Renewability of groundwater in Changzhou, Jiangsu Province: Based on isotopic technology
-
摘要:
研究目的 常州市是长三角地区典型的工业化城市,区域地下水经历了超采−禁采的周期性历史过程,地下水动力场发生了较大程度变化,地下水的可更新能力亟待深入研究。
研究方法 在地下水赋存条件分析的基础上,采用同位素技术,系统分析了常州市地下水的补径排条件和地下水年龄特征,评价了地下水可更新能力。
研究结果 区域浅层地下水的18O和D较深层地下水更为富集,在一定程度上受到蒸发作用影响,深层地下水补给时间较早,赋存环境相对封闭。浅层地下水基本受到了现代水入渗补给的影响,现代水积极循环带的深度达到了40 m;深层地下水年龄小于2000~25000年,以古水为主。
结论 区内浅层地下水每年更新速率普遍大于0.1%,地下水的更新受赋存条件、地表水补给、人类活动等因素控制,地下水更新能力在中等及以上;深层地下水每年更新速率普遍小于0.05%,地下水的更新受古河道展布、人类开采利用等因素控制,地下水更新能力处于较弱和弱的级别。研究成果可为常州市及长江三角洲其他地区地下水资源的保护和利用提供科学依据。
Abstract:This paper is the result of hydrogeological survey engineering.
Objective Changzhou is a typical industrialized city in the Yangtze River Delta. The regional groundwater there had experienced a periodic historical process of overdrafts and prohibitions of mining, resulting in a greatly change in the groundwater dynamic field. Thus, it is necessary to conduct a further study on the renewable capacity of the groundwater of Changzhou.
Methods Based on the analysis of the existing hydrogeology conditions, the recharge, runoff and discharge conditions of groundwater and the characteristics of groundwater ages are systematically analyzed to evaluate the renewable capacity of groundwater using isotope technology.
Results 18O and D of the shallow groundwater are more abundant than the deep groundwater due to the evaporation to a certain extent. The recharge time of the deep groundwater with relatively closed storage environment is earlier than that in the shallow groundwater. The shallow groundwater, basically affected by infiltration recharge of modern water, has an active circulation zone of modern water reached to a depth of 40 m. As for the ages of the deep groundwater, it varies from less than 2000 to 25000 years, indicating that it is mainly composed of ancient water.
Conclusions The renewal rate of the shallow groundwater of every year is generally higher than 0.1%, and controlled by the storage conditions, surface water recharge and human activities, etc. Weakly, the renewal rate of the deep groundwater of every year is generally less than 0.05%, and controlled by the distribution of river ancient channel, exploitation and utilization of human beings, etc. These results can provide scientific basis for protection and utilization the groundwater in changzhou and other areas in the yangtze river delta.
-
Key words:
- groundwater /
- isotope /
- groundwater age /
- renewability /
- over-mining /
- no-mining /
- hydrogeological survey engineering /
- Changzhou /
- Jiangsu Province
-
-
表 1 同位素取样点测试结果
