中国自然资源航空物探遥感中心主办
地质出版社出版

重力位场小波多尺度分解性质的分析与应用

孟庆奎, 张文志, 高维, 舒晴, 李瑞, 徐光晶, 张凯淞. 2022. 重力位场小波多尺度分解性质的分析与应用. 物探与化探, 46(4): 946-954. doi: 10.11720/wtyht.2022.2552
引用本文: 孟庆奎, 张文志, 高维, 舒晴, 李瑞, 徐光晶, 张凯淞. 2022. 重力位场小波多尺度分解性质的分析与应用. 物探与化探, 46(4): 946-954. doi: 10.11720/wtyht.2022.2552
MENG Qing-Kui, ZHANG Wen-Zhi, GAO Wei, SHU Qing, LI Rui, XU Guang-Jing, ZHANG Kai-Song. 2022. Property analysis and application of multi-scale wavelet decomposition of gravity potential field. Geophysical and Geochemical Exploration, 46(4): 946-954. doi: 10.11720/wtyht.2022.2552
Citation: MENG Qing-Kui, ZHANG Wen-Zhi, GAO Wei, SHU Qing, LI Rui, XU Guang-Jing, ZHANG Kai-Song. 2022. Property analysis and application of multi-scale wavelet decomposition of gravity potential field. Geophysical and Geochemical Exploration, 46(4): 946-954. doi: 10.11720/wtyht.2022.2552

重力位场小波多尺度分解性质的分析与应用

  • 基金项目:

    自然资源部航空地球物理与遥感地质重点实验室课题(2020YFL16)

    中国地质调查局地质调查项目(DD20191001)

    中国地质调查局地质调查项目(DD20191004)

详细信息
    作者简介: 孟庆奎(1987-),男,硕士,工程师,主要从事应用地球物理方法研究和数据处理解释工作。Email: qingkui_meng@163.com
  • 中图分类号: P631

Property analysis and application of multi-scale wavelet decomposition of gravity potential field

  • 小波多尺度分解是重力位场分离的常用方法之一,其最大的优点是突破了传统的二分重力异常的理念,实现了重力异常的多重分解,但对其性质及其存在的局限性还未进行系统研究。为了更好地指导实践,本文从基于剖面和格网的重力位场小波多尺度分解的定义出发,阐述了低阶小波细节不变准则等3个重要性质,通过设计简单和复杂两类典型理论模型,分析了小波多尺度定义及性质,并在应用实例中与插值切割法进行了对比。结果表明,小波多尺度分解可以实现重力位场多层分离并推估源体埋深,同时针对本文指出的异常尺度混叠和比例系数难以确定等局限,给出了改进思路。以上基础研究工作,可为重力位场资料的处理和解释提供一定参考。
  • 加载中
  • [1]

    Nettleton L L. Regionals,residuals,and structures[J]. Geophysics, 1954, 19(1):1-22.

    [2]

    Agocs W B. Least-squares residual anomaly determiration[J]. Geoghysics, 1951, 16(4):686-696.

    [3]

    Oldham C H G, Sutherland D B. Orthogonal polynomials: Their use in estimating the regional effect[J]. Geophysics, 1955, 20(2):295-306.

    [4]

    刘金钊, 朱绿涛, 张双喜, 等. 基于改进的2D多项式拟合及加权迭代算法的重力异常垂向分离[J]. 大地测量与地球动力学, 2018, 38(9): 897-902,907.

    [5]

    Liu J Z, Zhu L T, Zhang S X, et al. Gravity anomalies vertical separation at different depths by an improved 2D polynomial fitting and weighting iterative algorithm[J]. Journal of Geodesy and Geodynamics, 2018, 38(9): 897-902,907.

    [6]

    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society, 1998, 454(1971):903-995.

    [7]

    Mickus K L, Aiken C L V, Kennedy W D. Regional-residual gravity anomaly separation using the minimum-curvature technique[J]. Geophysics, 1991, 56(2):279-283.

    [8]

    纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 58(3):1042-1058.

    [9]

    Ji X L, Wang W Y, Qiu Z Y. The research to the minimum curvature technique for potential field data separation[J]. Chinese Journal of Geophysics, 2015, 58(3):1042-1058.

    [10]

    纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法参数选择试验研究[J]. 地球物理学进展, 2019, 34(4):1441-1452.

    [11]

    Ji X L, Wang W Y, Qiu Z Y. The parameter choose experimental research to the minimum curvature technique potential field data separation method[J]. Progress in Geophysics, 2019, 34(4):1441-1452.

