Study on geothermal resource occurrence characteristics and carbon emission reduction potential in Dafeng District, Jiangsu Province
-
摘要:
研究目的 苏北盐城市大丰区,地热资源赋存条件,助力实现碳达峰战略目标、合理开发利用当地的地热资源,其地热井的地热资源赋存特征及地热开发利用的节煤和减排潜力进行系统研究具有重要现实意义。
研究方法 通过对大丰区恒北村地热井、荷兰花海地热井和麋鹿小镇地热井三口典型地热井的“热源、通道、储层、盖层”等地热地质条件的对比分析,并对本区地热井水质分析评价,及储存量、可采量的理论计算研究。
研究结果 本文总结了大丰区地热资源赋存分区特征,得出本区地热井开发利用方向主要为理疗、洗浴和采暖等, 三口地热井地热资源开采理论上合计每年可节煤量为8884 t,相当节煤量的CO2减排量为21197 t。恒北村地热井、荷兰花海地热井和麋鹿小镇三口地热井单井地热资源开采保护范围储存的地热水量理论上合计可节煤量为18885886 t,相当节煤量的CO2减排量为45061725 t。
结论 本研究结果为大丰区地热资源勘查和开发及碳减排潜力分析等提供借鉴。
Abstract:This paper is the result of geothermal geological survey engineering.
Objective This study focuses on Dafeng District, Yancheng City, northern Jiangsu Province, where the occurrence conditions of geothermal resources are investigated to support the achievement of carbon peak strategic goals and the rational development and utilization of local geothermal resources. A systematic study on the occurrence characteristics of geothermal resources in geothermal wells and the coal-saving and emission reduction potential of geothermal development and utilization in this area has important practical significance.
Methods Through comparative analysis of the geothermal geological conditions of three typical geothermal wells in Hengbei Village, Dutch Flower Sea, and Milu Town of Dafeng District, including "heat source, channel, reservoir, and caprock", as well as water quality analysis and evaluation of the geothermal wells in this area, and theoretical calculations of reserves and recoverable reserves.
Results The study summarizes the zoning characteristics of geothermal resources in Dafeng District, and concludes that the main directions of geothermal well development and utilization in this area are physiotherapy, bathing, and heating. Theoretically, the three geothermal wells can save a total of 8884 t of coal annually, equivalent to 21197 t of CO2 emission reduction. The geothermal water reserves in the protection areas of the three geothermal wells in Hengbei Village, Holland Flower Sea, and Milu Town can theoretically save a total of 18885886 t of coal, equivalent to 45061725 t of CO2 emission reduction.
Conclusions The research findings provide reference for geothermal resource exploration, development, and carbon emission reduction potential analysis in Dafeng District.
-
-
