Development of a digital γ spectral logging probe
-
摘要: 针对铀钍混合型矿床上无法精确测量地层中铀、钍含量的问题, 本文研制了一台基于溴化铈晶体的数字化γ能谱测井探管。该仪器采用直径38 mm×38 mm的溴化铈晶体, 提高了铀灵敏度和在低铀、低钍含量矿层的探测效率。采用C8051单片机作为核心处理器, 对溴化铈探测器原始信号进行了滤波成形处理, 通过能谱采集器得到γ能谱数据。通过对γ能谱数据进行逆矩阵解谱, 即可得到矿层中铀、钍的精确含量。通过RS-485总线将γ能谱数据传送至测井主机。测试结果表明:本仪器在标准铀钍混合模型上的测量准确度高, 其示值误差小于6%, 稳定性小于1.5%, 重复性小于1%, 钍系208Tl的2.62 MeV能量峰漂移不超过±0.3道, 检查测井异常相对误差小于4%, 可应用于铀矿勘查测井工作。Abstract: Given that it is difficult to accurately determine the uranium and thorium contents in the strata of uranium-thorium mixed deposits, this study developed a digital γ spectrum logging probe based on cerium tribromide (CeBr3) crystals.Using CeBr3 crystals with a diameter of 38 mm×38 mm, the logging probe improved the sensitivity to uranium and the detection efficiency of ore beds with low uranium and thorium contents.The logging probe operated as follows.First, the original signals from the CeBr3 detector were filtered and shaped using the C8051 single-chip microcomputer as the core processor.Then, the γ spectrum data were obtained using the energy spectrum collector.After the spectrum unfolding based on the inverse matrix is performed for the γ spectrum data, precise uranium and thorium contents in the ore beds were obtained.Finally, the γ spectrum data were transmitted to the host computer for logging through the RS-485 bus.The results show that the logging probe had high measurement accuracy in the standard uranium-thorium mixed model, with indication errors of less than 6%, stability of less than 1.5%, and repeatability of less than 1%.Moreover, the 2.62 MeV energy peak drift of thorium 208Tl did not exceed ±0.3 channels, and the relative errors of log anomalies were less than 4%.Therefore, the digital γ spectrum logging probe proposed in this study is applicable to the exploration and logging of uranium deposits.
-
-
[1] 杨玉勤, 张翔, 石连成, 等.砂岩型铀矿航磁微弱异常提取方法[J].物探与化探, 2021, 45(1):29-36.
Yang Y Q, Zhang X, Shi L C, et al.A study of the method of extracting aeromagnetic weak anomalies from sandstone-type uranium deposits[J].Geophysical and Geochemical Exploration, 2021, 45(1):29-36.
[2] 杨再超.自然伽马能谱测井应用研究[J].电脑知识与技术, 2016, 12(14):234-235.
Yang Z C.Study on application of natural gamma-ray spectrometry logging[J].Computer Knowledge and Technology, 2016, 12(14):234-235.
[3] 张金带, 李子颖, 蔡煜琦, 等.全国铀矿资源潜力评价工作进展与主要成果[J].铀矿地质, 2012, 28(6):321-326.
Zhang J D, Li Z Y, Cai Y Q, et al.The main advance and achievements in the potential evaluation of uranium resource in China[J].Uranium Geology, 2012, 28(6):321-326.
[4] 陈凯, 阳正勇, 周荣辉, 等.阿尔布拉格地区地面伽马能谱特征及与铀成矿关系分析研究[J].物探与化探, 2018, 42(4):703-707.
Chen K, Yang Z Y, Zhou R H, et al.The ground gamma energy spectrum in Aerbulage area and its relationship with uranium mineralization[J].Geophysical and Geochemical Exploration, 2018, 42(4):703-707.
[5] 汤彬.核辐射测量原理[M].哈尔滨:哈尔滨工程大学出版社, 2011. Tang B.Principle of nuclear radiation measurement[M]. Harbin:Harbin Engineering University Press, 2011.
[6] 甘霖.LaBr3探测器本底扣除方法研究及软件设计[D].成都:成都理工大学, 2015. Gan L.Background deduction method research and software design in LaBr3γ energy spectrum[D].Chengdu:Chengdu University of Technology, 2015.
[7] 周倩倩, 侯越云, 梁珺成, 等.一种新型溴化铈闪烁体探测器性能研究[J].原子能科学技术, 2018, 52(2):371-377.
Zhou Q Q, Hou Y Y, Liang J C, et al.Study on performance of a novel CeBr3 scintillator detector[J].Atomic Energy Science and Technology, 2018, 52(2):371-377.
[8] 李传伟, 廖琪梅, 李安宗, 等.自然伽马能谱解谱方法研究[J].核电子学与探测技术, 2008, 28(4):796-800.
Li C W, Liao Q M, Li A Z, et al.Study on the methods of spectrum skipping for spectrum gamma logging[J].Nuclear Electronics & Detection Technology, 2008, 28(4):796-800.
[9] 国防科技工业1313二级计量站.JJG(军工)27-2012 γ测井仪检定规程[S]. National Defense Technology Industry 1313 Secondary Measurement Station.JJG (Military Industry) 27-2012 γ Verification Regulation for Logging Tools [S].
-
计量
- 文章访问数: 38
- PDF下载数: 6
- 施引文献: 0