中国地质调查局 中国地质科学院主办
科学出版社出版

基于地下水分层技术刻画污染场地水化学空间分布特征—以湖北某垃圾填埋场为例

刘学浩, 邹金, 易秤云, 王平, 王磊, 李江山, 龙思杰, 黄长生. 2025. 基于地下水分层技术刻画污染场地水化学空间分布特征—以湖北某垃圾填埋场为例[J]. 中国地质, 52(3): 1080-1093. doi: 10.12029/gc20230209001
引用本文: 刘学浩, 邹金, 易秤云, 王平, 王磊, 李江山, 龙思杰, 黄长生. 2025. 基于地下水分层技术刻画污染场地水化学空间分布特征—以湖北某垃圾填埋场为例[J]. 中国地质, 52(3): 1080-1093. doi: 10.12029/gc20230209001
LIU Xuehao, ZOU Jin, YI Chengyun, WANG Ping, WANG Lei, LI Jiangshan, LONG Sijie, HUANG Changsheng. 2025. Spatial distribution characteristics of hydrochemistry in contaminated sites based on groundwater stratification technology: A case study of a landfill in Hubei Province[J]. Geology in China, 52(3): 1080-1093. doi: 10.12029/gc20230209001
Citation: LIU Xuehao, ZOU Jin, YI Chengyun, WANG Ping, WANG Lei, LI Jiangshan, LONG Sijie, HUANG Changsheng. 2025. Spatial distribution characteristics of hydrochemistry in contaminated sites based on groundwater stratification technology: A case study of a landfill in Hubei Province[J]. Geology in China, 52(3): 1080-1093. doi: 10.12029/gc20230209001

基于地下水分层技术刻画污染场地水化学空间分布特征—以湖北某垃圾填埋场为例

  • 基金项目: 国家自然科学基金项目(42107485)、国家重点研发计划课题(2018YFC1800804)与湖北省自然科学基金项目(ZRMS2019001907)联合资助。
详细信息
    作者简介: 刘学浩,男,1988年生,高级工程师,主要从事地质环境领域设备研发与水文地质调查研究工作;E-mail:xuehao8@163.com
  • 中图分类号: X523

Spatial distribution characteristics of hydrochemistry in contaminated sites based on groundwater stratification technology: A case study of a landfill in Hubei Province

  • Fund Project: Supported by Natural Science Foundation of China (No.42107485), the National Key Research and Development Program of China (No.2018YFC1800804) and Hubei Provincial Natural Science Foundation Program of China (No.ZRMS2019001907).
More Information
    Author Bio: LIU Xuehao, male, born in 1988, senior engineer, mainly engaged in hydrogeology, R&D of novel environmental equipment; E-mail: xuehao8@163.com .
  • 研究目的

    垃圾填埋场渗滤液渗漏对周边土壤和地下水造成持久性环境污染,而对地下水污染羽空间分布的刻画表征是场地污染调查与修复的关键。

    研究方法

    以湖北某垃圾填埋场为研究对象,基于地下水U型管分层采样监测技术实施一孔六层地下水分层监测(−6 m、−8 m、−10 m、−12 m、−16 m、−20 m),结合场地水文地质调查及14个地下水样水质数据,研究地下水化学组分沿地层深度的空间分布特征。

    研究结果

    地下水中TDS、COD(Mn)、Mg2+、HCO3、Cl等主要离子浓度随垂向地层深度线性减小,表明地表入渗及人为活动污染是垃圾填埋场浅层地下水化学组分的主控影响因素;NH4+、NO3、NO2、Mn、Ni等部分离子浓度随垂向地层深度线性增大,反映自然地质条件及水岩相互作用下地下水化学场的空间特征。相关系数矩阵分析显示,地下水分层监测井水化学组分随地层深度加大,与常规地下水监测井的相关性系数由0.984减小至0.566,表征了地下水化学组分的空间分层分布特征。

    结论

    地下水分层采样监测技术刻画了地下水化学组分沿地层垂向深度的空间分布特征,一定程度区分揭示自然地质成因与人为活动污染的影响,进而识别刻画地下水污染羽的空间分布,精准指导场地尺度地下水污染修复与风险管控。

  • 加载中
  • 图 1  安陆生活垃圾填埋场水文地质剖面及地下水流场图

    Figure 1. 

    图 2  填埋场地下水监测井分布图

    Figure 2. 