表 1 大丰区区域地层特征
Table 1. Stratigraphic characteristics of Dafeng District
年代地层 地层
名称代号 厚度/m 主要岩性特征 界 系 统 新生界 第四系 全新统 淤尖组 Q 0~290 粉砂质黏土,黏土质粉砂,粉砂,细砂,中粗砂 更新统 灌南组 小腰庄组 五队镇组 新近系 中−上新统 盐城组 N1-2y 0~1539 黏土,粉砂、粉细砂,含砾砂 古近系 渐新统 三垛组 E2-3s 0~1006 泥岩,泥质粉砂岩,
细砂岩始新统 戴南组 E2d 0~364 粉砂岩,细砂岩,泥岩,砂砾岩 古新统 阜宁组 E1f 0~1605 泥岩,泥灰岩,灰岩,油页岩,细砂岩,泥质粉砂岩 泰州组 E1t 0~356 泥岩,灰质砂岩,灰质粉砂岩 中生界 白垩系 上统 浦口组 K2p 0~1593.5 泥岩,粉砂质泥岩,含钙质粉砂岩,砂砾岩,砾岩 上古生界 二叠系 上统 大隆组 P3d 32~48 泥岩,含白云质泥岩,砂质泥岩,含硅质及钙质 龙潭组 P2-3 l 14~262 泥岩,石英砂岩,长石细砂岩 中统 孤峰组 P2g 26.7~35 泥岩,含白云质泥岩、硅质泥岩 栖霞组 P2q 131~220 灰岩,含硅质灰岩,含泥灰岩、细晶灰岩,燧石灰岩; 下统 船山组 C2P1c 39.5~71.5 生物屑灰岩,细粉晶灰岩,
泥晶灰岩石炭系 上统 黄龙组 C2h 63~88 生物屑细粉晶灰岩,泥晶生物屑灰岩,生物屑中晶灰岩 下统 高骊山组 C1g 45 石英砂岩,粉砂岩,粉砂质泥岩 金陵组 C1j 9 中、厚层微、细晶灰岩 五通组 D3C1W 140~156 泥岩,石英细砂岩,细砾岩 泥盆系 上统 下古生界 志留系 下统 坟头组 S1f 88~593 泥质粉砂岩,细砂岩 高家边组 O3S1g 307~1556 泥岩,含粉砂质泥岩,石英细砂岩,泥质粉砂岩 表 2 恒北村地热井井温数据统计
Table 2. Statistics of well temperature data of geothermal wells in Hengbei Village
深度/m 温度/℃ 深度/m 温度/℃ 269.3 38.2 822.5 47.5 312.2 38.7 867.3 48 352.4 39.1 943.2 49.6 387.2 39.7 1039.1 51.4 409.7 40.1 1265.8 53.2 420.5 40.2 1305.3 54.2 490.6 41.6 1319.4 54.4 525.1 42.3 1350.7 54.5 609.2 43.7 1383.2 54.7 641.8 44.3 1431.4 55.2 表 3 荷兰花海地热井井温数据统计
Table 3. Statistics of well temperature data of geothermal well in the Holland Huahai
深度/m 温度/°C 深度/m 温度/°C 深度/m 温度/°C 深度/m 温度/°C 422 35.2 621.2 37.8 1135.8 43.3 1480.1 46.1 437.9 35.3 681.4 38.6 1159.2 43.4 1512.4 46.3 456.4 35.7 694.6 38.6 1194.4 43.7 1533.1 46.3 468.6 35.8 842.8 40.6 1203.7 43.9 1537.5 46.3 506.5 36.3 863.6 41.0 1217.1 43.9 1556.4 46.3 525.5 36.6 897.2 41.3 1355.0 44.6 1601.6 45.9 563.7 37.0 935.9 41.7 1395.4 45.6 1621.4 45.5 586.3 37.4 981.9 42.3 1407.0 45.7 1650.0 46.0 598.5 37.6 1111.8 42.8 1447.9 46.0 表 4 麋鹿小镇地热井井温数据统计
Table 4. Statistics of well temperature data of geothermal well in Elk Town
深度/m 温度/°C 深度/m 温度/°C 深度/m 温度/°C 深度/m 温度/°C 0 39.2 480.1 40.0 862.7 45.5 1173.4 48.5 51.2 39.2 520.2 40.5 903.1 45.9 1197.7 48.6 104.3 39.2 550.1 41.1 954.1 46.7 1215.4 48.8 140.1 39.2 601.2 41.8 998.1 47.6 1232.2 48.7 202.2 39.2 644.1 42.2 1023.8 47.6 1245.1 48.7 250.3 39.2 670.5 43.1 1046.9 47.7 1261.7 48.9 311.6 39.2 710.5 43.5 1093.8 48.2 1282.4 48.9 350.5 39.2 738.6 44.5 1107.0 48.3 1364.6 49.2 402.4 39.2 783.0 44.7 1136.7 48.4 1393.7 48.8 450.4 39.7 817.5 45.3 1149.0 48.5 1545.7 49.2 表 5 大丰区典型地热井生活饮用水水质评价
Table 5. Quality evaluations of drinking water of typical geothermal wells in Dafeng District
