Determination of 9 Elements in Molybdenum Ore by Wavelength Dispersive X-ray Fluorescence Spectrometry with Pressed Powder Pellet Preparation
-
摘要:
X射线荧光光谱(XRF)分析方法中, 采用粉末压片制样存在粒度效应和矿物效应等问题, 但当样品在一定的粒度、压制压力及压制时间条件下, 矿物效应和粒度效应仅仅对钠、钙等轻元素的测试有影响, 而对钼、铜、铅等元素的测试并无影响。基于此本文建立了粉末压片制样波长色散XRF直接测定钼矿石中Mo、W、Cu、Pb、Zn、F、S、As、Bi等9种元素的方法。采用价格低廉的低压聚乙烯粉作衬垫镶边材料, 样品在35 t的压力下压制30 s, 制备的样片坚固光滑、吸潮性小, 长期保存不发生形变, 消除了粒度效应。选用自制的钼含量呈梯度变化的钼矿石样品及钼矿石、钨矿石、铜矿石、铅矿石、铋矿石、锌矿石等国家标准物质作为校准样品建立标准曲线, 降低了矿物效应, 采用经验系数法消除谱线重叠和基体干扰。本方相对标准偏差小于2.1%, 各元素的测定结果与电感耦合等离子发射光谱法等其他方法测量值吻合。与已报道的玻璃熔融和粉末压片制样方法相比较, 检出限较低, 如钼的检出限为3.67 μg/g, 比玻璃熔融法的检出限(450 μg/g或24 μg/g)要低得多; 砷的检出限为1.13 μg/g, 低于其他粉末压片法的检出限(7.8 μg/g)。本方法提出了克服粒度效应及光谱诸干扰因素影响的详细解决方案, 有利于XRF法应用于定量分析基体组成复杂的钼矿石。
-
关键词:
- 钼矿石 /
- 聚乙烯粉 /
- 粉末压片制样 /
- 波长色散X射线荧光光谱法
Abstract:In X-ray Fluorescent Spectrometric (XRF) analysis, particle size effect and the matrix effect were reported when the powder tableting method was used. However, under certain particle size, tableting time and pressure, the effects existed only for light metals such as Na and Ca rather than heavy metal such as Mo, Cu and Pb. Based on these findings, an optimized powder tableting sample preparation method for reducing particle size effect and other interferences was established for simultaneous determination of Mo, W, Cu, Pb, Zn, F, S, As and Bi in molybdenum ore samples by XRF. Low pressure polyethylene powder was used as the liner material to reduce cost; the sample powder was tabletted under 30 t pressures for 30 s. The prepared pellet was smooth with low moisture adsorption and could be stored for long periods without shape change. Particle size effect and matrix effect were diminished after calibration with national sulfide ore reference materials. An empirical coefficient was applied to reduce the influence of spectrum overlap and matrix interferences. The method precision (RSD) was < 2.1%, and the results were consistent with those obtained by other analytical methods. Compared with the fusion sample preparation method, the optimized powder tableting method demonstrates a lower detection limit. The detection limit for Mo was 3.67 μg/g vs. 450 or 24 μg/g by the fusion method, and 1.13 μg/g for As vs. 7.8 μg/g by the normal powder tableting method.
-
-
表 1 波长色散X射线荧光光谱仪工作参数
Table 1. Operating conditions for WDXRF instrument
元素 分析线 晶体 准直器
(nm)探测器 光谱过
滤器电压
(kV)电流