    图 3  地下水U型管分层监测井工作原理图

    Figure 3. 

    图 4  研究区地下水Piper三线图

    Figure 4. 

    图 5  研究区地下水垂向空间Piper三线图

    Figure 5. 

    表 1  生活垃圾填场周边出露地层

    Table 1.  Stratigraphic and lithologic around landfill site

    层组 岩性描述
    第四系 全新统 冲积、湖积、湖积冲积;细砂、淤泥、亚砂土、亚黏土及淤泥质黏土。下部为砂砾石
    上更新统 冲积、冲积洪积相形成的黄褐黏土、亚黏土及砾石层为主。上部亚黏土、黏土偶夹泥炭层,含铁锰质结合,广泛含有姜结石。较致密,局部具垂向裂隙,由于淋滤作用裂隙面多形成黑褐色铁锰质薄膜,在开挖切坡处沿裂隙冲刷形成高低相间沟槽;下部砂砾或黏土砾石层,具冲积相的二元结构
    中更新统 冲积、湖积冲积、冲积洪积相形成的红色黏土及砾石层。
    上部为棕红色—砖红色黏土,成分以红色黏土矿物为主,由于淋滤作用表层颜色一般退变为棕红—棕黄色,局部具网纹状构造,成分以水云母、蒙脱石、高岭土等黏土矿物为主,顶部可见少量铁锰质结合。土体结构致密,透水性差,富水性差。
    下部以砾石层为主,层间红色砂土夹白色网纹状黏土,固结程度一般,砾石多为石英、长石等,分选中等,砾径3~10 cm,呈次圆状。该层在空间分布呈现自北向南渐薄的特征
    白垩系—古近系 下古近统 公安寨组 上部为灰绿色泥岩、紫红色砂质泥岩、粉砂岩互层,局部含灰白色长石砂岩、含砾砂岩、薄层石膏。
    中部为紫红色、砖红色中—厚层粉砂岩、泥质粉砂岩,偶夹灰白色钙质砂岩,夹多层玄武岩,玄武岩与红层间形成平行不整合接触,为多起喷发与红层同期沉积产物。
    底部为暗红色砾岩、细砂岩、泥质粉砂岩、黄绿色黏土岩层成两个旋回,底部均为砾岩
    下载: 导出CSV

    表 2  研究区地下水主要化学指标统计

    Table 2.  Statistics of groundwater chemistry from the Anlu landfill site

    测量指标 地下水一孔六层分层监测井 常规监测井
    第一层
    (−6 m)
    第三层
    (−10 m)
    第五层
    (−16 m)
    六层
    平均数
    超标倍数 最大值 最小值 平均数 超标倍数 分层监测井/常规监测井
    平均数比值
    pH 7.30 7.17 7.17 7.19 8.44 7.3 7.92 90.78%
    COD(Mn) 8.09 7.47 5.35 7.09 0.439~0.577 3.33 0.74 1.52 0.099 466.45%
    可溶性总固体 1730 1650 1570 1632 0.359~0.387 1070 258 450 0.065 362.67%
    K+ 3.26 3.04 2.72 3.00 7.47 1.04 3.96 75.76%
    Na+ 284 272 220 258 0.091~0.225 66.23 17.4 34.3 752.19%
    Ca2+ 201 190 200 193 184 16.1 58.7 328.79%
    Mg2+ 112 104 103 104 110 8.98 32.8 317.07%
    NH4+ 0.032 0.064 0.098 0.080
    Cl 510 472 490 485 0.453~0.484 324 8.56 69.5 0.228 697.84%
    SO42– 123 132 121 128 88 16.6 46.6 274.68%
    CO32– <0.5 <0.5 <0.5
    HCO3 930 880 747 841 479 154 225 373.78%
    NO3 0.094 3.04 17.5 6.67 67.7 0.27 34.6 0.425-0.705 19.28%
    NO2 0.013 0.039 0.072 0.055 3.72 0.002 7.92 0.69%
    Mn 1560 2980 4200 3380 0.936~0.97 0.099
    Sr 3800 2830 1930 2587 1980 319 682 0.065 379.32%
    Ba 506 394 292 367 174 38.8 71.0 515.90%
      注:除pH无单位,Mn、Sr、Ba单位为μg/L,其余均为mg/L。
    下载: 导出CSV

    表 3  研究区各地下水样品相关性矩阵

    Table 3.  Correlation coefficient matrix of groundwater chemistry from the Anlu landfill site

