Line Saturation Thickness Calculation for Zirconium and Hafnium in Zircon Sand Samples and Its Application
-
摘要: 应用熔融制样X射线荧光光谱法测定锆英砂中的锆,通常采用Zr Kα线,而采用Zr Kα线作为分析线对熔融片来说并未达到饱和厚度,因此Zr的线性差,测定结果误差大。本文采用波长色散X射线荧光光谱法测定锆英砂样品中锆铪硅铝钙钛铁镁钠铪磷锰等12种组分。重点研究了锆分析谱线的选择,通过理论计算熔融片中Zr Kα线的饱和厚度为6638 μm,而Zr Lα线的饱和厚度为20 μm。由于熔融制备样片厚度为2500 μm,在熔融片中Zr Kα线远未达到饱和厚度,因此测定锆时应用Zr Lα谱线取代文献中应用的Zr Kα谱线。采用Zr Lα线,校准曲线的标准偏差(RMS)为0.39,而Zr Kα线的RMS为1.03,ZrO2分析结果的准确度和精密度有了显著的提高。对于锆,Hf Lα和Hf Lβ线饱和厚度分别为971 μm、1444 μm,由于Hf Lα1谱线与Zr Kα二次谱线重叠,因此测定铪时应用Hf Lβ线作为分析线。实验还对四硼酸锂-偏硼酸锂混合熔剂、熔样比例和熔样温度等实验条件进行了优化,使用理论α系数和经验系数法校正基体效应,各元素计算的检出限与实际能报出的结果基本一致,方法精密度(RSD)为0.1%~10.9%,各元素的测定值与化学法测定值相符,表明通过饱和厚度的计算确定的锆和铪测定谱线具有可行性。Abstract: For the determination of Zr in Zircon sand, the spectral line of Zr is mainly used. However, the spectral line of Zr Kα does not reach the saturation thickness for the fused bead, which leads to poor linearity and large errors in the results. The determination of ZrO2, HfO2, SiO2, Al2O3, CaO, TiO2, Fe2O3, MgO, Na2O, Cr2O3, P2O5, and MnO in Zircon sand samples has been developed with fused bead by Wavelength Dispersive X-ray Fluorescence Spectrometer. In this article, a detailed description of the study for the selection of the Zr spectrum line is given. Through theoretical arithmetic, the saturation thickness of the Zr Kα is 6638 μm, which is far beyond the thickness of the fused bead of 2500 μm while the saturation thickness of the Zr Lα is only 20 μm, which is within the range of the bead. Therefore, the Zr Lα is much more suitable than Zr Kα, as mentioned in published articles. The RMS of Zr Kα is 1.03 while the RMS of Zr Lα is 0.39. The accuracy and the precision of the ZrO2 are greatly improved. The respective saturation thickness for Hf Lα and Hf Lβ is 971 μm and 1444 μm. The Hf Lα1 line is overlapped by the second line of Zr Kα, hence, the Hf Lβ line is selected as the analysing line. The mixed flux of Li2B4O7 and LiBO2, the proportion of the flux and sample and the temperature of the fused sample are all optimized. The matrix effect was corrected by the theoretical α coefficient and empirical coefficient. The calculated detection limits of the respective elements coincide with the measured results. The precision of the method (RSD) is 0.1%-10.9%. The results are in agreement with the certified values obtained by chemical methods, which showing that the measured spectral line determined through calculation of saturated thickness of Zr and Hf has certain feasibility.
