
空白 m(Ag)/μg 空白1 0.0004 空白2 0.0002 空白3 0.0003 空白4 0.0003 空白 m(Ag)/μg 空白5 0.0004 平均值 0.0003 标准偏差 0.000075 表 4 标准物质测定结果
Table 4. Analytical results of Ag in reference materials
标准物质
编号w(Ag)/(μg·g-1) 标准值 本法测量值 GBW 07103 0.033±0.010 0.026±0.008 GBW 07104 0.071±0.014 0.065±0.010 GBW 07105 0.040±0.012 0.051±0.009 GBW 07106 0.062±0.010 0.055±0.007 GBW 07302 0.066±0.015 0.065±0.008 GBW 07305 0.36±0.04 0.35±0.02 GBW 07306 0.36±0.04 0.31±0.05 GBW 07307 1.05±0.09 1.12±0.08 GBW 07311 3.2±0.5 3.02±0.32 GBW 07312 1.15±0.16 0.99±0.11 -
[1] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J].Talanta, 2000,51: 507-513. doi: 10.1016/S0039-9140(99)00318-5
[2] Qi L, Grégoire D C. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry [J]. Geostandards Newsletter, 2000,24: 51-63. doi: 10.1111/ggr.2000.24.issue-1
[3] 徐娟,胡兆初,刘勇胜,胡圣虹,袁洪林,高山.膜去溶-电感耦合等离子体质谱测定21种国际地质标样中的银[J].分析化学,2008,36(11): 1493-1498. doi: 10.3321/j.issn:0253-3820.2008.11.008
[4] 曹秋生.光谱法测定化探样品中银锡钨等元素[J].地质实验室,1995,11(6): 33-46.
[5] 岩石矿物分析编委会.岩石矿物分析(第三版)[M].北京:地质出版社,1991: 910.
[6] 盛献臻,何惠清.发射光谱法测定银和锡的探讨[J].广东化工,2011,38(7): 280-281. http://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201107151.htm
[7] 叶晨亮.发射光谱法快速测定银锡铜铅锌钼铍[J].岩矿测试,2004,23(3): 238-279. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200403019.htm
[8] 张雪梅,张勤.发射光谱法测定勘查地球化学样品中银硼钼铅[J].岩矿测试,2006,25(4): 323-326.
[9] 张丽微,张微,刘学诗,李金秀.化探样品微量银的光谱测定[J].云南地质,2009,28(4): 462-467. http://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200904018.htm
[10] 艾军,胡圣虹,帅琴,余琼卫.预富集电感耦合等离子体质谱法测定地下水中超痕量稀土元素及钪、钇[J].分析化学,2002,30(10): 1226-1230. doi: 10.3321/j.issn:0253-3820.2002.10.018
[11] 彭春霖,李武,帅袁甫,蔡文娣,冯文达,王旭生.萃取色谱分离原子发射光谱测定超高纯氧化铥、氧化镱和氧化镥中痕量稀土杂质[J].分析化学,1997,25(4): 377-381. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX199704001.htm
[12] 伍星,王长庆,陈炜.化学光谱法测定氧化铕中14个稀土杂质元素[J].分析试验室,1997,16(3): 33-37. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY703.009.htm
[13] 尹明,李冰,张岩.感耦等离子体质谱法(ICP-MS)测定高纯氧化镝中痕量稀土杂质[J].分析科学学报,1998,14(1): 5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKX801.001.htm
[14] Chu Z Y, Chen F K, Yang Y H, Guo J H. Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry [J].Journal of Analytical Atomic Spectrometry, 2009, 24: 1534-1544. doi: 10.1039/b904047a
[15] 李献华,祁昌实,刘颖,梁细荣,涂湘林,谢烈文,杨岳衡.岩石样品快速Hf分离与MC-ICP-MS同位素分析:一个改进的单柱提取色谱方法[J].地球化学,2005, 34(2): 109-114. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200502001.htm
[16] Makishma A, Nakamura E. New preconcentration tech-nique of Zr, Nb, Mo, Hf, Ta and W employing corprecipitation with Ti compounds: Its application to Lu-Hf system and sequential Pb-Sr-Nd-Sm separation [J].Geochemical Journal, 2008, 42: 199-206. doi: 10.2343/geochemj.42.199
-