    [12]

    程方道, 刘东甲, 姚汝信. 划分重力区域场与局部场的研究[J]. 物探化探计算技术, 1987, 9(1):1-9.

    [13]

    Cheng F D, Liu D J, Yao R X. A study on the identification of regional and local gravity fields[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1987, 9(1):1-9.

    [14]

    文百红, 程方道. 用于划分磁异常的新方法—插值切割法[J]. 中南矿冶学院学报, 1990, 21(3):229-235.

    [15]

    Wen B H, Cheng F D. A new interpolating cut method for identifying regional and local fields of magnetic anomaly[J]. J.Cent-South Inst.Min.Metall, 1990, 21(3):229-235.

    [16]

    刘东甲, 程方道. 划分重力区域场与局部场的多次切割法[J]. 物探化探计算技术, 1997, 19(1):32-36.

    [17]

    Liu D J, Chen F D. A multiple-cut method for identification of regional and local gravity fields[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1997, 19(1):32-36.

    [18]

    徐世浙, 张研, 文百红, 等. 切割法在陆东地区磁异常解释中的应用[J]. 石油物探, 2006, 45(3):316-318.

    [19]

    Xu S Z, Zhang Y, Wen B H, et al. Application of cut method in magnetic anomaly interpretation in LuDong area[J]. Geophysical Prospecting for Petroleum, 2006, 45(3):316-318.

    [20]

    葛粲, 任升莲, 李永东, 等. 重力异常分层分离方法改进及应用:以安徽五河地区为例[J]. 地球物理学报, 2017, 60 (12) : 4826-4839.

    [21]

    Ge C, Ren S L, Li Y D, et al. Improvement and application of the layered separation method for gravity anomalies: An example of the wuhe area,Anhui Province[J]. Chinese Journal of Geophysics, 2017, 60(12):4826-4839.

    [22]

    于长春, 熊盛青, 郭志宏, 等. 改进的非线性滤波方法在中高山地区的应用[J]. 物探与化探, 2003, 27(1):39-42,62.

    [23]

    Yu C C, Xiong S Q, Guo Z H, et al. The improved nonlinear filtering mthod and its application in middle and high mountain areas[J]. Geophysical and Geochemical Exploration, 2003, 27(1):39-42,62.

    [24]

    郭志宏, 刘浩军, 熊盛青. 平面网格位场数据的空间域非线性曲率滤波方法[J]. 地球物理学进展, 2003, 18(1):134-137.

    [25]

    Guo Z H, Liu H J, Xiong S Q. The nonlinear curvature filtering technique of plane potential grid data in space domain[J]. Progress in Geophysics, 2003, 18(1):134-137.

    [26]

    Kaftan I, Salk M, Suri C. Application of the finite element method to gravity data case study: Western Turkey[J]. Journal of Geodynamics, 2005, 39(5):431-443.

    [27]

    Kannan S, Mallick K. Accurate regional-residual separation by finite element approach, Bouguer gravity of Precambrian mineral prospect in northwestern Ontario[J]. First Break, 2003, 21:39-42.

    [28]

    Mallick K, Sharma K K. A finite element method for computation of the regional gravity anomaly for computation of the regional gravity anomaly[J]. Geophysics, 1999, 64(2):461-469.

    [29]

    Mallick K, Sarma G S. Finite element formulation for seismic wave propagation in oil-bearing geological formations[C]// International Symposium on Mathematical Modeling and Scientific Computation, 1992.

    [30]

    Sarma G S, Gadhinglajkar V R, Mallick K. Finite element simulation of bright-spot structures[J]. Journal of Association Exploration Geophysics, 1993, 14(2):43-47.

    [31]

    Agarwal B N P, Shalivahan S. A fortran program to implement the method of finite elements to compute regional and residual anomalies from gravity data[J]. Computers & Geosciences, 2010, 36(7):848-852.

    [32]

    肖锋, 孟令顺. 用有限元插值法计算区域重力异常[J]. 吉林大学学报:地球科学版, 2006, 36(S):5-8.

    [33]

    Xiao F, Meng L S. Use finite element method for computation of the regional gravity anomaly[J]. Journal of Jilin University:Earth Science Edition, 2006, 36(S):5-8.

    [34]

    Yu Y Y, Huang G X. Application of kalman filtering theory to regional-residual separation of gravity or magnetic anomalies[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1991, 13(3):220-228.

