中国自然资源航空物探遥感中心主办
地质出版社出版

长基线航空重力测量精度分析

李瑞, 舒晴, 骆遥, 王晨阳, 高维, 周坚鑫. 2022. 长基线航空重力测量精度分析. 物探与化探, 46(4): 955-960. doi: 10.11720/wtyht.2022.0073
引用本文: 李瑞, 舒晴, 骆遥, 王晨阳, 高维, 周坚鑫. 2022. 长基线航空重力测量精度分析. 物探与化探, 46(4): 955-960. doi: 10.11720/wtyht.2022.0073
Li Rui, Shu Qing, Luo Yao, Wang Chen-Yang, Gao Wei, Zhou Jian-Xin. 2022. The precision of airborne gravimetry under the condition of long baselines. Geophysical and Geochemical Exploration, 46(4): 955-960. doi: 10.11720/wtyht.2022.0073
Citation: Li Rui, Shu Qing, Luo Yao, Wang Chen-Yang, Gao Wei, Zhou Jian-Xin. 2022. The precision of airborne gravimetry under the condition of long baselines. Geophysical and Geochemical Exploration, 46(4): 955-960. doi: 10.11720/wtyht.2022.0073

长基线航空重力测量精度分析

  • 基金项目:

    自然资源部航空地球物理与遥感地质重点实验室课题(2020YEL15)

    中国地质调查局地质调查项目(DD20191004)

详细信息
    作者简介: 李瑞(1985-),男,工程师,长期从事航空重力勘探方法技术研究工作。Email: 510231865@qq.com
  • 中图分类号: P631

The precision of airborne gravimetry under the condition of long baselines

  • 针对中远海域航空重力测量过程中由于不易架设GPS基站而导致基线较长的实际,根据航空重力测量原理,基于实际测量数据分析了长基线对航空重力测量精度的影响。综合分析长基线对差分定位精度的影响并结合航空重力异常内符合精度评价,相较于航空重力测量所要求的精度,认为长基线(600~800 km)对航空重力测量精度影响有限且几乎可以忽略不计,为进一步开展中远海域航空重力测量提供了技术支撑。
  • 加载中
  • [1]

    熊盛青. 航空地球物理勘查科技创新与应用[J]. 地质力学学报, 2020, 26 (5): 791-818.

    [2]

    Xiong S Q. Innovation and application of airborne geophysical exploration technology[J]. Journal of Geomechanics, 2020, 26 (5): 791-818.

    [3]

    周坚鑫, 刘浩军, 王守坦, 等. 国外航空重力测量在地学中的应用[J]. 物探与化探, 2004, 28(2):119-122.

    [4]

    Zhou J X, Liu H J, Wang S T, et al. The application of airborne gravity survey to earth science in foreign countries[J]. Geophysical and Geochemical Exploration, 2004, 28(2):119-122.

    [5]

    王晨阳, 骆遥, 熊盛青, 等. 海域航空重力快速构建区域大地水准面[J]. 地球物理学报, 2021, 64(3):907-915.

    [6]

    Wang C Y, Luo Y, Xiong S Q, et al. A fast approach for determining geoid using airborne gravity data of sea area[J]. Chinese J. Geophys, 2021, 64(3): 907-915.

    [7]

    岳迎春, 明祖涛, 潘雄. 提高GPS长基线解算精度的探讨[J]. 工程地球物理学报, 2008, 5(6):727-730.

    [8]

    Yue Y C, Ming Z T, Pan X. Research on improving the solving precision of GPS long base-line[J]. Chinese Journal of Engineering Geophysics, 2008, 5(6):727-730.

    [9]

    《航空重力测量技术规范》(DZ/T 0381—2021).

    [10]

    Technical specifications for airborne gravity survey(DZ/T 0381-2021).

    [11]

    王振荣, 兰江华, 王菲菲. 中国海洋国土的确定及矿产资源[J]. 矿物岩石, 2010(3):1-14.

