中国自然资源航空物探遥感中心主办
地质出版社出版

地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别

李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 2022. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别. 物探与化探, 46(1): 32-45. doi: 10.11720/wtyht.2022.2585
引用本文: 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 2022. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别. 物探与化探, 46(1): 32-45. doi: 10.11720/wtyht.2022.2585
LI Jian-Ting, LIU Xue-Min, WANG Xue-Qiu, HAN Zhi-Xuan, JANG Yao. 2022. Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils. Geophysical and Geochemical Exploration, 46(1): 32-45. doi: 10.11720/wtyht.2022.2585
Citation: LI Jian-Ting, LIU Xue-Min, WANG Xue-Qiu, HAN Zhi-Xuan, JANG Yao. 2022. Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils. Geophysical and Geochemical Exploration, 46(1): 32-45. doi: 10.11720/wtyht.2022.2585

地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别

  • 基金项目:

    国家重点研发计划项目覆盖区地球化学异常源示踪与判别(2016YFC0600604)

详细信息
    作者简介: 李建亭(1994-),男,硕士,主要从事穿透性地球化学勘查技术学习与研究工作。Email: 448287250@qq.com
  • 中图分类号: P632

Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils

  • 在已知隐伏矿——罗卜岭斑岩型铜钼矿床上方采集了表层土壤以及典型钻孔中的矿石和围岩样品,分析了6个微量元素(Cu、Mo、Ba、Pb、Zn、V)的含量变化以及硫、铅同位素的组成特征,来验证土壤金属活动态测量技术、微细粒级土壤全量测量技术在隐伏矿区的找矿效果,并根据铅、硫同位素的组成特征来识别地表地球化学异常的来源。研究表明:微细粒级土壤全量测量技术对该矿区深部矿体的指示效果最好,其中Cu、Ba、Mo的含量高值区与深部隐伏矿体的展布相关性较强。土壤金属活动态、微细粒级土壤全量均显示出14、15号采样点下方极有可能存在着隐伏矿体,同时两种测量方法均可以根据V、Pb、Zn的含量变化较为准确地圈定出接近地表矿化岩体的范围。由于异常区土壤全量的硫同位素组成大多数信息继承自非赋矿围岩,掩盖了来自深部矿体的贡献,故在本矿区用硫同位素指示地表土壤中的异常来源效果较差,建议测量土壤金属活动态中的硫同位素组成应更为合理。异常区土壤全量的铅同位素继承了来自深部矿体铅同位素的特征,直接为微细粒级土壤全量测量技术在覆盖区的矿产勘查提供了证据,同时206Pb/204Pb在地表微细粒级土壤全量中的变化与下伏隐伏矿体的展布相关性较强,可以有效指示深部隐伏矿体。
  • 加载中
  • [1]

    Ryss Y S, Goldber G I S. The partial extraction of metals (CHIM) method in mineral exploration[J]. Method and Technique, 1973,84:5-19.

    [2]

    Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport[J]. Geophysics, 1982,47(10):1444-1452.

    [3]

    Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 1993,102:B19-B29.

    [4]

    Mann A W, Birrell R D, Mann A T, et al. Application of the mobile metal ion technique to routine geochemical exploration[J]. Journal of Geochemical Exploration, 1988,61:87-102.

    [5]

    Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997,58:63-72.

    [6]

    Wang X Q. Leaching of mobile forms of metals in overburden: development and application[J]. Journal of Geochemical Exploration, 1998,61:39-55.

    [7]

    王学求. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用[J]. 物探与化探, 1998,22(2):81-108.

    [8]

    Wang X Q. Geochmical methods and application for glant ore deposits in concealed terrains[J]. Geophysical and Geochemical Exploration, 1998,22(2):81-108.

    [9]

    汪明启, 高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学, 2007,36(4):391-399.

    [10]

    Wang M Q, Gao Y Y. Tracing source of geogas with lead isotopes: A case study in Jiaolongzhang Pb-Zn deposit, Gansu Province[J]. Geochimica, 2007,36(4):391-399.

    [11]

    徐洋, 汪明启, 高玉岩, 等. 利用铅同位素研究山东邹平王家庄铜矿地气物质来源[J]. 物探与化探, 2014,38(1):23-27.

