-
摘要: 原地宇生核素26Al/10Be埋藏测年法是最近十多年涌现的测年新技术之一,广泛应用于地貌演化、古人类等研究领域,Al回收率及其纯度很大程度上决定着年代结果的精度。美国Purdue大学现用Al分离纯化程序有一些步骤尚待完善。本文通过条件实验,对该程序提出如下修改建议:①用38~75 μm阴离子交换树脂取代原用的75~150 μm树脂,以减少淋洗液(0.05 mol/L草酸-0.5 mol/L盐酸)体积并实现Al与主要干扰元素Fe、Ti的定量分离;②用阳离子交换法从草酸-盐酸中提取Al,以规避较为冗长的化学法破坏草酸。模拟样品的分析结果表明,经改进的两步骤可实现Al近于定量的回收,全流程Al回收率达91%±5%,纯度为98%。
-
关键词:
- 宇生核素 /
- 26Al/10Be埋藏测年 /
- 铝 /
- 分析程序 /
- 离子交换法
Abstract: In situ cosmogenic 26Al/10Be burial dating, one of the dating methods that has emerged over the past several years, has been widely applied in geomorphology, archaeology and other science disciplines. The chemical recovery and purity of Al is one of the key factors to yield high-precision age results. Further improvements are needed for several steps for separating and purifying Al in the current chemical procedure of Purdue University. Based on results of conditional experiments, this study proposes the following suggestions for refining the procedure: 1) 38-75 μm, instead of 75-150 μm, anion exchange resin should be used to reduce the volume of eluting solution (0.05 mol/L H2C2O4-0.5 mol/L HCl) and to separate Al from its major interference elements of Fe and Ti; 2) Cation exchange resin be used to extract Al from H2C2O4-HCl solution to avoid the time-consuming decomposition of H2C2O4 by chemical reagents. The analyses of simulating samples show that quasi quantitative recovery of Al is realized by using the above two refined steps and the whole procedure recovery of Al reached 91%±5% with a purity of 98%.-
Key words:
- cosmogenic nuclides /
- 26Al/10Be burial dating /
- Al /
- analytical procedure /
- ion exchange method
-
-
表 1 阳离子交换树脂上分配系数
Table 1. Cation exchange distribution coefficients
介质 Al分配系数 0.05 mol/L草酸-0.5 mol/L盐酸 186.1±2.1 0.05 mol/L草酸-0.75 mol/L盐酸 95.3±1.4 -
[1] Granger D E, Kirchner J W, Finkel R C. Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium [J]. Geology, 1997, 25(2): 107-110. doi: 10.1130/0091-7613(1997)025<0107:QDROTN>2.3.CO;2
[2] Stock G M, Anderson R S, Finkel R C. Pace of landscape evolution in the Sierra Nevada California revealed by cosmogenic dating of cave sediments [J]. Geological Society of America, 2004, 32(3):193-196.
[3] Kong P, Granger D E, Wu F Y, Caffee M W, Wang Y J, Zhao X T, Zheng Y. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 2009, 278: 131-141. doi: 10.1016/j.epsl.2008.12.003
[4] Shen G J, Gao X, Gao B, Granger D E. Age of Zhoukoudian Homo erectus determined with 26Al/10Be burial dating [J]. Nature, 2009, 458(7235): 198-200. doi: 10.1038/nature07741
[5] Carbonell E, de Castro J M B, Parés J M, Pérez-González A, Cuenca-BescÓsG, Ollé A, Mosquera M, Huguet R, der MadeÚ J, Rosas A, Sala R, Vallverd J, García N, Granger D E, Martinón-Torres M, Rodríguez X P, Stock G M, Vergés J M, Allué E, Burjachs F, Cáceres I, Canals A, Benito A, Díez C, Lozano M, Mateos A, Navazo M, Rodríguez J, Rosell J, Arsuaga J L. The first hominin of Europe [J].Nature,2008, 452(7186): 465-469. doi: 10.1038/nature06815
[6] Partridge T C, Granger D E, Caffee M W, Clarke R J. Lower Pliocene hominid remains from Sterkfontein[J]. Science, 2003, 300(5619): 607-612. doi: 10.1126/science.1081651
[7] Balco G, Rovey Ⅱ C W. An isochron method for cosmogenic-nuclide dating of buried soils and sediments[J]. American Journal of Science, 2008, 308(10): 1083-1114. doi: 10.2475/10.2008.02
[8] Granger D E, Fabel D, Palmer A N. Pliocene-Pleistocene incision of the Green River ‘Kentucky’ determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments[J].GSA Bulletin, 2001, 113(7): 825-836. doi: 10.1130/0016-7606(2001)113<0825:PPIOTG>2.0.CO;2
[9] 那春光,孔屏,黄费新,肖伟.原地生成宇宙成因核素10Be和26Al样品采集及处理[J].岩矿测试, 2006, 25(2): 101-106.
[10] 张丽,武振坤,宋少华,常宏,赵国庆.原地宇宙成因核素暴露测年方法中石英的提取[J].岩矿测试, 2012, 31(5): 780-787. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201205007.htm
[11] Kohl C P, Nishiizumi K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3583-3587. doi: 10.1016/0016-7037(92)90401-4
[12] Isotope separation quartz chemistry: 10Be and 26Al extraction [EB/OL]. http://www.physicspurdue.edu/primelab/MSL/Flowchart%20copy.jpg.
[13] [14] Extraction of Al and Be from quartz for isotopic analysis [EB/OL].http://depts.washington.edu/cosmolab/chem/Al-26_Be-10.pdf".
[15] Cosmogenic Isotopes Lab [EB/OL]. http://www.public.asu.edu/-aheimsat/yakattacklab.html.
[16] Chemical Separation of Al and Be from Quartz-bearing rocks [EB/OL]. http://www.geog.ucsb.edu/-bodo/pdf/bookhagen_chemSeparation_UCSB.pdf.
[17] 卢仁,林杨挺,欧阳自远,李春来,周卫健.陨石中宇宙成因核素10Be和26Al的化学分离纯化[J].地球化学, 2008, 37(2): 149-156.
[18] 沈冠军.原地宇生核素埋藏测年法:最新进展及其在中国早期人类遗址年代研究中的应用前景[J].第四纪研究, 2012, 32(3): 382-387. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201203004.htm
[19] Hunt A L, Larsen J, Bierman P R, Petrucci G A. Investigation of factors that affect the sensitivity of accelerator mass spectrometry for cosmogenic 10Be and 26Al isotope analysis [J]. Analytical Chemistry, 2008, 80: 1656-1663. doi: 10.1021/ac701742p
[20] 张丽,周卫健,常宏,赵国庆,宋少华,武振坤.暴露测年样品中26Al和10Be分离及其加速器质谱测定[J].岩矿测试,2012, 31(1): 83-89.
[21] Strelow F W E, Liebenberg C J. Toerien F V S. Accurate silicate analysis based on separation by ion-exchange chromatography [J]. Analytica Chimica Acta, 1969, 47: 251-260. doi: 10.1016/S0003-2670(01)95675-2
[22] Dietz M L, Horwitz E P, Sajdak L R, Chiarizia R. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media [J]. Talanta, 2001, 54: 1173-1184. doi: 10.1016/S0039-9140(01)00390-3
-