    [12]

    Wang Z R, Lan J H, Wang F F. Regional Tectonics and mineral resources of marine terrirory in China[J]. Journal of Mineralogy and Petrology, 2010(3):1-14.

    [13]

    Kovrizhnykh P, Shagirov B, Geoken, et al. Marine gravity survey at the Caspian with GT-2M, Chekan AM and L&R gravimeters:Comparison of accuracy[M]. Russia: Moscow State University, 2011.

    [14]

    罗锋, 李冰, 姜作喜, 等. DGPS 在航空重力测量中的应用[J]. 物探与化探, 2014, 38(6):1212-1217,1221.

    [15]

    Luo F, Li B, Jiang Z X, et al. The applications of DGPS to airborne gravimetry[J]. Geophysical and Geochemical Exploration, 2014, 38(6) : 1212-1217,1221.

    [16]

    Damiani T M, Mader G. Quantifying the impact of adding high-grade inertial measurements to long-baseline aircraft GPS positioning: Application to airborne gravimetry[C]// 27th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2014.

    [17]

    Salazar D, Hernandez-Pajares M, Juan-Zornoza J M, et al. EVA: GPS-based extended velocity and acceleration determination[J]. Journal of Geodesy, 2011, 85(6):329-340.

    [18]

    Bolotin Y V. Mathematics behind GTGRAV[C]// Laboratory of Control and Navigation, Moscow Lomonosov State University, 2009.

    [19]

    Bolotin Y V, Popelensky M Y. Accuracy analysis of airborne gravity when gravimeter parameters are identified in flight[J]. Journal of Mathematical Sciences, 2007, 146(3):5911-5919.

    [20]

    郑崴, 张贵宾. 自适应卡尔曼滤波在航空重力异常解算的应用研究[J]. 地球物理学报, 2016, 59(4):1275-1283.

    [21]

    Zheng W, Zhang G B. 2016.Application research on adaptive Kalman filtering for airborne gravity anomaly determination[J]. Chinese J. Geophys, 2016, 59(4):1275-1283.

    [22]

    李瑞. 基于卡尔曼滤波的航空重力异常解算研究[D]. 北京: 中国地质大学(北京), 2014.

    [23]

    Li R. Research of solution of airborne gravity anomaly based on Kalman filter.[D]. Beijing: China University of Geosciences (Beijing), 2014.

    [24]

    孙中苗, 夏哲仁. FIR低通差分器的设计及其在航空重力测量中的应用[J]. 地球物理学报, 2000, 43(6): 850-855.

    [25]

    Sun Z M, Xia Z R. Design of fir lowpass dififerentiator and its applications in airborne gravimetry[J]. Chinese Journal of Geophysics, 2000, 43(6):850-855.

    [26]

    徐绍铨. GPS测量原理及应用[M]. 武汉: 武汉大学出版社, 2008.

    [27]

    Xu S Q. GPS measurement principle and application[M]. Wuhan: Wuhan University Press, 2008.

    [28]

    蔡昌盛, 戴吾蛟, 匡翠林. GPS/GLONASS组合系统的PDOP计算和分析[J]. 测绘通报, 2011(11):5-7.

    [29]

    Cai C S, Dai W J, Kuang C L. Calculation and analysis of PDOP for combined GPS/GLONASS system[J]. Bulletin of Surveying and Mapping, 2011(11):5-7.

    [30]

    姜作喜, 张虹, 郭志宏. 航空重力测量内符合精度计算方法[J]. 物探与化探, 2010, 34(5):672-676.

    [31]

    Jiang Z X, Zhang H, Guo Z H. Calculating method of internal coincidence accuracy in airbore gravimetry[J]. Geophysical and Geochemical Exploration, 2010, 34(5):672-676.

  • 加载中
计量
  • 文章访问数:  799
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2022-02-23
修回日期:  2022-08-20
刊出日期:  2022-08-17

目录