    [12]

    Xu Y, Wang M Q, Gao Y Y, et al. Tracing the source of geogas mathrials with the leaad isotope method in the Wangjiazhuang copper ore deposite of Zouping, Shandong Province[J]. Geophysical and Geochemical Exploration, 2014,38(1):23-27.

    [13]

    刘雪敏, 陈岳龙, 王学求. 深穿透地球化学异常源同位素识别研究:以新疆金窝子金矿床、内蒙古拜仁达坝—维拉斯托多金属矿床为例[J]. 现代地质, 2012,26(5):1104-1116.

    [14]

    Liu X M, Chen Y L, Wang X Q. Research on isotope identification for anomalous sources of deeppenetration geochemistry: two cases of Jinwozi Au deposit, Xinjiang and Bairendaba-weilasituo polymetallic deposit, Inner Mongolia[J]. Modern Geology, 2012,26(5):1104-1116.

    [15]

    Saunders J A, Mathur R, Kamenov G D, et al. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming proceses[J]. Mineralium Deposita, 2015,51(1):1-11.

    [16]

    Matthew I L, Brian L C, Wayne D G. Lead isotopes in ground and surface waters: fingerprinting heavy metal sources in mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2009,9:115-123.

    [17]

    Caritat P D, Kirste D, Carr D, et al. Groundwater in the broken hillregion, Australia: Recognising interaction with bedrock and mineralisation using S and Pb isotopes[J]. Applied Geochemistry, 2005,20(4):767-787.

    [18]

    于波, 裴荣富, 邱小平, 等. 福建紫金山矿田中生代岩浆岩演化序列研究[J]. 地球学报, 2013,34(4):437-446.

    [19]

    Yu B, Pei R F, Qiu X P, et al. The evolution series of mesozoic magmatic rocks in the Zijinshan orefield, Fujian province[J]. Acta Geoscientica Sinica, 2013,34(4):437-446.

    [20]

    林东燕, 陈郑辉. 福建上杭拉分盆地与紫金山铜金矿床成矿关系[J]. 西安科技大学学报, 2011,31(4):438-442.

    [21]

    Lin D Y, Cheng Z H. Relationship between Shanghang pull-apart basin in Fujian and Zijinshan copper-gold deposit mineralization[J]. Journal of Xi'an University of Science and Technology, 2011,31(4):438-442.

    [22]

    王少怀, 裴荣富, 曾宪辉, 等. 再论紫金山矿田成矿系列与成矿模式[J]. 地质学报, 2009,83(2):145-157.

    [23]

    Wang S H, Pei R F, Zeng X H, et al. Metallogenic series and model of the Zijinshan mining field[J]. Acta Geoscientica Sinica, 2009,83(2):145-157.

    [24]

    张德全, 佘宏全, 阎升好, 等. 福建紫金山地区中生代构造环境转换的岩浆岩地球化学证据[J]. 地质论评, 2001,3(6):608-616.

    [25]

    Zhang D Q, Sheng H Q, Yan S H, et al. Geochemistry of mesozoic magmatites in the Zijinshan regine and implication on regional tectonal inversion[J]. Geological Review, 2001,23(6):608-616.

    [26]

    黄仁生. 福建省紫金山铜金矿床成矿物理化学条件的研究[J]. 福建地质, 1994,26(3):159-173.

    [27]

    Huang R S. On the metallogenic physicochemical conditions of the Zijinshan copper-gold deposit in Fujian Province[J]. Geology of Fujian, 1994,26(3):159-173.

    [28]

    陶建华, 许春林. 福建上杭紫金山铜金矿床控岩控矿构造分析[J]. 福建地质, 1992,26(3):186-203.

    [29]

    Tao J H, Xu C L. Discussion on the rock and ore-controlling structures of the Zijinshan Copper-gold deposit in Shanghang country, Fujian Province[J]. Geology of Fujian, 1992,26(3):186-203.

    [30]

    潘天望, 袁远, 吕勇, 等. 福建紫金山矿田早白垩世以来构造演化和成岩成矿时空格架[J]. 地质力学学报, 2019,25(1):61-76.

