中国自然资源航空物探遥感中心主办
地质出版社出版

基于Shearlet变换的非局部均值地震噪声压制

王金刚, 安勇, 徐振旺. 2023. 基于Shearlet变换的非局部均值地震噪声压制. 物探与化探, 47(1): 199-207. doi: 10.11720/wtyht.2023.2630
引用本文: 王金刚, 安勇, 徐振旺. 2023. 基于Shearlet变换的非局部均值地震噪声压制. 物探与化探, 47(1): 199-207. doi: 10.11720/wtyht.2023.2630
WANG Jin-Gang, AN Yong, XU Zhen-Wang. 2023. Seismic noise suppression using non-local means algorithm based on the Shearlet transform. Geophysical and Geochemical Exploration, 47(1): 199-207. doi: 10.11720/wtyht.2023.2630
Citation: WANG Jin-Gang, AN Yong, XU Zhen-Wang. 2023. Seismic noise suppression using non-local means algorithm based on the Shearlet transform. Geophysical and Geochemical Exploration, 47(1): 199-207. doi: 10.11720/wtyht.2023.2630

基于Shearlet变换的非局部均值地震噪声压制

  • 基金项目:

    国家自然科学基金项目(U1562110)

    中国石油物探技术攻关项目(2016-03-02)

    辽河油田千万吨稳产关键技术研究与应用项目(2017E-1602)

详细信息
    作者简介: 王金刚(1997-),男,硕士研究生,毕业于中国石油大学(北京)地质资源与地质工程专业,目前从事地球物理方法技术研究工作。Email:wjg4541@stu.ouc.edu.cn
  • 中图分类号: P631.4

Seismic noise suppression using non-local means algorithm based on the Shearlet transform

  • 在地震勘探中,由于野外地震数据采集环境及仪器性能本身的限制,采集到地震信号中不可避免地会混入较强的噪声,极大影响后续处理、解释工作。而近几年,多尺度几何分析方法以其独特优势成为压制噪声的研究热点,本文提出在Shearlet域中引入非局部均值算法对地震噪声进行压制,该算法首先对地震信号进行非下采样Shearlet变换,然后采用非局部均值法对分解后系数子集进一步处理,并采用8个Sobel算子近似表示全方向结构,对权重函数进行改进,最后对系数进行Shearlet反变换,得到去噪后的地震信号。实验结果表明相比于传统非局部均值法,该联合算法能有效地压制随机噪声,同时对弱同相轴具有更好的保护作用,在地震资料处理中具有良好的实用性。
  • 加载中
  • [1]

    李庆忠. 走向精确勘探的道路—高分辨率地震勘探系统工程剖析[M]. 北京: 石油工业出版社, 1993:1-196.

    [2]

    Li Q Z. The way to obtain a better resolution in seismic prospecting:A systematical analysis of high resolution seismic exploration[M]. Beijing: Petroleum Industry Press, 1993:1-196.

    [3]

    曹思远, 袁殿. 高分辨率地震资料处理技术综述[J]. 新疆石油地质, 2016, 37(1):112-119.

    [4]

    Cao S Y, Yuan D. A review of high-resolution seismic data processing approaches[J]. Xinjiang Petroleum Geology, 2016, 37(1):112-119.

    [5]

    刘洋, 李承楚. 地震资料信噪比估计的几种方法[J]. 石油地球物理勘探, 1997, 32(2):257-262.

    [6]

    Liu Y, Li C C. Some methods for estimating the signal /noise ratio of seismic data[J]. OGP, 1997, 32(2):257-262.

    [7]

    蔡斌. 非局部均值去噪算法研究[D]. 合肥: 中国科学技术大学, 2015.

    [8]

    Cai B. The research of non-local means denosing algorithm[D]. Hefei: University of Science and Technology of China, 2015.

    [9]

    王银杰. 基于非局部均值滤波的图像去噪算法[D]. 哈尔滨: 哈尔滨理工大学, 2019.

    [10]

    Wang Y J. The study of image denoising methods based on the non-local means[D]. Harbin: Harbin University of Science and Technology, 2019.

    [11]

    张丽果. 快速非局部均值滤波图像去噪[J]. 信号处理, 2013, 29(8):1043-1049.

    [12]

    Zhang L G. Fast non-local mean for image denoising[J]. Journal of Signal Processing, 2013, 29(8):1043-1049.

    [13]

    赵庆平, 陈得宝, 姜恩华, 等. 一种改进权重的非局部均值图像去噪算法[J]. 电子测量与仪器学报, 2014, 28(3):334-339.

    [14]

    Zhao Q P, Chen D B, Jiang E H, et al. Improved weighted non-local mean algorithm filter for image denoising[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(3):334-339.

    [15]

    Guo K, Labate D, Lim W Q. Wavelets with composite dilations[J]. Electronic Research Society, 2004, 10(9):78-87.

    [16]

    Han B, Kutyniok G, Shen Z. Adaptive multiresolution analysis structures and shearlet systems[J]. SIAM Journal on Numerical Analysis, 2011, 49:1921-1946.

    [17]

    Liang X Q, Li Y, Zhang C. Noise suppression for microseismic data by non-subsampled shearlet transform based on singular value decomposition[J]. Geophysical Prospecting, 2018, 66(5):894-903.

    [18]

    郭一民. 基于非下采样Shearlet变换的图像去噪算法研究[D]. 西安: 西安电子科技大学, 2013.

