Automatic detection of multiple pavement layers based on the cosine of instantaneous phase of ground penetrating radar data
-
摘要: 层位特征是探地雷达路面检测的重要信息,而目前基于人工或相关算法的层位拾取方法存在主观性强、工作量大和每次仅能追踪一个层位等问题。为此,提出了一种基于探地雷达瞬时相位余弦的多层位自动追踪方法。首先,通过复信号分析获取了雷达数据的瞬时相位余弦;其次,利用子波余弦矩阵数据进行相似度分析后再计算其瞬时相位余弦,增强相位数据同相轴的横向连续性;然后,获取相位数据的空间位置、振幅和极性信息,并在信号幅值和同相轴特征等一系列约束条件下自动追踪横向连续的层位线;最后,通过比较深度方向相邻层位线上振幅的均方根平方值来确定层位数据及其极性,并通过设置层位线阈值和振幅阈值来提取强振幅连续的层位线数据。数值模拟和现场案例分析验证了本文方法的有效性和适应性。Abstract: Horizon characteristics are important information in pavement detection using ground penetrating radar (GPR) data.However,current horizon picking methods based on manual work or related algorithms have problems such as strong subjectivity and heavy workload and they can only track one horizon each time.Therefore,this study proposed a multi-layer auto-tracking method based on the cosine of the instantaneous phase of GPR data.The specific steps of this method are as follows.Firstly,obtain the cosine of the instantaneous phase of GPR data through complex signal analysis.Secondly,carry out the correlation analysis of wavelet cosine matrix data and then calculate the cosine of the instantaneous phase of these data,aiming to enhance the transverse continuity of phase data along the cophase axis.Thirdly,obtain the spatial positions,amplitude,and polarity of the phase data,and automatically track the transversely continuous horizon lines under a series of constraints such as signal amplitude and cophase axis characteristics.Finally,determine the horizon data and their polarity by comparing the RMS values of the amplitude of adjacent horizon lines along the depth direction,and extract the horizon line data with continuous high amplitude by setting horizon and amplitude thresholds.Numerical simulation and field case analysis have verified the effectiveness and adaptability of the method proposed in this study.
-
Key words:
- ground penetrating radar /
- complex signal analysis /
- highway pavement /
- horizon automatic
-
-
[1] Torbaghan M E, Li W, Metje N, et al. Automated detection of cracks in roads using ground penetrating radar[J]. Journal of Applied Geophysics, 2020, 179:1-12.
[2] Xu X J, Lei Y, Yang F. Railway subgrade defect automatic recognition method based on improved faster R-CNN[J]. Scientific Programming, 2018(6):1-12.
[3] 韩佳明, 仲鑫, 景帅, 等. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6):1476-1481.
[4] Han J M, Zhong X, Jing S, et al. The application of geological radar to urban geological pipeline detection in the loess area[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1476-1481.
[5] 许泽善, 周江涛, 刘四新, 等. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5):1145-1150.
[6] Xu Z S, Zhou J T, Liu S X, et al. The realization of applying 3D frequency stepped ground penetrating to the detection of asphalt layer thickness[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1145-1150.
[7] 郑公营, 曾婷婷. 地震层位自动追踪技术研究[J]. 物探化探计算技术, 2013, 35(6):711-716.
[8] Zheng G Y, Zeng T T. The technology of seismic horizon automatic tracking[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013, 35(6):711-716.
[9] 张泉, 朱连章, 郭加树, 等. 地震DNA算法的改进及其在地震层位拾取中的应用[J]. 石油物探, 2017, 56(3):400-407.
[10] Zhang Q, Zhu L Z, Guo J S, et al. The improvement of seismic DNA algorithm and its application in automatic horizon pickup[J]. Geophysical Prospecting for Petroleum, 2017, 56(3):400-407.
[11] 刘鑫, 车翔玖, 林森乔. 基于倾角校正的地震层位追踪算法[J]. 图学学报, 2015, 36(3):418-424.
[12] Liu X, Che Y J, Lin S Q. Seismic horizon extraction based on dip correction[J]. Journal of Graphics, 2015, 36(3):418-424.
[13] 蒋旭东, 曹俊兴, 胡江涛. 基于结构导向的层位自动追踪[J]. 石油物探, 2018, 57(5):726-732.
[14] Jiang X D, Cao J X, Hu J T. Structure-oriented automatic horizons tracking[J]. Geophysical Prospecting for Petroleum, 2018, 57(5):726-732.
[15] Le Bastard C, Baltazart V, Wang Y, et al. Thin-pavement thickness estimation using GPR with high-resolution and superresolution methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8):2511-2519.
[16] Wu X M, Hale D. Horizon volumes with interpreted constraints[J]. Geophysics, 2014, 80(2):M21-M33.
[17] Zabihi Naeini E, Hale D. Image- and horizon-guided interpolation[J]. Geophysics, 2015, 80(3):V47-V56.
[18] 刘旭跃, 周巍, 张兵, 等. 一种基于图像学的地震层位自动追踪方法[J]. 物探化探计算技术, 2017, 39(1):64-70.
[19] Liu X Y, Zhou W, Zhang B, et al. An automatic tracking method for seismic horizons based on image theory[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1):64-70.
[20] Lahouar S, Al-Qadi I L. Automatic detection of multiple pavement layers from GPR data[J]. Ndt and E International, 2008, 41(2):69-81.
[21] Loizos A, Plati C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches[J]. Ndt and E International, 2007, 40(2):147-157.
[22] 周辉林, 姜玉玲, 徐立红, 等. 基于SVM的高速公路路基病害自动检测算法[J]. 中国公路学报, 2013, 26(2):42-47.
[23] Zhou H L, Jiang Y L, Xu L H, et al. Automatic detection algorithm for expressway subgrade diseases based on SVM[J]. China Journal of Highway and Transport, 2013, 26(2):42-47.
[24] Le Bastard C, Wang Y, Baltazart V, et al. Time delay and permittivity estimation by ground-penetrating radar with support vector regression[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):873-877.
[25] Zhao S, Shangguan P, Al-Qadi I L. Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data[J]. Ndt and E International, 2015, 73:1-7.
[26] Craig W, Antonios G, Iraklis G. gprMax:Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209:163-170.
-
计量
- 文章访问数: 595
- PDF下载数: 65
- 施引文献: 0