    [31]

    Pan T W, Yuan Y, Lyu Y, et al. The early-cretaceous tectonic evolution and the spatial-temporal framework of magmatismmine ralization in Zijinshan ore-field,Fujian province[J]. Journal of Geomechanics, 2019,25(1):61-76.

    [32]

    陈素余, 王少怀, 黄宏祥. 紫金山深部铜矿物特征研究[J]. 矿床地质, 2014,33(S1):667-668.

    [33]

    Chen S Y, Wang S H, Huang H X. Study on the characteristics of deep copper deposits in Zijinshan[J]. Mineral Deposite, 2014,33(S1):667-668.

    [34]

    Zhong J, Chen Y J, Pirajno J, et al. Geology geochronology,fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit, Zijinshan orefield, Fujian Province, China[J]. Ore Geology Reviews, 2014,57:61-77.

    [35]

    赖晓丹, 祁进平, 邱小平, 等. 福建省上杭县罗卜岭斑岩型铜钼矿床含矿裂隙研究[J]. 矿床地质, 2012,31(S1):853-854.

    [36]

    Lai X D, Qi J P, Qiu X P, et al. Study on ore-bearing fractures of Luobaling porphyry copper-molybdenum deposit in Shanghang County, Fujian Province[J]. Mineral Deposite, 2012,31(S1):853-854.

    [37]

    郭祥清. 福建上杭县罗卜岭斑岩型铜矿蚀变、矿化分带及找矿标志[J]. 世界有色金属, 2020,11(8):58-61.

    [38]

    Guo X Q. The characteristics of alteration and mineralization zone and the prospecting indicator in the Luoboling porphyry Cu-Mo deposit, Shanghang, Fujian[J]. World Nonferrous Metals, 2020,11(8):58-61.

    [39]

    王进燚, 祁进平, 李晶, 等. 罗卜岭斑岩铜(钼)矿床围岩蚀变及矿化特征探讨[J]. 矿物学报, 2013,33(S2):833-834.

    [40]

    Wang J Y, Qi J P, Li J, et al. Study on alteration and mineralization of surrounding rock of Luobling porphyry copper (molybdenum) deposit[J]. Acta Geoscientica Sinica, 2013,33(S2):833-834.

    [41]

    郭祥清, 祁进平. 福建上杭罗卜岭铜(钼)矿床地质特征及找矿标志[J]. 矿物学报, 2013,33(S2):903-904.

    [42]

    Guo X Q, Qi J P. Geological characteristics and prospecting criteria of Luobuling copper (molybdenum) deposit in Shanghang, Fujian[J]. Acta Geoscientica Sinica, 2013,33(S2):903-904.

    [43]

    王学求, 刘占元, 叶荣, 等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003,27(4):247-254.

    [44]

    Wang X Q, Liu Z Y, Ye R, et al. Deep-penetrating geochemistry: a comparative study in the Jinwozi gold ore district, Xinjiang[J]. Geophysical and Geochemical Exploration, 2003,27(4):247-254.

    [45]

    刘汉粮, 王学求, 张必敏, 等. 沙泉子隐伏铜镍矿地球化学勘查方法试验[J]. 物探与化探计算技术, 2014,36(6):200-206.

    [46]

    Liu H L, Wang X Q, Zhang B M, et al. Geochemical exploration for concealed Cu-Ni deposit, Shaquanzi, Xinjiang[J]. Computational Techniques for Geophysical and Geochemical Exploration, 2014,36(6):200-206.

    [47]

    唐金荣, 吴传璧, 施俊法. 深穿透地球化学迁移机理与方法技术研究新进展[J]. 地质通报, 2007,12(12):1579-1590.

    [48]

    Tang J R, Wu C B, Shi J F. Rrecent progress in the study of the deep-penetrating geochemical migration mechanisms and methods[J]. Geological Bulletin of China, 2007,12(12):1579-1590.

    [49]

    刘汉粮, 张必敏, 刘东盛, 等. 土壤微细粒全量测量在甘肃花牛山矿区的应用[J]. 物探与化探, 2016,40(1):33-39.

    [50]

    Liu H L, Zhang B M, Liu D S, et al. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province[J]. Geophysical and Geochemical Exploration, 2016,40(1):33-39.