Table 1. Isotope test results of sampling points
样点编号 δ18O/‰ δD/‰ 3H/TU 14C/pmC 样点类型 样点编号 δ18O/‰ δD/‰ 3H/TU 14C/pmC 样点类型 01 −7.0 −42 / / 浅层地下水 39 −7.5 −56 / / 浅层地下水 02 −6.2 −37 / / 浅层地下水 40 −7.7 −52 / / 浅层地下水 03 −6.5 −44 / / 浅层地下水 41 −6.3 −43 2.6 / 浅层地下水 04 −6.6 −41 / / 浅层地下水 42 −8.4 −58 3.6 / 浅层地下水 05 −5.7 −38 / / 浅层地下水 43 −8.4 −56 2.7 / 浅层地下水 06 −5.7 −40 / / 浅层地下水 44 −7.2 −50 2.9 / 浅层地下水 07 −5.5 −41 / / 浅层地下水 45 −7.1 −48 2.6 / 浅层地下水 08 −5.9 −42 / / 浅层地下水 46 −5.2 −36 0.9 / 浅层地下水 09 −6.1 −42 / / 浅层地下水 47 −5.3 −38 2.4 / 浅层地下水 10 −7.0 −46 / / 浅层地下水 48 −6.0 −44 1.5 / 浅层地下水 11 −6.8 −47 / / 浅层地下水 49 −6.8 −44 3.4 / 浅层地下水 12 −6.8 −47 / / 浅层地下水 50 −6.7 −41 0.9 / 浅层地下水 13 −7.0 −46 / / 浅层地下水 51 −6.6 −44 1.3 / 浅层地下水 14 −8.4 −56 / / 浅层地下水 52 −7.7 −51 3.2 / 浅层地下水 15 −7.0 −51 / / 浅层地下水 53 / / 3.0 / 浅层地下水 16 −4.9 −37 / / 浅层地下水 54 −7.4 −52 / / 深层地下水 17 −6.0 −43 0.8 / 浅层地下水 55 −6.6 −46 / / 深层地下水 18 −6.8 −44 1.3 / 浅层地下水 56 −7.5 −52 / / 深层地下水 19 −5.2 −38 3.2 / 浅层地下水 57 −6.2 −40 / / 深层地下水 20 −4.1 −33 3.0 / 浅层地下水 58 −7.6 −53 / / 深层地下水 21 −5.8 −40 3.2 / 浅层地下水 59 −6.8 −47 / / 深层地下水 22 −6.2 −41 3.6 / 浅层地下水 60 −7.4 −49 / / 深层地下水 23 −7.7 −53 3.3 / 浅层地下水 61 −7.2 −50 / 19.1 深层地下水 24 −7.8 −53 4.0 / 浅层地下水 62 −6.6 −48 / 6.7 深层地下水 25 −7.5 −49 3.0 / 浅层地下水 63 −8.1 −56 / 50.0 深层地下水 26 −6.3 −43 2.3 / 浅层地下水 64 −7.4 −51 / 4.4 深层地下水 27 −7.5 −48 3.1 / 浅层地下水 65 −7.8 −53 / 18.9 深层地下水 28 −7.5 −47 1.1 / 浅层地下水 66 −8.0 −54 ND 2.9 深层地下水 29 −7.1 −46 / / 浅层地下水 67 −6.2 −42 ND 54.9 深层地下水 30 −8.5 −56 / / 浅层地下水 68 −8.0 −56 / 41.4 深层地下水 31 −5.8 −43 / / 浅层地下水 69 −6.8 −50 / 5.3 深层地下水 32 −5.7 −40 / / 浅层地下水 70 −7.1 −48 / 63.0 深层地下水 33 −5.2 −35 / / 浅层地下水 71 −8.3 −55 / 31.2 深层地下水 34 −4.7 −33 / / 浅层地下水 72 / / / 14.8 深层地下水 35 −6.7 −47 / / 浅层地下水 73 −7.6 −53 / 3.7 深层地下水 36 −5.9 −40 / / 浅层地下水 74 −9.8 −70 / / 地表水 37 −7.0 −47 / / 浅层地下水 75 −9.8 −70 / / 地表水 38 −5.7 −39 / / 浅层地下水 76 −5.0 −26 / / 大气降水 注:*δD值测试误差为±0.5‰,δ18O值测试误差为±0.1‰;3H测试误差为0.1TU;14C测试误差为±0.001~0.004Fraction Modern;ND表示低于检出限。 表 2 深层地下水年龄计算结果
Table 2. Calculation results of deep groundwater ages
样点编号 计算年龄/a BP 地下水年龄
/a BP视年龄 Vogel(STKT) Tamers(ALK) Pearson(δ13C) 61 13686 12342 7956 5773 6865 62 22346 21003 16616 19495 18056 63 5550 4207 <2000 <2000 <2000 64 25823 24479 20092 20353 20222 65 13773 12429 8043 10591 9317 66 29269 27925 23539 22631 23085 67 4957 3614 <2000 4545 <2000 68 7291 5947 <2000 4912 3236 69 24284 22940 18554 19372 18963 70 3820 2476 <2000 <2000 <2000 71 9629 8285 3899 2613 3256 72 15794 14451 10064 12528 11296 73 22346 21003 16616 18275 17445 表 3 地下水每年更新速率计算结果
Table 3. Calculation results of groundwater renewal rates of every year