项目 标准 恒北村地热井 荷兰花海地热质 麋鹿小镇地热井 水质成果 评价 水质成果 评价 水质成果 评价 色度(铂钴色度单位) <15 <35.0 超标 <5 / 无 / 浑浊度(散射浑浊单位)/NTU <1 <20.0 超标 <4 超标 无 / 臭和味 无 无 / 无 / 无 / 肉眼可见物 无 未检测 / 无 / 无 / pH 6.5~8.5 7.87 / 8.54 超标 8.16 / 总硬度 <450 101 / 46.4 / 36.1 / 铝/(mg/L) <0.2 0.11 / 0.025 / 0.193 / 铁/(mg/L) <0.3 2.43 超标 0.17 / 0.368 超标 锰/(mg/L) <0.1 0.068 / 0.012 / 0.024 / 铜/(mg/L) <1.0 0.0017 / 0.001 / <0.0002 / 锌/(mg/L) <1.0 0.015 / 0.037 / 0.0015 / 挥发酚类/(mg/L) <0.002 <0.002 / <0.002 / <0.002 / 硫酸盐/(mg/L) <250 148 / 97.8 / 12.4 / 氯化物/(mg/L) <250 691 超标 133 / 48 / 矿化度/(mg/L) <1000 2261 超标 949 / 704 / 耗氧量(CODMn)/(mg/L) <3 1.12 / 0.58 / 0.763 / 氨氮(以N计)/(mg/L) <0.5 0.79 超标 0.11 / 0.312 / 钠/(mg/L) <200 718 超标 256 超标 174 / 氟化物/(mg/L) <1.0 1.37 超标 0.47 / 0.107 / 氰化物/(mg/L) <0.05 <0.005 / <0.005 / <0.005 / 砷/(mg/L) <0.01 0.0047 / 0.0005 / 0.0008 / 硒/(mg/L) <0.01 0.0004 / 0.0002 / 0.0005 / 汞/(mg/L) <0.01 <0.0001 / <0.0001 / <0.0001 / 镉/(mg/L) <0.005 <0.0002 / <0.0002 / <0.0002 / 铬/(mg/L) <0.05 <0.014 / 0.022 / 0.013 / 铅/(mg/L) <0.01 <0.0003 / <0.0002 / <0.0002 / 钡/(mg/L) <0.7 0.10 / 0.053 / 0.055 / 铍/(mg/L) <0.002 <0.0001 / <0.0001 / <0.0001 / 硼/(mg/L) <0.5 未检测 / 未检出 / 0.342 / 钼/(mg/L) <0.07 0.0051 / 0.010 / 0.0044 / 镍/(mg/L) <0.02 0.0011 / 0.0005 / 0.0012 / 铊/(mg/L) <0.001 <0.00005 / <0.00005 / <0.00005 / 锑/(mg/L) <0.005 <0.0003 / <0.0003 / <0.0003 / 银/(mg/L) <0.05 <0.001 / <0.001 / 0.002 / 硝酸盐/(mg/L) <10,地下水源限制时为<20 0.040 / 0.011 / 0.0084 / 注:标准来自《生活饮用水卫生标准》(GB 5749—2006)。 表 6 大丰区典型地热井理疗热矿水水质评价
Table 6. Quality evaluations of physiotherapy hot mineral water of typical geothermal wells in Dafeng District
成分 有医疗价值
浓度/(mg/L)矿水浓度/
(mg/L)命名矿水
浓度/(mg/L)恒北村地热井 荷兰花海地热井 麋鹿小镇地热井 水质/(mg/L) 评价 水质/(mg/L) 评价 水质/(mg/L) 评价 二氧化碳 250 250 1000 4.26 / <1 / 4.75 / 总硫化氢 1 1 2 未检测 / / / <0.016 / 氟 1 2 2 1.37 医疗浓度 0.47 / 0.107 / 溴 5 5 25 0.67 / 0.086 / 0.08 / 碘 1 1 5 0.29 / 0.052 / 0.028 / 锶 10 10 10 1.35 / 0.44 / 0.232 / 铁 10 10 10 2.43 / 0.17 / 0.368 / 锂 1 1 5 0.23 / 0.048 / 0.031 / 钡 5 5 5 0.10 / 0.053 / 0.055 / 偏硼酸 1.2 5 50 3.84 医疗浓度 0.66 / 0.342 / 偏硅酸 25 25 50 49.00 矿水浓度 36.6 矿水浓度 36.6 矿水浓度 氡/(Bq/L) 37 47.14 129.5 8.88 / / / / / 温度 ≥34℃ 60 医疗浓度 50.0 医疗浓度 56.0 医疗浓度 注:标准来自《地热资源地质勘查规范》(GB/T 11615-2010)附录E理疗热矿水水质标准。 表 7 大丰区典型地热井地热资源/储量情况
Table 7. Geothermal resources/reserves of typical geothermal wells in Dafeng District
井名 降深/m 涌水量/(m3/d) 年可采水量/m3 年可采热量