    [19]

    Guo Y M. Image noise reduction based on non-subsampled shearlet transfor[D]. Xi'an: Xidian University, 2013.

    [20]

    郭爱华, 路鹏飞, 余波, 等. 利用Shearlet变换提高叠后地震资料分辨率[J]. 石油地球物理勘探, 2021, 56(5):992-1000.

    [21]

    Guo A H, Lu P F, Yu B, et al. Improving post-stack seismic data resolution basedon Shearlet transform[J]. Oil Geophysical Prospecting, 2021, 56(5):992-1000.

    [22]

    程浩, 王德利, 王恩德, 等. 尺度自适应三维Shearlet变换地震随机噪声压制[J]. 石油地球物理勘探, 2019, 54 (5):970-978.

    [23]

    Cheng H, Wang D L, Wang E D, et al. Seismic random noise suppression based on scale adaptive 3D-Shearlet transform[J]. Oil Geophysical Prospecting, 2019, 54(5):970-978.

    [24]

    童思友, 高航, 刘锐, 等. 基于Shearlet变换的自适应地震资料随机噪声压制[J]. 石油地球物理勘探, 2019, 54(4):744-750.

    [25]

    Tong S Y, Gao H, Liu R, et al. Seismic random noise adaptive suppression based on the Shearlet transform[J]. Oil Geophysical Prospecting, 2019, 54(4):744-750.

    [26]

    蒋小忠. 基于联合双变量收缩Shearlet变换的微地震勘探噪声压制算法[D]. 长春: 吉林大学, 2018.

    [27]

    Jiang X Z. Denoising algorithm for microseismic exploration based on joint Bivariate Shrinkage in Shearlet Transform[D]. Changchun: Jilin University, 2018.

    [28]

    冯岩, 薛瑞. 剪切波理论及其应用研究进展[J]. 信阳师范学院学报:自然科学版, 2014, 27(3):463-468.

    [29]

    Feng Y, Xue R. Advances in theory and application of Shearlets[J]. Journal of Xinyang Normal University:Natural Science Edition, 2014, 27(3):463-468.

    [30]

    刘昕, 陈祖斌, 王东鹤, 等. 基于非下采样shearlet变换的微地震随机噪声压制[J]. 煤炭技术, 2016, 35(1):128-129.

    [31]

    Liu X, Chen Z B, Wang D H, et al. Microseismic random noise attenuation based on non-subsampled shearlet transform[J]. Coal Technology, 2016, 35(1):128-129.

    [32]

    王思涛, 金聪. 基于边缘提取的非局部均值图像去噪[J]. 电子测量技术, 2018, 41(11):99-102.

    [33]

    Wang S T, Jin C. Non-local mean image denoising based on edge extraction[J]. Electronic Measurement Technology, 2018, 41(11):99-102.

    [34]

    Souidene W, Beghdadi A, Abed-Meraim K. Image denoising in the transformed domain using non local neighborhoods[C]// New York:2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings,IEEE, 2006.

    [35]

    孙思亮, 刘怀山. 基于曲波变换和快速非局部均值的地震数据随机噪声压制[J]. 工程地球物理学报, 2021, 18(2):153-161.

    [36]

    Sun S L, Liu H S. Suppressing seismic random noise based on curvelet transform and fast non-local mean[J]. Chinese Journal of Engineering Geophysics, 2021, 18(2):153-161.

    [37]

    张小华, 张强. Shearlet域非局部均值图像去噪[J]. 新型工业化, 2011, 1(3):63-71.

    [38]

    Zhang X H, Zhang Q. Image denoising with non-local means in the shearlet domain[J]. The Journal of New Industrialization, 2011, 1(3):63-71.

    [39]

    李民, 周亚同, 李梦瑶, 等. Shearlet域基于非局部均值的地震信号去噪[J]. 重庆大学学报, 2021, 44(11):101-114.

    [40]

    Li M, Zhou Y T, Li M Y, et al. Denoising of seismic signals based on non-local mean in Shearlet domain[J] .Journal of Chongqing University, 2021, 44(11):101-114.

    [41]

    许志良, 邓承志. 基于非局部自相似的Shearlet自适应收缩图像去噪[J]. 计算机应用, 2015, 35(1):235-238.

    [42]

    Xu Z L, Deng C Z. Image denoising based on nonlocal self-similarity and Shearlet adaptive shrinkage model[J]. Journal of Computer Applications, 2015, 35(1):235-238.

    [43]

    Guo K H, Labate D. Optimally sparse multidimensional representation using shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1):298-318.

    [44]

    Easley G, Labate D, Lim W. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25:25-46.

    [45]

    Tasdizen T. Principal neighborhood dictionaries for nonlocal means image denoising[J]. IEEE Transactions on Image Processing, 2009, 18(12):2649-2660.

    [46]

    李岳松. 基于方向特征的图像去噪算法研究[D]. 西安: 西安理工大学, 2020.

    [47]

    Li Y S. Research on image denoising algorithm based on direction feature[D]. Xi'an: Xi'an University of Technology, 2020.

  • 加载中
计量
  • 文章访问数:  594
  • PDF下载数:  70
  • 施引文献:  0
出版历程
收稿日期:  2021-12-26
修回日期:  2023-02-20
刊出日期:  2023-02-24

目录