样点编号 含水层位 更新速率/% 样点编号 含水层位 更新速率/% 样点编号 含水层位 更新速率/% 17 浅层 0.2322 41 浅层 1.0755 61 深层 0.0027 18 浅层 0.4307 42 浅层 2.0572 62 深层 0.0008 19 浅层 1.5752 43 浅层 1.1608 63 深层 0.0122 20 浅层 1.3653 44 浅层 1.2413 64 深层 0.0005 21 浅层 1.5752 45 浅层 1.0755 65 深层 0.0025 22 浅层 2.0572 46 浅层 0.2781 66 深层 0.0002 23 浅层 1.6522 47 浅层 0.9323 67 深层 0.0139 24 浅层 2.9913 48 浅层 0.5064 68 深层 0.0082 25 浅层 1.4048 49 浅层 1.7167 69 深层 0.0006 26 浅层 0.8887 50 浅层 0.2322 70 深层 0.0200 27 浅层 1.3186 51 浅层 0.4307 71 深层 0.0054 28 浅层 0.3527 52 浅层 1.5752 72 深层 0.0018 53 浅层 1.3653 73 深层 0.0004 表 4 地下水更新速率与可更新能力对应关系
Table 4. Correlation between the groundwater renewal rates and the renewable capacity
地下水每年更新速率(R) 地下水可更新能力 <0.01% 弱 0.01% ~0.1% 较弱 0.1% ~1% 中 1% ~10% 较强 ≥10% 强 -
[1] Chen Zongyu, Chen Jingsheng, Fei Yuhong, Zhang Zhaoji, Zhang Cuiyun. 2006. Estimation of groundwater renewal rate by tritium in the piedmont plain of the Taihang Mountains[J]. Nuclear Techniques, 29(6): 426−431 (in Chinese with English abstract).
[2] Doney S C, Glover D M, Jenkins W J. 1992. A model function of the global tritium distribution in precipitation, 1960−1986[J]. Journal of Geophysical Research, 97(C4): 5481−5492. doi: 10.1029/92JC00015
[3] Fontes J Ch. 1984. Dating of groundwater[C]//Gridebook on nuclear techniques in hydrology. Vienna: International Atomic Energy Agency.
[4] Guan Bingjun. 1986. The restoration of Tritium concentration in precipitation in China[J]. Hydrogeology & Engineering Geology, 13(4): 38−41 (in Chinese).
[5] Hu Jianping. 2011. A Study on the Land Subsidence Effect after Prohibiting Extraction of Groundwater in Suzhou−Wuxi−Changzhou Area[D]. Nanjing University (in Chinese with English abstract).
[6] IAEA. 1996. Manual on mathematical models in isotope hydrogeology[R]. IAEA−TECDOC−910, Austria.
[7] IAEA. 1999. Isotope Techniques in Water Resources Development and Management[R]. IAEA-CSP2/C, Vienna.
[8] IAEA. 2001a. Isotope techniques in water resource investigations in arid and semi-arid regions[R]. IAEA−TECDOC−1207, Austria.
[9] IAEA. 2001b. Isotope based assessment of groundwater renewal in water scarce regions[R]. IAEA−TECDOC−1246, Austria.
[10] IAEA. 2002a. Use of isotopes for analyses of flow and transport dynamics in groundwater systems[R]. IAEA, Ausria.
[11] IAEA. 2002b. The application of isotope techniques to the assessment of aquifer systems in major urban areas[R]. IAEA−TECDOC−1298, Austria.
[12] Jiang Yuehua, Jia Junyuan, Xu Naizheng, Wang Jingdong, Kang Xiaojun. 2008. Isotopic composition characteristics and significance of groundwater in Suzhou Wuxi Changzhou area[J]. Scientia Sinica (Terrae), 38(4): 493−500 (in Chinese).