/J保护区内储存的地热水量/m3 保护区内储存的热量/J 恒北村地热井 30 837.6 3.057×105 5.866×1013 2.92×108 1.27×1017 荷兰花海地热井 10 2119.2 7.735×105 1.161×1014 6.73×108 2.47×1017 麋鹿小镇地热井 20 1337 4.88×105 8.561×1013 4.35×108 1.795×1017 表 8 无调峰设施的地热水居室采暖面积估算
Table 8. Estimation of heating room area with geothermal water without peak shaving facilities
利用温度(t1—t0) 采暖面积/m2 1000 m3/d 1250 m3/d 1500 m3/d 1750 m3/d 2000 m3/d 10 9692 12115 14536 16961 19384 20 19384 24230 29076 33922 38768 30 29076 36345 43614 50883 58152 40 38768 48460 58152 67844 77536 50 48460 60575 72690 84805 96920 60 58152 72690 87228 101766 116304 70 67844 84805 101766 118727 135688 80 77536 96920 116304 135688 155072 注:F=En/Qf; En=48.46Q(t1 − t0)。式中:En—热水产能(W),Qf—居室采暖热指标(W/m2)表中取值为50 W/m2,Q—地热水水量(m3/d),t1—地热水采暖进水温度(℃),t0—地热水采暖排水温度(℃)。标准来自《地热资源地质勘查规范》(GB11615-2010)附录F.4无调峰设施的地热水居室采暖面积估算表。 表 9 地热水开采理论上每年节煤量和减排量
Table 9. Theoretically annually quantity of save coal and carbon emission reduction by exploitation and utilization of geothermal water
井名 节煤量M/t CO2减排量/t SO2减排量/t NOX减排量/t 悬浮质粉尘减排量/t 煤灰碴吨减排量/t 恒北村地热井 2002 4776 34 12 16 2 荷兰花海地热井 3961 9452 67 24 32 4 麋鹿小镇地热井 2921 6970 50 18 23 3 合计 8884 21197 151 53 71 9 表 10 单井保护区内储存的地热水开采节煤量和减排量
Table 10. Quantity of save coal and carbon emission reduction by exploitation and utilization of geothermal water in single well protected area
井名 节煤量M/t CO2减排量/t SO2减排量/t NOX减排量/t 悬浮质粉尘减排量/t 煤灰碴吨减排量/t 恒北村地热井 4333347 10339366 73667 26000 34667 4333 荷兰花海地热井 8427848 20108845 143273 50567 67423 8428 麋鹿小镇地热井 6124691 14613513 104120 36748 48998 6125 合计 18885886 45061725 321060 113315 151087 18886 -
[1] Bai Bowen, Ping Jianhua, Zhao Jichang, Yang Zhenwei, Ning Yiwu, Xiong Chaofan. 2020. Chemical characteristics and cause analysis of the geochemical fluid in Huaiyang County, Henan Province[J]. Geology in China, 47(2): 406−425 (in Chinese with English abstract).
[2] Cao Junwen, Liu Guanzhan. 2012. Carbon emissions of China's energy consumption and its influencing factors[J]. Northern Economy, (6): 6−8 (in Chinese).
[3] Cao Junwen, Qi Lei, Li Zhen. 2012. Empirical analysis of regional differences in China's energy consumption[J]. Cooperative Economy and Technology, (11): 6−8 (in Chinese).
[4] Chen Jiaxi. 2022. Research on the environmental benefits of heating by mid-deep geothermal resources[J]. Natural Resources Information, (4): 41−45 (in Chinese with English abstract).