    ALW1ALW2ALW3ALW4ALW5ALW6ALMJ1ALJC2ALJC3ALMJ4ALJC5ZKW03ZKW04ZKW06
    ALW11
    ALW20.9721
    ALW30.9040.9781
    ALW40.7970.9160.9781
    ALW50.6990.8460.9380.9891
    ALW60.5660.7410.8640.9480.9841
    ALMJ10.8230.7450.6200.4820.3660.2111
    ALJC20.8760.7900.6610.5120.3890.2300.9621
    ALJC30.8950.8010.6680.5130.3870.2250.9700.9871
    ALMJ40.8740.7860.6530.5060.3830.2190.9800.9690.9811
    ALJC50.9180.8140.6770.5180.3890.2210.9250.9510.9740.9741
    ZKW030.8640.7780.6480.5030.3820.2200.9880.9690.9800.9960.9621
    ZKW040.8700.7810.6500.5030.3800.2190.9870.9710.9880.9930.9630.9971
    ZKW060.9230.8140.6790.5160.3850.2210.9130.9550.9800.9540.9880.9480.9571
    下载: 导出CSV
  • [1]

    Alam M I, Katumwehe A, Atekwana E. 2022. Geophysical characterization of a leachate plume from a former municipal solid waste disposal site: A case study on Norman landfill[J]. AAPG Bulletin, 106(6): 1183−1195. doi: 10.1306/eg.01072120006

    [2]

    Barcelona M J, Helfrich J A, Garske E E, Gibb J P. 1984. A laboratory evaluation of ground water sampling mechanisms[J]. Groundwater Monitoring & Remediation, 4(2): 32−41.

    [3]

    Bridges O, Bridges J W Potter, J F. 2000. A generic comparison of the airborne risks to human health from landfill and incinerator disposal of municipal solid waste[J]. Environmentalist, 20(4): 325−334. doi: 10.1023/A:1006725932558

    [4]

    Castañeda S S, Sucgang R J, Almoneda R V, Mendoza N D S, David C P C. 2012. Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines[J]. Journal of Environmental Radioactivity, 110: 30−37. doi: 10.1016/j.jenvrad.2012.01.022

    [5]

    Chapman S, Parker B, Cherry J, Munn J, Malenica A, Ingleton R, Jiang Y, Padusenko G, Piersol J. 2015. Hybrid multilevel system for monitoring groundwater flow and agricultural impacts in fractured sedimentary bedrock[J]. Groundwater Monitoring & Remediation, 35(1): 55−67.

    [6]

    Cherry J A, Gillham R W, Anderson E G, Johnson P E. 1983. Migration of contaminants in groundwater at a landfill: A case study: 2. Groundwater monitoring devices[J]. Journal of Hydrology, 63(1): 31−49.

    [7]

    Cozzarelli I M, Böhlke J K, Masoner J R, Breit G N, Lorah M M, Tuttle M L, Jaeschke J B. 2011. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma[J]. Ground Water, 49(5): 663−687. doi: 10.1111/j.1745-6584.2010.00792.x

    [8]

    Duan Xiaoli, Wang Zongshuang, Yu Yunjiang, Nie Jing, Wang Feifei, Zhao Xiuge. 2008. Health risk assessment for residents exposure to underground water near a landfill site[J]. The Administration and Technique of Environmental Monitoring, 20(3): 20−24 (in Chinese with English Abstract).

    [9]

    Dumble P, Fuller M, Beck P, Sojka P E. 2006. Assessing contaminant migration pathways and vertical gradients in a low–permeability aquifer using multilevel borehole systems[J]. Land Contamination & Reclamation, 14: 699−712.

    [10]

    Einarson M D, Cherry J A. 2002. A new multilevel ground water monitoring system using multichannel tubing[J]. Groundwater Monitoring & Remediation, 22(4): 52−65.

    [11]

    Einarson M, Fure A St, Germain R, Chapman S, Parker B. 2018. DyeLIF™: A new direct–push laser–induced fluorescence sensor system for chlorinated solvent DNAPL and other non–naturally fluorescing NAPL[J]. Groundwater Monitoring & Remediation, 38(3): 28−42.

    [12]

    El Fadili H, Ali M B, El Mahi M, Cooray A T, Mostapha Lotfi E. 2022. A comprehensive health risk assessment and groundwater quality for irrigation and drinking purposes around municipal solid waste sanitary landfill: A case study in Morocco[J]. Environmental Nanotechnology, Monitoring & Management, 18: 100698.