[13] Le Gal Lla Salle C, Marlin C, Leduc C, Taupin J D, Massault M, Favreau G. 2001. Renewal rate estimation of groundwater based on radioactive tracers(3H, 14C) in an unconfined aquifer in a semi−arid area, lullemeden Basin, Niger[J]. Journal of Hydrology, 254: 145−156.
[14] Leduc C, Favreau G, Marlin C. 2000. Comparison of recharge estimates for the two largest aquifers in Niger, based on hydrodynamic and isotopic data[J]. IAHS-AISH publication, 262: 391−399.
[15] Lu Xurong, Zhu Jinqi, Wang Caihui, Huang Jingjun, Ji Keqi. 2006. Circulation mechanism of shallow ground water in Suzhou−Wuxi−Changzhou area interpreted using isotope techniques[J]. Hydrogeology & Engineering Geology, (4): 52−55 (in Chinese with English abstract).
[16] Pearson F J. 1965. Use of C-13/C-12 Ratios to Correct Radiocarbon Ages of Material Initially Diluted by Limestone [R]. The Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, Pulman, Washinton, 357.
[17] Qian Kang, Zhang Ji, Chen Peng, Pu Wenbin, Chen Beibei, Wei Liangshuai. 2022. Hydrochemical and isotopic characteristics of groundwater in Panhe area of Wumeng Mountain, Yunnan[J]. Geological Bulletin of China, 41(7): 1291−1299 (in Chinese with English abstract).
[18] Ruan Yunfeng, Zhao Liangju, Xiao Honglang, Zhou Maoxian, Cheng Guodong. 2015. The groundwater in the Heihe River basin: Isotope age and renewability[J]. Journal of Glaciology and Geocryology, 37(3): 767−782 (in Chinese with English abstract).
[19] Seiler K. 1995. Near surface and deep groundwater[J]. Journal of Hydrology, 165: 33−44. doi: 10.1016/0022-1694(94)02584-X
[20] Seuss H E. 1971. Climatic changes and the atmospheric radiocarbon level[J]. Palaeogeogr, Paleoclimatol, Placoccol, 10: 199−202.
[21] Shi Xufei, Zhao Haiqing, Guo Xiaodong. 2017. Study on renewability of shallow groundwater in Hunchun basin based on isotope technology[J]. Journal of China Hydrology, 37(4): 40−44 (in Chinese with English abstract).
[22] Stuiver M, Braziunas T F, Becker B. 1991. Climatic solar, occanic and geomagnetic influences on the late−glacial and Holocene at atmospheric 14C/12C change[J]. Quaternary Rescarch, 35: 1−24.
[23] Su Chen, Cheng Zhongshuang, Zheng Zhaoxian, Chen Zongyu. 2019. Groundwater age and renewability in the north of Muling−Xingkai plain[J]. Geology in China, 46(2): 328−336 (in Chinese with English abstract).
[24] Su Xiaosi, Lin Xueyu. 2003 Application of isotope techniques in the research of the groundwater circulation model and renewbility in Baotou Plain[J]. Journal of Jilin University(Earth Science Edition), 33(4): 503−508, 529 (in Chinese with English abstract).
[25] Su Xiaosi. 2002. Application of Isotope Techniques in the Research of Groundwater Renewability in the Typical Areas of the Yellow River Basin: Examples from Yinchuan Plain and Baotou Plain [D]. Changchun: Jilin University, 1−111 (in Chinese with English abstract).
[26] Tarmers M A. 1975. The validity of radiocarbon dates on groundwater[J]. Geophysical Survey, 2: 217−239. doi: 10.1007/BF01447909
[27] Vogel J C. 1970. Carbon−14 Dating of Groundwater Isotope Hydrology[R]. Vienna: IAEA.
[28] Wan Yuyu, Su Xiaosi, Dong Weihong, Hou Guangcai. 2010. Evaluation of groundwater renewal ability in the Ordos Cretaceous groundwater basin[J]. Journal of Jilin University (Earth Science Edition), 40(3): 623−630 (in Chinese with English abstract).