-
Key words:
- ziron sand /
- Zr /
- Hf /
- X-ray Fluorescence Spectrometry /
- fused bead /
- saturation thickness of spectral line
-
-
表 1 待测元素的测量条件
Table 1. Measurement condition of elements by XRF
元素 分析线 晶体 准直器
(μm)探测器 电压
(kV)电流
(mA)2θ(°) 时间(s) PHA 峰值 背景 峰值 背景 LL UL Br Kα LiF200 150 SC 60 60 29.9382 31.0000 10 4 25 75 Zr Kα LiF200 150 SC 60 60 22.5162 24.5160 20 10 34 63 Zr1 Lα Ge111 300 F-PC 30 120 136.8074 139.1386 30 10 26 78 Cr Kα LiF200 300 F-PC 60 60 69.3696 70.9738 30 10 12 73 Hf Lβ LiF200 300 F-PC 60 60 39.9064 39.9064 24 10 22 68 Mn Kα LiF200 300 F-PC 60 60 62.9852 64.6068 20 10 13 72 Al Kα PE002 300 F-PC 30 120 145.0788 147.6044 24 10 22 78 Fe Kα LiF200 150 F-PC 60 60 57.5006 55.5006 20 10 15 72 Ca Kα LiF200 150 F-PC 30 120 113.1490 112.1480 24 10 30 73 K Kα LiF200 300 F-PC 30 120 136.7600 134.0000 30 14 31 74 P Kα Ge111 300 F-PC 30 120 141.0076 142.9758 30 16 35 65 Ti Kα LiF200 300 F-Pc 40 90 86.1766 85.0466 30 10 28 69 Si Kα PE002 300 F-Pc 30 120 109.1236 111.4796 20 10 20 75 Zn Kα LiF200 150 SC 60 60 41.7644 42.7858 20 10 20 7 Na Kα PX1 700 F-PC 30 120 27.7390 30.0268 40 20 35 65 26.2994 Mg Kα PX1 700 F-PC 30 120 22.9710 24.4462 40 10 35 65 21.0692 注:元素Zn和Br分别用于扣除对 Na和Al的谱线重叠干扰;Na、Mg为两点扣背景;SC为闪烁计数器,F-PC为流气计数器,Duplex为串联F-PC和封闭正比计数器;PHA为脉冲高度分析器,LL为下甄别阈,UL为上甄别阈。 表 2 标准样品中各组分的含量范围
Table 2. Concentration range of elements in calibration samples
元素 含量范围(%) ZrO2 0.187~65.90 TiO2 0.07~3.806 MgO 0.01~0.3.42 Al2O3 0.08~82.36 SiO2 0.20~88.89 CaO 0.037~7.54 Fe2O3 0.049~5.88 Cr2O3 0.01~2.92 HfO2 0.62~2.09 K2O 0.016~3.37 Na2O 0.02~3.83 P2O5 0.002~0.167 表 3 校准曲线参数
Table 3. Parameters of calibration curve
谱线 截距 斜率 标准偏差(RMS) Zr Kα -0.01878 0.99331 1.02881 Zr Lα -0.01450 2.20147 0.38932 表 4 锆英石样品中各组分平均含量
Table 4. The average concentrations of different elements in the zircon sample
元素 平均含量
(%)Al2O3 10.10 SiO2 28.47 P2O5 0.027 K2O 0.024 CaO 2.075 TiO2 4.965 Cr2O3 1.011 MgO 0.477 Fe2O3 2.01 ZrO2 48.11 HfO2 0.85 Na2O 1.847 表 5 方法检出限
Table 5. Detection limits of the method
元素 检出限
(μg/g)Al2O3 597.5 SiO2 147.5 P2O5 67.6 K2O 41.9 CaO 53.6 TiO2 60.1 Cr2O3 29.2 MnO 20.7 Fe2O3 30.9 ZrO2(1) 200.1 ZrO2(2) 388.6 HfO2 45.4 注:ZrO2(1)为Zr Kα线的检出限,ZrO2(2)为Zr Lα线的检出限。 表 6 方法精密度
Table 6. Precision tests of the method
元素 方法精密度(n=12) 含量(%) RSD(%) ZrO2 37.88 0.1 TiO2 0.25 1.3 MgO 3.45 0.2 Al2O3 0.017 8.4 SiO2 0.15 4.4 CaO 1.3283 0.2 Fe2O3 0.051 2.3 Cr2O3 1.45 0.1 HfO2 1.44 0.1 K2O 0.009 10.9 Na2O 0.087 8.0 P2O5 0.41 1.6 表 7 方法准确度
Table 7. Accuracy tests of the method
元素 JRRM701样品元素含量(%) SARM-13样品元素含量(%) 化学法 测定值 化学法 测定值 Na2O 1.421 1.390 - 0.014 MgO 0.477 0.512 (0.044) 0.056 Al2O3 0.61 0.68 10.10 9.98 SiO2 28.47 28.10 32.56 32.80 P2O5 0.027 0.035 0.23 0.236 K2O 0.024 0.025 0.021 0.023 CaO 2.075 2.086 0.14 0.135 TiO2 4.96 4.99 0.295 0.284 Cr2O3 1.011 1.064 - - Fe2O3 2.01 2.08 0.19 0.21 ZrO2 48.11 47.80 64.01 64.44 HfO2 0.85 0.84 1.29 1.32 -
[1] GB/T 4984—2007,含锆耐火材料化学分析方法[S].