    [35]

    许家姝, 孟令顺, 刘银萍. 卡尔曼滤波在位场分离中的应用[J]. 科学技术与工程, 2010, 10(2):394-399.

    [36]

    Xu J S, Meng L S, Liu Y P. Application of kalman filtering in the separation of potential field[J]. Science Technology and Engineering, 2010, 10(2):394-399.

    [37]

    Pawlowski R S, Hansen R O. Gravity anomaly separation by Wiener filtering[J]. Geophysics, 1990, 55 (5):539-548.

    [38]

    Spector A, Grant F S. Statistical model for interpreting aeromagnetic data[J]. Geophysics, 1970, 35(2):293-302.

    [39]

    Syberg F J R. A Fourier method for the regional residual problem of potential fields[J]. Geophysical Prospecting, 1972, 20(1):47-75.

    [40]

    Charaborty L B. Mapping of crustal discontinuities by wavelength filtering of gravity field[J]. Geophysical Prospecting, 1992, 40(7):801-822.

    [41]

    王明, 王林飞, 何辉. 匹配滤波技术分离重力场源[J]. 物探与化探, 2015, 39 (S1) :126-132.

    [42]

    Wang M, Wang L F, He H. The application of the matched filtering technology to the separation of gravity field sources[J]. Geophysical and Geochemical Exploration, 2015, 39(S1) : 126-132.

    [43]

    侯遵泽, 杨文采. 中国重力异常的小波变换与多尺度分析[J]. 地球物理学报, 1997, 40(1) : 85-95.

    [44]

    Hou Z Z, Yang W C. Wavelet transform and multi-scale analysis on gravity anomalies of China[J]. Chinese Journal of Geophysics, 1997, 40(1) : 85-95.

    [45]

    杨文采, 施志群, 侯遵泽, 等. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 2001, 44(4):534-541.

    [46]

    Yang W C, Shi Z Q, Hou Z Z, et al. Discrete wavelet transform for multiple decomposition of gravity anomalies[J]. Chinese Journal of Geophysics, 2001, 44(4):534-541.

    [47]

    高德章, 侯遵泽, 唐建. 东海及邻区重力异常多尺度分解[J]. 地球物理学报, 2000, 43(6):842-849.

    [48]

    Gao D Z, Hou Z Z, Tang J. Multiscale analysis of gravity anomalies one east China sea and adjacent regions[J]. Chinese Journal of Geophysics, 2000, 43(6):842-849.

    [49]

    侯遵泽, 杨文采. 塔里木盆地多尺度重力场反演与密度结构[J]. 中国科学, 2011, 41(1):29-39.

    [50]

    Hou Z Z, Yang W C. Multi-scale gravity field inversion and density structure in Tarim Basin[J]. Science China, 2011, 41(1):29-39.

    [51]

    杨文采, 孙艳云, 侯遵泽, 等. 用于区域重力场定量解释的、多尺度刻痕分析方法[J]. 地球物理学报, 2015, 58(2):520-53.

    [52]

    Yang W C, Sun Y Y, Hou Z Z, et al. An multi-scale scratch analysis method for quantitative interpretation of regional gravity fields[J]. Chinese Journal of Geophysics, 2015, 58(2) : 520-531.

    [53]

    杨长保, 刘津怿, 吴燕冈, 等. 二维多尺度离散小波/小波包分析进行重力区域场和局部异常分离的模型分析[J]. 地球物理学进展, 2010, 25(3):1007-1014.

    [54]

    Yang C B, Liu J Y, Wu Y G, et al. Two-dimensional multi-scale discrete wavelet/wavelet packet analysis for models of regional and residual gravity anomaly separation[J]. Progress in Geophysics, 2010, 25(3):1007-1014.

    [55]

    Banerjee B, Das Gupta S P. Gravitational attraction of a rectangular parallelepiped. Geophysics, 1977, 42(5):1053-1055.

    [56]

    万荣胜, 张伙带, 陈洁. 插值切割法在南海重力数据处理中的应用[J]. 海洋地质与第四纪地质, 2017, 39(1):173-183.

    [57]

    Wang S R, Zhang H D, Chen J. Application of interpolation cut method to gravity data processing in South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 39(1):173-183.

  • 加载中
计量
  • 文章访问数:  1011
  • PDF下载数:  85
  • 施引文献:  0
出版历程
收稿日期:  2020-12-07
修回日期:  2022-08-20
刊出日期:  2022-08-17

目录