[29] Wang Dongsheng. 1989. Modern water resources science and isotope technology[J]. Geology in China, 16(8): 27−28 (in Chinese).
[30] Wang Fengsheng. 1998. The regional recovery model of tritium concentration for meteoric water in Jilin Province[J]. Jilin Geology, 17(3): 75−80 (in Chinese with English abstract).
[31] Wang Hengchun. 1994. Introduction to Isotopic Hydrogeology[M]. Beijing: Geological Publishing House (in Chinese).
[32] Wang Qianying. 2020. Study on Groundwater Circulation Patterns and Renewability in the Western Plain of IIi River Valley, Xinjang[D]. Changchun: Jilin University, 1−118 (in Chinese with English abstract).
[33] Wang Zhongliang, Guo Chunyan, Zhang Yanpeng. 2021. Characteristics of hydrogen and oxygen isotopes in the groundwater and formation mode of the Beihai springs in the northern Laiyuan Basin[J]. Hydrogeology & Engineering Geology, 48(1): 27−35 (in Chinese with English abstract).
[34] Yang Yanlin, Jing Jing, Zhao Yongbo, He Jun, Du Xiaofeng. 2022. Conversion relationship between surface water and groundwater based on stable isotopes of D and 18O of new town in the northern Wuhan, Hubei[J]. Geology in China, 49(3): 706−715 (in Chinese with English abstract).
[35] Yu Fakang. 2007. The Study of Groundwater Renewability in the Northern Area of Ordos Cretaceous Basin[D]. Changchun: Jilin University, 1−96 (in Chinese with English abstract).
[36] Yu Jun, Wang Xiaomei, Wu Jianqiang, Xie Jianbao. 2006. Characteristics of land subsidence and its remedial proposal in Suzhou−Wuxi−Changzhou area[J]. Geological Journal of China Universities, 12(2): 179−184 (in Chinese with English abstract).
[37] Zhai Yuanzheng, Wang Jinsheng, Huan Huan, Teng Yanguo. 2012. Groundwater dynamic equilibrium evidence for changes of renewability of groundwater in Beijing Plain[J]. Journal of Jilin University(Earth Science Edition), 42(1): 198−205 (in Chinese with English abstract).
[38] Zhai Yuanzheng, Wang Jinsheng, Teng Yanguo, ZuoRui. 2013. Humble opinion on assessment indices for groundwater renew ability: Applicability of renewal period and recharge rate[J]. Advances in Water Science, 24(1): 56−61 (in Chinese with English abstract).
[39] Zhang Bing, Song Xianfang, Zhang Yinghua, Han Dongmei, Yang Lihu, Tang Changyuan. 2014. Estimation of groundwater renewal eate by tritium and chlorofluorocarbons in Sanjiang Plain[J]. Journal of Natural Resources, 29(11): 1859−1868 (in Chinese with English abstract).
[40] Zhang Yanhong, Ye Shujun, Wu Jichun. 2011. A global model of recovering the annual mean tritium concentration in atmospheric precipitation[J]. Geological Review, 57(3): 409−418 (in Chinese with English abstract).
[41] Zhong C H, Yang Q C, Ma H Y, Bian J M, Zhang S H, Lu X G. 2019. Application of environmental isotopes to identify recharge source, age and renewability of phreatic water in Yinchuan Basin[J]. Hydrological Processes, 33: 2166−2173. doi: 10.1002/hyp.13468
[42] Zuber A. 1986. Mathematical models for the interpretation of environmental radioisotopes in groundwater systems[J]. Handbook of Environmental Isotope Geochemistry, 2: 1−59.
[43] 陈宗宇, 陈京生, 费宇红, 张兆吉, 张翠云. 2006. 利用氚估算太行山前地下水更新速率[J]. 核技术, 29(6): 426−431.
[44] 关秉钧. 1986. 我国大气降水中氚的数值推算[J]. 水文地质工程地质, 13(4): 38−41.
[45] 胡建平. 2011. 苏锡常地区地下水禁采后的地面沉降效应研究[D]. 南京: 南京大学.