[2] YS/T 568—2008,氧化锆、氧化铪化学分析方法[S].
[3] 张永盛.感耦等离子体发射光谱法测定锆英石中主次痕量元素[J].岩矿测试,1994,13(2):121-124. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS402.008.htm
[4] GB/T 17416.2—1998,锆矿石化学分析方法;X射线荧光光谱法测定锆量和铪量[S].
[5] 田琼,黄健,陈广文,钟志光.X射线荧光光谱法测定锆英砂中主次成分[J].冶金分析,2009,29(11):24. doi: 10.3969/j.issn.1000-7571.2009.11.005
[6] 郑颖,张孟星.X射线荧光光谱法测定锆矿石中锆硅铁钛铝钙[J].分析测试技术与仪器,2012,18(3):187-190. http://www.cnki.com.cn/Article/CJFDTOTAL-FXCQ201203012.htm
[7] 童晓民,赵宏风,张伟民.X射线荧光光谱法测定矿物及试剂中氧化锆和氧化铪[J].冶金分析,2009,29(6):23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200906003.htm
[8] 宋霞,王静.锆刚玉耐火材料的X射线荧光光谱分析法[J].光谱实验室,2006,23(6):1314-1317. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS200606050.htm
[9] 胡坚,郭红丽,杜军卫,宋霞.锆英石质耐火材料的X射线荧光光谱分析法[J].耐火材料,2002,36(1):46-47. http://www.cnki.com.cn/Article/CJFDTOTAL-LOCL200201021.htm
[10] 王本辉,吴嘉旋,徐晓莹,胡坚.X射线荧光光谱法测定硅铝锆质耐火材料中主次成分[J].分析仪器,2011,28(2):38-41.
[11] 李国会,徐国令,李小莉.X射线荧光光谱法在耐火材料成分分析中的应用[J].岩矿测试,2003,22(3):217-224. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200303011.htm
[12] 苏亚勤,熊朝东,刘燕.X射线荧光光谱法测定锆钇粉体中的Y2O3[J].分析科学学报,2005,21(3):347-348.
[13] 陈永军,赵宗铃,万俊生.锆石单矿物XRF法分析方法[J].岩矿测试,1986,5(4):304-308.
[14] 陶光仪,张中义,吉昂.熔铸锆刚玉耐火材料的X射线荧光光谱分析[J].光谱学与光谱分析,1994,14(6):113-116. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN406.022.htm
[15] 王本辉,郭红丽,胡坚.X射线荧光光谱法测定氧化锆质耐火材料中主次成分[J].冶金分析,2010,30(1):39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201001009.htm
[16] 李小明,赵会芹,刘兰英.X射线荧光光谱法测定稳定氧化锆中主次量元素[J].山东冶金,2005,27(3):48-49. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYJ200503023.htm
[17] Asakura H, Ikegami K, Murata M, Wakita H.Deter-mination of components in refractories containing zirconia by X-ray fluorescence spectrometry[J].X-Ray Spectrometry, 2000,29(6): 418-425. doi: 10.1002/(ISSN)1097-4539
-