(mA)2θ(°) 时间(s) PHD 分析线 背景 分析线 背景 LL UL Mo Kα LiF200 150 Scint Al750 60 60 20.2824 -0.8776 25 10 25 78 W Lα LiF200 150 Scint Al200 60 60 43.0082 -0.5192 30 10 21 65 Cu Kα LiF200 300 Flow Al200 60 60 45.0202 1.6830 25 10 20 66 Pb Lβ1 LiF200 150 Scint Al200 60 60 28.2504 1.3114 25 10 21 74 Zn Kα LiF200 150 Scint Al200 60 60 41.7906 0.9330 25 10 15 78 F Kα PX1 700 Flow - 30 120 42.4968 7.7538 60 20 15 78 S Kα Ge111 300 Flow - 30 120 110.7294 2.4500 30 10 35 65 As Kα LiF200 150 Scint Al200 60 60 33.9486 0.6680 20 10 20 78 Bi Lα LiF200 150 Scint Al200 60 60 33.0008 -0.5598 20 10 23 76 Ba Lα LiF200 300 Flow - 40 90 87.1602 1.3220 20 10 33 71 Sn Kα LiF200 150 Scint Brass400 60 60 13.9914 0.4748 30 10 29 68 Ce Lα LiF200 300 Flow - 40 90 79.0048 1.1758 25 10 30 70 La Lα LiF200 300 Flow - 40 90 82.8946 1.0646 25 10 27 70 Mn Kα LiF200 300 Flow - 60 60 62.9945 1.7000 15 10 18 68 SiO2 Kα PE002 300 Flow - 30 120 109.1030 - 10 - 24 78 Fe Kα LiF200 150 Flow Al750 60 60 57.5057 - 15 - 15 69 Al Kα PE002 300 Flow - 30 120 144.8878 - 10 - 22 78 Mg Kα PX1 700 Flow - 30 120 22.5416 1.8884
-1.744030 10
1035 65 Ca Kα LiF200 150 Flow - 30 120 113.1372 - 15 - 32 73 Rh Kα-C LiF200 150 Scint Al200 60 60 17.5140 - 15 - 26 78 注:PHD指脉冲高度,LL指下甄别阈,UL指上甄别阈,Flow指流气探测器,Scint指闪烁探测器。 表 2 校准样品中各组分的含量范围
Table 2. The concentration range of elements in samples
元素 含量范围(%) 元素 含量范围(%) Mo 0.0002~40.83 F 0.032~9.91 W 0.0002~3.66 S 0.018~32.51 Cu 0.0049~1.15 As 0.0001~0.79 Pb 0.0014~4.17 Bi 0.0001~0.26 Zn 0.0052~2.75 表 3 谱线重叠校正和基体干扰校正
Table 3. Calibration of matrix interference and spectrum overlap interference
元素 分析线 干扰元素谱线 基体校正组分 参比线 Mo Kα Ce Kα1, Ba Kβ1,
La Kα1SiO2, Fe2O3, Al2O3, CaO, MgO Rh W Lα Zn Kα, Mo Kα1,
Cu Kα, Mn Kα, As Kβ1Fe2O3, Al2O3, CaO, MgO Rh Cu Kα W Lα, Zn Kα, Mo Kα1 Fe2O3, CaO Rh Pb Lβ1 Sn Kα1, Bi Lα1 Fe2O3, CaO Rh Zn Kα Mo Kα1, W Lα1,
Cu Kα, As Kα1Fe2O3, CaO Rh F Kα Fe Lα1, Al Kα, As Lα1,
Mn Lα1, Mg Kα,
Ca Kβ1Fe2O3, Al2O3, CaO, MgO - S Kα La Lα1, Mo Lα1,
Pb Mα1Fe2O3, Al2O3, CaO, MgO - As Kα Pb Lα1, Bi Lα1 Fe2O3, CaO Rh Bi Lα As Kα1, Ce Lβ1,
Cu Kα, La Lβ1, W Lβ1,
Pb Lα1Fe2O3, CaO Rh 表 4 方法的理论检出限和实测检出限
Table 4. Theoretical detection limits and measurement detection limits of the method
元素 理论检出限
(μg/g)本法实测
检出限
(μg/g)元素 理论检出限
(μg/g)本法实测
检出限
(μg/g)Mo 0.60 3.67 F 45.31 75.55 W 1.39 2.39 S 7.82 18.97 Cu 0.76 3.23 As 0.74 1.13 Pb 1.97 2.7 Bi 1.01 1.50 Zn 0.89 2.24 表 5 方法准确度和精密度
Table 5. Accuracy and precision tests of the method
元素 1# 2# 3# 4# 5# 本法
(μg/g)其他方法
(μg/g)本法RSD
(%)本法
(μg/g)其他方法
(μg/g)本法
(μg/g)其他方法
(μg/g)本法
(μg/g)其他方法
(μg/g)本法
(μg/g)其他方法
(μg/g)Mo 9171 9176 0.2 4542 4535 1895 1900 930.8 930.4 2111 2117 W 178 177 0.7 87.6 88.4 40.4 43.1 23.5 22.6 46.1 47.7 Cu 3416 3420 0.8 1677 1674 698 699 347 347 780 777 Pb 25.0 21.5 0.4 19.4 20.3 23.4 23.2 18.6 21.9 63.7 64.0 Zn 66.4 68.0 0.2 99.1 97.4 52.4 48.6 39.6 40.0 82.0 83.2 F 1483 1459 2.0 1509 1490 1563 1564 864 826 2334 2257 S 2.21 2.20 0.3 1.12 1.11 4.16 4.09 2.45 2.43 7.11 7.17 As 4.40 4.70 0.8 2.10 2.27 2.10 1.96 2.20 2.03 6.00 5.83 Bi 2.70 2.53 0.9 3.10 3.02 2.70 2.11 4.00 3.70 65.8 67.0 注:元素S测定值的单位为%。 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] -