[46] 姜月华, 贾军元, 许乃政, 王敬东, 康晓钧. 2008. 苏锡常地区地下水同位素组成特征及其意义[J]. 中国科学(D辑: 地球科学), 38(4): 493−500.
[47] 陆徐荣, 朱锦旗, 王彩会, 黄敬军, 季克其. 2006. 同位素技术释解苏锡常地区浅层地下水水循环机制[J]. 水文地质工程地质, (4): 52−55.
[48] 钱康, 张继, 陈鹏, 蒲文斌, 陈贝贝, 魏良帅. 2022. 云南乌蒙山盘河地区地下水水化学及同位素特征[J]. 地质通报, 41(7): 1291−1299.
[49] 阮云峰, 赵良菊, 肖洪浪, 周茅先, 程国栋. 2015. 黑河流域地下水同位素年龄及可更新能力研究[J]. 冰川冻土, 37(3): 767−782.
[50] 石旭飞, 赵海卿, 郭晓东. 2017. 基于同位素技术的珲春盆地浅层地下水可更新能力研究[J]. 水文, 37(4): 40−44.
[51] 苏晨, 程中双, 郑昭贤, 陈宗宇. 2019. 穆兴平原北部地下水年龄及更新性[J]. 中国地质, 46(2): 328−336.
[52] 苏小四, 林学钰. 2003. 包头平原地下水水循环模式及其可更新能力的同位素研究[J]. 吉林大学学报(地球科学版), 33(4): 503−508,529.
[53] 苏小四. 2002. 同位素技术在黄河流域典型地区地下水可更新能力研究中的应用—以银川平原和包头平原为例[D]. 长春: 吉林大学, 1−111.
[54] 万玉玉, 苏小四, 董维红, 侯光才. 2010. 鄂尔多斯白垩系地下水盆地中深层地下水可更新速率[J]. 吉林大学学报(地球科学版), 40(3): 623−630.
[55] 王东升. 1989. 现代水资源学与同位素技术[J]. 中国地质, 16(8): 27−28.
[56] 王凤生. 1998. 吉林省大气降水氚浓度恢复的区域模型探讨[J]. 吉林地质, 17(3): 75−80.
[57] 王恒纯. 1991. 同位素水文地质概论[M]. 北京: 地质出版社.
[58] 王骞迎. 2020. 伊犁河谷西部平原区地下水循环模式与可更新速率研究[D]. 长春: 吉林大学, 1−118.
[59] 王忠亮, 郭春艳, 张彦鹏. 2021. 涞源北盆地地下水氢氧同位素特征及北海泉形成模式[J]. 水文地质工程地质, 48(1): 27−35.
[60] 杨艳林, 靖晶, 赵永波, 何军, 杜小锋. 2022. 基于氢氧稳定同位素的武汉北部新城地表水−地下水转换关系研究[J]. 中国地质, 49(3): 706−715. doi: 10.12029/gc20220303
[61] 俞发康. 2007. 鄂尔多斯白垩系盆地北区地下水可更新能力研究[D]. 长春: 吉林大学, 1−96.
[62] 于军, 王晓梅, 武健强, 谢建宝. 2006. 苏锡常地区地面沉降特征及其防治建议[J]. 高校地质学报, 12(2): 179−184.
[63] 翟远征, 王金生, 郇环, 滕彦国. 2012. 北京市平原区地下水更新能力变化的动态均衡证据[J]. 吉林大学学报(地球科学版), 42(1): 198−205.
[64] 翟远征, 王金生, 滕彦国, 左锐. 2013. 地下水更新能力评价指标问题刍议—更新周期和补给速率的适用性[J]. 水科学进展, 24(1): 56−61.
[65] 张兵, 宋献方, 张应华, 韩冬梅, 杨丽虎, 唐常源. 2014. 基于氚和CFCs的三江平原浅层地下水更新能力估算[J]. 自然资源学报, 29(11): 1859−1868.
[66] 章艳红, 叶淑君, 吴吉春. 2011. 全球大气降水中年平均氚浓度的恢复模型[J]. 地质论评, 57(3): 409−418.
-