    [51]

    韩志轩, 张必敏, 乔宇, 等. 隐伏铜矿区土壤微细粒测量有效性实验——以江西通江岭铜矿为例[J]. 地球学报, 2020,41(6):977-986.

    [52]

    Han Z X, Zhang B M, Qiao Y, et al. Validity experiments of fine-grained soil geochemical survey for exploring concealed copper deposits: A case study in the Tongjiangling copper deposit, Jiangxi province[J]. Acta Geoscientica Sinica, 2020,41(6):977-986.

    [53]

    陈振金, 陈春秀, 刘用清, 等. 福建省土壤元素背景值及其特征[J]. 中国环境监测, 1992,12(3):107-110.

    [54]

    Chen Z J, Chen C X, Liu Y Q, et al. Background values and characteristics of soil elements in Fujian province[J]. Environmental Monitoring in China, 1992,12(3):107-110.

    [55]

    Zhang B M, Wang X Q, Ye R, et al. Geochemical exploration for concealed depositesat the periphery of the Zijinshan copper-gold mine, south-estern China[J]. Journal of Geochemical Exploration, 2015,157:184-193.

    [56]

    赵辰, 文美兰, 吴彦彬, 等. 碳硫分析在不同地球化学覆盖区的找矿应用研究[J]. 桂林理工大学学报, 2021,4(1):42-46.

    [57]

    Zhao C, Wen M L, Wu Y B, et al. Prospecting application of carbon-sulfur analysis in different geochemical cover areas[J]. Journal of Guilin University of Technology, 2021,4(1):42-46.

    [58]

    宓奎峰, 柳振江, 李春风, 等. 内蒙古乌努格吐山大型铜钼矿床元素迁移及成矿过程探讨[J]. 中国地质, 2014,41(4):1270-1287.

    [59]

    Mi K F, Liu Z J, Li C F, et al. Metallogenic processes and migration of ore-forming elements in the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J]. Geological in China, 2014,41(4):1270-1287.

    [60]

    宋雷鹰. 内蒙古哈如勒敖包矿区金属活动态测量的试验效果[J]. 科技情报开发与经济, 2010,20(7):174-176.

    [61]

    Song L Y. Analysis on the test results of MOMEO of Haruleaobao mining area, Xinbaerhu right banner, Inner Mongolia[J]. Sci-Tech Information Development & Economy, 2010,20(7):174-176.

    [62]

    杨刚刚, 李方林, 张雄华. 金属活动态测量在东戈壁钼矿找矿效果研究[J]. 新疆地质, 2018,36(2):182-188.

    [63]

    Yang G G, Li F L, Zhang X H. The prospecting effect research of East gobi molybdenum ore using MOMEO[J]. Xinjiang Geology, 2018,36(2):182-188.

    [64]

    常华进, 储雪蕾, 黄晶, 等. 沉积环境细菌作用下的硫同位素分馏[J]. 地质评论, 2007,53(6):807-813.

    [65]

    Chang H J, Chu X L, Huang J, et al. Sulfur isotope fractionation accompanying bacterial action under sedimentary condition[J]. Geological Review, 2007,53(6):807-813.

    [66]

    Habick K, Canfield D E, Rathemeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J]. Geochimica et Cosmochimica Acta, 1998,62(15):2585-2595.

    [67]

    李斌. 福建紫金山矿田中生代岩浆演化与铜金钼成矿作用地球化学研究[D]. 南京:南京大学, 2015.

    [68]

    Li B. Geochemistry of mesozoic magmatic rocks and related Cu-Au-Mo minerralizations in the Zijinshan ore field of Fujian Province[D]. Nanjing:Nanjing University, 2015.

    [69]

    杜思敏. 硫同位素在示踪金属矿床成矿物质来源中的应用[J]. 化工矿产地质, 2019,41(3):296-310.

    [70]

    Du S M. Application of sulphur isotope in tracing ore-forming material sources of metal deposites[J]. Geology of Chemical Minerals, 2019,41(3):296-310.

  • 加载中
计量
  • 文章访问数:  1093
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2020-12-25
修回日期:  2022-02-20
刊出日期:  2022-02-25

目录