[5] Chen Moxiang. 1991. Geothermal distribution and utilities in China[J]. Advances of Earth Sciences, 7(3): 40−46, 58 (in Chinese).
[6] Chen Moxiang, Wang Jiyang, Deng Xiao. 1994. China's Geothermal Resources, the Characteristics and Potential Evaluation[M]. Beijing: Science Press (in Chinese).
[7] Du Jianguo, Yao Wenjiang, Fan Difu. 2012. Geoheat resource types and development prospect in Jiangsu Province[J]. Journal of Geology, 36(1): 86−91 (in Chinese with English abstract).
[8] Feng Y F, Zhang X X, Zhang B, Liu J T, Wang Y G, Jia D L, Hao LR, Kong Z Y. 2018. The geothermal formation mechanism in the Gonghe Basin: Discussion and analysis from the geological background[J]. China Geology, 1(3): 331−345. doi: 10.31035/cg2018043
[9] Geological Dictionary Office of Ministry of Geology and Mineral Resources. 2005. Geological Dictionary 4 Deposit Geology and Applied Geology [M]. Beijing: Geological Publishing House (in Chinese).
[10] Hu Ning, Zhang Lianghong, Gao Haifa, Han Fang. 2011. Target delineation and drilling verification of geothermal resources exploration in Hangjiahu plain of Zhejiang Province[J]. Geology in China, 38(1): 138−144 (in Chinese with English abstract).
[11] Kuang Yaoqiu, Huang Ningsheng, Zhu Zhaoyu, Hu Zhenyu. 2002. Influence of the terrestrial heat flow on the evolution of the surface ecosystem and environment[J]. Geology in China, 29(1): 86−95 (inChinese with English abstract).
[12] Li Qilong. 2014. Application of screw drill in geothermal well drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 41(3): 56−58 (in Chinese with English abstract
[13] Li Yong, Chen Yi, Wang Hu, Wu Xiaolan. 2015. Application of sulfonated asphalt drilling fluid in geothermal exploration well of Guizhou[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 42(1): 27−30 (in Chinese with English abstract
[14] Lin Wenjing, Liu Zhiming, Wang Wanli, Wang Guiling. 2013. The assessment of geothermal resources potential of China[J]. Geology in China, 40(1): 312−321 (in Chinese with English abstract).
[15] Lin Yuxiang, Meng Cai, Han Jilei, Zhu Chuanzhen, Wang Yuwei, Zhao Hui, Cao Gaoshe. 2015. Characteristics of lithofacies paleogeography during Paleogene−Neogene in the area of North China Platform[J]. Geology in China, 42(4): 1058−1067 (in Chinese with English abstract).
[16] Lu Yubei. 2004. Analyses and research on frequently occurred problems in geothermal well[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 31(2): 43−47 (in Chinese with English abstract
[17] Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan, Chen Jing, Zhong Shuai, Zhu Jichang. 2021. Geoscience and carbon neutralization: Current status and development direction[J]. Geology in China, 48(2): 347−358 (in Chinese with English abstract).
[18] Pan Heping, Ma Huolin, Cai Bolin, Niu Yixiong. 2009. Geophysical Well Logging and Borehole Geophysical Prospecting[M]. Beijing: Science Press (in Chinese)
[19] Wang G L, Wang W L, Zhang W, Ma F, Liu F. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing−Tianjin−Hebei region in China[J]. China Geology, 3(1): 173−181. doi: 10.31035/cg2020013
[20] Wang Guiling, Zhang Fawang, Liu Zhiming. 2000. Development and utilization of geothermal resources at home and abroad present situation and prospect analysis[J]. Earth Science, (2): 134−139 (in Chinese with English abstract).
[21] Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 38(4): 449−450 (in Chinese with English abstract).
[22] Wang Jiyang, Pang Zhonghe, Kong Yanlong, Cheng Yuanzhi, Luo Ji. 2020. Status and prospects of geothermal clean heating industry in China[J]. Science & Technology for Development, 16(3/4): 294−298 (in Chinese with English abstract).