    [13]

    Fei Yuhong, Liu Yaci, Li Yasong, Bao Xilin, Zhang Pengwei. 2022. Prospect of groundwater pollution remediation methods and technologies in China[J]. China Geology, 49(2): 420−434 (in Chinese with English Abstract).

    [14]

    Guo Gaoxuan, Hou Quanlin, Xu Liang, Liu Jiurong, Xin Baodong. 2013. Delamination and zoning characteristics of Quaternary groundwater in Chaobai alluvial–proluvial fan, Beijing, based on hydrochemical analysis[J]. Acta Geoscientica Sinica, 35(2): 204−210 (in Chinese with English Abstract).

    [15]

    Greenhouse J P, Harris R D. 1983. Migration of contaminants in groundwater at a landfill: A case study: 7. DCVLF and inductive resistivity surveys[J]. Journal of Hydrology, 63(1): 177−197.

    [16]

    Griffioen J, Van Wensem J, Oomes J, Barends F, Breunese J, Bruining H, Olsthoorn T, Stams A, van der Stoel A. 2014. A technical investigation on tools and concepts for sustainable management of the subsurface in the Netherlands[J]. Science of the Total Environment, 485–486(3): 810–819.

    [17]

    Huang Changsheng, Zhou Yun, Zhang Shengnan, Wang Jietao, Liu Fengmei, Gong Chong, Yi Chengyun, Li Long, Zhou Hong, Wei Liangshuai, Pan Xiaodong, Shao Changsheng, Li Yiyong, Han Wenjing, Yin Zhibin, Li Xiaozhe. 2021. Groundwater resources in the Yangtze River Basin and its current development and utilization[J]. Geology in China, 48(4): 979−1000 (in Chinese with English Abstract).

    [18]

    Horst J, Welty N, Stuetzle R, Wenzel R, St Germain R. 2018. Fluorescent dyes: A new weapon for conquering DNAPL characterization[J]. Groundwater Monitoring & Remediation, 38(1): 19−25.

    [19]

    Li Qi, Liu Xuehao, Li Xiaying, Lu Xutao, Song Ranran, Li Xiaochun. 2019. U–tube based environmental monitoring and sampling technology for shallow subsurface fluid[J]. Environmental Engineering, 37(2): 8−12,21 (in Chinese with English Abstract).

    [20]

    Liu Aijü, Guo Pingzhan, Wang Xunwen. 1997. Discussion the chemical zoning of groundwater and its formation mechanism in Chaoyi[J]. Groundwater, 19(2): 56−58,62 (in Chinese).

    [21]

    Liu X, Li Q, Song R, Fang Z, Li X. 2016. A multilevel U–tube sampler for subsurface environmental monitoring[J]. Environmental Earth Sciences, 75(16): 1−13.

    [22]

    Liu Xuehao, Li Qi, Fang Zhiming, Liu Guizhen, Song Ranran, Wang Haibin, Li Xiaochun. 2015. A novel CO2 monitoring system in shallow well[J]. Rock and Soil Mechanics, 36(3): 898−904 (in Chinese with English Abstract).

    [23]

    Liu Xuehao, Huang Changsheng, Liu Shengbo, Yi Chengyun, Xiao Pan, Li Yiyong. 2021. Construction of field scientific observation base for water cycle of Hefeng Basin, Jiangxi Province[J]. Geological Bulletin of China, 40(4): 610−622 (in Chinese with English Abstract).

    [24]

    Lou Zhanghua, Jin Aimin, Zhu Rong, Cai Xiyuan, Gao Ruiqi. 2006. Vertical zonation and planar division of oilfield groundwater chemistry fields in the Songliao Basin, China[J]. Chinese Journal of geology, 41(3): 392−403 (in Chinese with English Abstract).

    [25]

    Macfarlane D S, Cherry J A, Gillham R W, Sudicky E A. 1983. Migration of contaminants in groundwater at a landfill: A case study: 1. groundwater flow and plume delineation[J]. Journal of Hydrology, 63(1): 1−29.

    [26]

    Masoner J R, Cozzarelli I M. 2015. Spatial and temporal migration of a landfill leachate plume in alluvium[J]. Water, Air, & Soil Pollution, 226(2): 1–15.