[23] Wang Mingpeng. 2020. The characteristics of geothermal resources and their development and utilization suggestions in Yancheng City[J]. Geological Survey of China, 7(1): 14−22 (in Chinese with English abstract).
[24] Wu Jinghua, Yun Xibin. 2003. Development and benefit evaluation of geothermal energy[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 4(1): 31−34 (in Chinese with English abstract
[25] Wu Shanshan, Dai Kangming, Wang Juncheng. 2021. Analysis of fault structure and geothermal resources in Yangshan area, Nanjing City[J]. Journal of Hefei University of Technology (Natural Science), 44(6): 834−839 (in Chinese with English abstract).
[26] Wu Shanshan, Yao Weijun, Li Lin, Kang Tao, Zhu Peng. 2022. Analysis on geophysical characteristics and geothermal conditions in Ganyu−He’an Lake area in northern Jiangsu[J]. Geological Review, 68(4): 1501−1510 (in Chinese with English abstract).
[27] Xu Liuwan, Wu Xiaolong, Wang Yanli. 2013. Development and utilization of geothermal resource in China and the drilling technology[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 40(4): 1−5 (in Chinese with abstract
[28] Xu Peng, Tan Hongbing, Zhang Yanfei, Zhang Wenjie. 2018. Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J]. Geology in China, 45(6): 1142−1154 (in Chinese with English abstract).
[29] Yang Rongkang, Luo Wei, Pei Yongwei, Wang Qian. 2018. Distribution and fluids hydrochemistry characteristics of hydrothermal geothermal resources in Guizhou Province[J]. Geological Survey of China, 5(2): 38−44 (in Chinese with English abstract).
[30] Zhang B J, Zhao T, Li Y Y, Xing Y F, Wang G L, Gao J, Tang X C, Yuan W Z, Zhang D L. 2019. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in north China as an example[J]. China Geology, 2(4): 512−521. doi: 10.31035/cg2018132
[31] Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 46(2): 255−268 (in Chinese with English abstract).
[32] Zhao Jianwei. 2004. Considerations on exploration of geothermal resources in Jiangsu Province[J]. Geology of Jiangsu Province, 28(2): 76−81 (in Chinese with English abstract).
[33] Zhao Lu, Wu Li, Luo Xianggan. 2011. An analysis of the genesis and water quality characteristics of the geothermal field in Wudang District, Guiyang[J]. Geology in China, 38(3): 724−730 (in Chinese with English abstract).
[34] 白博文, 平建华, 赵继昌, 杨振威, 宁艺武, 熊超凡. 2020. 河南淮阳县地热流体化学特征及其成因分析[J]. 中国地质, 47(2): 406−425. doi: 10.12029/gc20200210
[35] 曹俊文, 刘官站. 2012. 中国能源消费的碳排放及其影响因素分析[J]. 北方经济, (6): 6−8.
[36] 曹俊文, 祁垒, 李真. 2012. 中国能源消耗地区差异实证分析[J]. 合作经济与科技, (11): 6−8. doi: 10.3969/j.issn.1672-190X.2012.11.003
[37] 陈家玺. 2022. 中深层地热资源供暖的环保效益探究[J]. 自然资源情报, (4): 41−45. doi: 10.3969/j.issn.1674-3709.2022.04.006
[38] 陈墨香. 1991. 中国地热资源的分布及其开发利用[J]. 自然资源, 7(3): 40−46, 58.
[39] 陈墨香, 汪集旸, 邓孝. 1994. 中国地热资源—形成特点和潜力评估[M]. 北京: 科学出版社.
[40] 地质矿产部地质辞典办公室. 2005. 地质大辞典 4 矿床地质、应用地质分册 [M]. 北京: 地质出版社.
[41] 杜建国, 姚文江, 范迪富. 2012. 江苏地热资源类型及开发利用前景[J]. 地质学刊, 36(1): 86−91. doi: 10.3969/j.issn.1674-3636.2012.01.86
[42] 胡宁, 张良红, 高海发, 韩芳. 2011. 浙江省杭嘉湖平原地热资源勘查靶区圈定与钻探验证[J]. 中国地质, 38(1): 138−144. doi: 10.3969/j.issn.1000-3657.2011.01.015
[43] 匡耀求, 黄宁生, 朱照宇, 胡振宇. 2002. 试论大地热流对地表环境与生态演变的影响[J]. 中国地质, 29(1): 86−95. doi: 10.3969/j.issn.1000-3657.2002.01.015
[44] 李奇龙. 2014. 螺杆钻具在地热井钻探中的应用初探[J]. 探矿工程(岩土钻掘工程), 41(3): 56−58.
[45] 李勇, 陈怡, 王虎, 吴晓兰. 2015. 磺化沥青钻井液在贵州地热勘探井中的应用[J]. 探矿工程(岩土钻掘工程), 42(1): 27−30
[46] 蔺文静, 刘志明, 王婉丽, 王贵玲. 2013. 中国地热资源及其潜力评估[J]. 中国地质, 40(1): 312−321. doi: 10.3969/j.issn.1000-3657.2013.01.021
[47] 林玉祥, 孟彩, 韩继雷, 朱传真, 王玉伟, 赵慧, 曹高社. 2015. 华北地台区古近系-新近系岩相古地理特征[J]. 中国地质, 42(4): 1058−1067. doi: 10.3969/j.issn.1000-3657.2015.04.020
[48] 卢予北. 2004. 地热井常见主要问题分析与研究[J]. 探矿工程(岩土钻掘工程), 31(2): 43−47.
[49] 马冰, 贾凌霄, 于洋, 王欢, 陈静, 钟帅, 朱吉昌. 2021. 地球科学与碳中和: 现状与发展方向[J]. 中国地质, 48(2): 347−358. doi: 10.12029/gc20210201
[50] 潘和平, 马火林, 蔡柏林, 牛一雄. 2009. 地球物理测井与井中物探[M]. 北京: 科学出版社.
[51] 汪集旸, 庞忠和, 孔彦龙, 程远志, 罗霁. 2020. 我国地热清洁取暖产业现状与展望[J]. 科技促进发展, 16(3/4): 294−298.
[52] 汪名鹏. 2020. 盐城市地热资源特征及其开发利用建议[J]. 中国地质调查, 7(1): 14−22.
[53] 王贵玲, 张发旺, 刘志明. 2000. 国内外地热资源开发利用现状及前景分析[J]. 地球科学, (2): 134−139.
[54] 王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449−450. doi: 10.3975/cagsb.2017.04.02
[55] 吴景华, 云希斌. 2003. 地热开发应用及效益评价[J]. 长春工程学院学报(自然科学版), 4(1): 31−34.
[56] 吴姗姗, 戴康明, 王军成. 2021. 南京羊山地区断裂构造解析与地热资源研究[J]. 合肥工业大学学报(自然科学版), 44(6): 834−839.
[57] 吴姗姗, 姚维军, 李琳, 康涛, 朱鹏. 2022. 苏北赣榆—和安湖地区地球物理特征和地热条件分析[J]. 地质论评, 68(4): 1501−1510.
[58] 许刘万, 伍晓龙, 王艳丽. 2013. 我国地热资源开发利用及钻进技术[J]. 探矿工程(岩土钻掘工程), 40(4): 1−5
[59] 许鹏, 谭红兵, 张燕飞, 张文杰. 2018. 特提斯喜马拉雅带地热水化学特征与物源机制[J]. 中国地质, 45(6): 1142−1154. doi: 10.12029/gc20180605
[60] 杨荣康, 罗维, 裴永炜, 王乾. 2018. 贵州省水热型地热资源分布及流体水化学特征[J]. 中国地质调查, 5(2): 38−44.
[61] 张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征[J]. 中国地质, 46(2): 255−268.
[62] 赵剑畏. 2004. 关于江苏地热勘查工作的思考[J]. 江苏地质, 28(2): 76−81.
[63] 赵璐, 邬立, 罗湘赣. 2011. 贵阳市乌当区地热田成因及水质特征分析[J]. 中国地质, 38(3): 724−730. doi: 10.3969/j.issn.1000-3657.2011.03.020
-