    [27]

    Mishra S, Tiwary D, Ohri A, Agnihotri A K. 2019. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India[J]. Groundwater For Sustainable Development, 9: 100230. doi: 10.1016/j.gsd.2019.100230

    [28]

    Mukherjee S, Mukhopadhyay S, Hashim M A, Sen Gupta B. 2015. Contemporary environmental issues of landfill leachate: assessment and remedies[J]. Critical Reviews in Environmental Science and Technology, 45(5): 472−590. doi: 10.1080/10643389.2013.876524

    [29]

    Nicholson R V, Cherry J A, Reardon E J. 1983. Migration of contaminants in groundwater at a landfill: A case study 6. hydrogeochemistry[J]. Journal of Hydrology, 63(1): 131−176.

    [30]

    Pitkin S E, Cherry J A, Ingleton R A, Broholm M. 1999. Field demonstrations using the waterloo ground water profiler[J]. Groundwater Monitoring & Remediation, 19(2): 122−131.

    [31]

    Preziosi E, Frollini E, Zoppini A, Ghergo S, Melita M, Parrone D, Rossi D, Amalfitano S. 2019. Disentangling natural and anthropogenic impacts on groundwater by hydrogeochemical, isotopic and microbiological data: Hints from a municipal solid waste landfill[J]. Waste Management, 84: 245−255. doi: 10.1016/j.wasman.2018.12.005

    [32]

    Su Chunli, Wang Yanxin. 2008. A study of zonality of hydrochemistry of groundwater in unconsolidated sediments in Datong Basin[J]. Hydrogeology & Engineering Geology, 35(6): 83−89 (in Chinese with English Abstract).

    [33]

    Wang Yuhong, Zhao Yongsheng. 2002. Pollution of municipal landfill to groundwater in Beitiantang, Beijing[J]. Hydrogeology & Engineering Geology, 29(6): 45−47,63 (in Chinese with English Abstract).

    [34]

    Wolff–Boenisch D, Evans K. 2014. Review of available fluid sampling tools and sample recovery techniques for groundwater and unconventional geothermal research as well as carbon storage in deep sedimentary aquifers[J]. Journal of Hydrology, 513: 68−80. doi: 10.1016/j.jhydrol.2014.03.032

    [35]

    Xue Qiang, Xu Yingming, Liu Jianjun 2004. Effect of rainfall infiltration on moisture distribution in solid waste landfill[J]. Journal of Liaoning Technical University, 23(5): 618–620 (in Chinese with English Abstract).

    [36]

    Xue Qiang, Zhan Liangtong, Hu Liming, Du Yanjun. 2020. Progress in research on environmental geotechnical engineering[J]. China Civil Engineering Journal, 53(3): 80−94 (in Chinese with English Abstract).

    [37]

    Yu Qinghe, Wang Caihua. 1987. Hydrochemical zoning and formation mechanism of groundwater in the Weihe River–Tarim River Basin[J]. Journal of Jilin University: Earth Science Edition, 17(2): 205−210 (in Chinese with English Abstract).

    [38]

    Zhan Liangtong, Feng Song, Li Guangyao, Wu Tao, Feng Tian. 2022. Working principle of ecology soil covers ad its application in landfill sealing treatment[J]. Environmental Sanitation Engineering, 30(4): 1−20 (in Chinese with English Abstract).

    [39]

    Zhan L, Xu H, Chen Y, Lü F, Lan J, Shao L, Lin W, He P. 2017. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large–scale experiment[J]. Waste Management, 63: 27−40. doi: 10.1016/j.wasman.2017.03.008

    [40]

    Zhang Ya, Hu Yuanping, Tao Liang, Zhou Feng, Yang Qingxiong, Liu Li, Wu Bo, Liao Mingfang. 2021. Hydrochemical characteristic and formation mechanism in the Yangtze River demonstration district, Wuhan City[J]. Acta Scientiae Circumstantiae, 41(3): 1022−1030 (in Chinese with English Abstract).

    [41]

    Zhao Yongsheng, Wang Zhuoran. 2021. Groundwater pollutants transport and risk control for contaminated site[J]. Environmental Protection, 49(20): 21−26 (in Chinese with English Abstract).

    [42]

    Zume J T, Tarhule A, Christenson S. 2006. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma[J]. Ground Water Monitoring and Remediation, 26(2): 62−69. doi: 10.1111/j.1745-6592.2006.00066.x

    [43]

    段小丽, 王宗爽, 于云江, 聂静, 王菲菲, 赵秀阁. 2008. 垃圾填埋场地下水污染对居民健康的风险评价[J]. 环境监测管理与技术, 20(3): 20−24. doi: 10.3969/j.issn.1006-2009.2008.03.006

    [44]

    费宇红, 刘雅慈, 李亚松, 包锡麟, 张鹏伟. 2022. 中国地下水污染修复方法和技术应用展望[J]. 中国地质, 49(2): 420−434. doi: 10.12029/gc20220206

    [45]

    郭高轩, 侯泉林, 许亮, 刘久荣, 辛宝东. 2013. 北京潮白河冲洪积扇地下水水化学的分层分带特征[J]. 地球学报, 35(2): 204−210.

    [46]

    黄长生, 周耘, 张胜男, 王节涛, 刘凤梅, 龚冲, 易秤云, 李龙, 周宏, 魏良帅, 潘晓东, 邵长生, 黎义勇, 韩文静, 尹志彬, 李晓哲. 2021. 长江流域地下水资源特征与开发利用现状[J]. 中国地质, 48(4): 979−1000. doi: 10.12029/gc20210401

    [47]

    李琦, 刘学浩, 李霞颖, 卢绪涛, 宋然然, 李小春. 2019. 基于U型管原理的浅层地下流体环境监测与取样技术[J]. 环境工程, 37(2): 8−12,21.

    [48]

    刘爱菊, 郭平战, 王勋文. 1997. 朝邑滩地下水水化学分带性及其形成机制之探讨[J]. 地下水, 19(2): 56−58,62.

    [49]

    刘学浩, 李琦, 方志明, 刘桂臻, 宋然然, 汪海滨, 李小春. 2015. 一种新型浅层井CO2监测系统的研发[J]. 岩土力学, 36(3): 898−904.

    [50]

    刘学浩, 黄长生, 刘圣博, 易秤云, 肖攀, 黎义勇. 2021. 江西禾丰盆地水循环野外科学观测基地建设进展[J]. 地质通报, 40(4): 610−622. doi: 10.12097/j.issn.1671-2552.2021.04.017

    [51]

    楼章华, 金爱民, 朱蓉, 蔡希源, 高瑞祺. 2006. 松辽盆地油田地下水化学场的垂直分带性与平面分区性[J]. 地质科学, 41(3): 392−403. doi: 10.3321/j.issn:0563-5020.2006.03.003

    [52]

    苏春利, 王焰新. 2008. 大同盆地孔隙地下水化学场的分带规律性研究[J]. 水文地质工程地质, 35(1): 83−89. doi: 10.3969/j.issn.1000-3665.2008.01.019

    [53]

    王翊虹, 赵勇胜. 2002. 北京北天堂地区城市垃圾填埋对地下水的污染[J]. 水文地质工程地质, 29(6): 45−47,63. doi: 10.3969/j.issn.1000-3665.2002.06.012

    [54]

    薛强, 徐应明, 刘建军. 2004. 降雨入渗对填埋场土壤水分动力学行为的影响[J]. 辽宁工程技术大学学报, 23(5): 618−620.

    [55]

    薛强, 詹良通, 胡黎明, 杜延军. 2020. 环境岩土工程研究进展[J]. 土木工程学报, 53(3): 80−94.

    [56]

    于庆和, 王彩华. 1987. 渭干河—塔里木河流域地下水水化学分带及其形成机制[J]. 吉林大学学报: 地球科学版, 17(2): 205−210.

    [57]

    詹良通, 冯嵩, 李光耀, 吴涛, 丰田. 2022. 生态型土质覆盖层工作原理及其在垃圾填埋场封场治理中的应用[J]. 环境卫生工程, 30(4): 1−20.

    [58]

    张雅, 胡元平, 陶良, 周峰, 杨青雄, 刘力, 吴波, 廖明芳. 2021. 武汉长江新城地下水化学特征及成因分析[J]. 环境科学学报, 41(3): 1022−1030.

    [59]

    赵勇胜, 王卓然. 2021. 污染场地地下水中污染物迁移及风险管控[J]. 环境保护, 49(20): 21−26.

  • 加载中

(5)

(3)

计量
  • 文章访问数:  50
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2023-02-09
修回日期:  2023-08-21
刊出日期:  2025-05-25

目录