中国地质调查局 中国地质科学院主办
科学出版社出版

寒旱区河谷型城市地下空间利用的生态地质安全风险评价—以青海海东乐都区为例

袁有靖, 刘长礼, 彭红明, 王秀艳, 孙伟超, 阿慧娟, 李楠, 徐得臻. 2025. 寒旱区河谷型城市地下空间利用的生态地质安全风险评价—以青海海东乐都区为例[J]. 中国地质, 52(3): 1116-1127. doi: 10.12029/gc20230421001
引用本文: 袁有靖, 刘长礼, 彭红明, 王秀艳, 孙伟超, 阿慧娟, 李楠, 徐得臻. 2025. 寒旱区河谷型城市地下空间利用的生态地质安全风险评价—以青海海东乐都区为例[J]. 中国地质, 52(3): 1116-1127. doi: 10.12029/gc20230421001
YUAN Youjing, LIU Changli, PENG Hongming, WANG Xiuyan, SUN Weichao, A Huijuan, LI Nan, XU Dezhen. 2025. Ecological security risk assessment of underground space utilization in valley cities in cold and arid regions: A case study of Ledu District, Haidong City, Qinghai Province[J]. Geology in China, 52(3): 1116-1127. doi: 10.12029/gc20230421001
Citation: YUAN Youjing, LIU Changli, PENG Hongming, WANG Xiuyan, SUN Weichao, A Huijuan, LI Nan, XU Dezhen. 2025. Ecological security risk assessment of underground space utilization in valley cities in cold and arid regions: A case study of Ledu District, Haidong City, Qinghai Province[J]. Geology in China, 52(3): 1116-1127. doi: 10.12029/gc20230421001

寒旱区河谷型城市地下空间利用的生态地质安全风险评价—以青海海东乐都区为例

  • 基金项目: 青海省海东市城市地质调查评价(2022012023sh003)资助。
详细信息
    作者简介: 袁有靖,男,1988年生,高级工程师,主要从事水工环地质及地热地质调查研究;E-mail:841077603@qq.com
    通讯作者: 刘长礼,男,1963年生,研究员,主要从事城市地质与环境地质研究;E-mail:315850110@qq.com
  • 中图分类号: X141; X820.4

Ecological security risk assessment of underground space utilization in valley cities in cold and arid regions: A case study of Ledu District, Haidong City, Qinghai Province

  • Fund Project: Supported by the project of Urban Geological Survey and Evaluation on Qinghai Haidong City (No.2022012023sh003).
More Information
    Author Bio: YUAN Youjing, male, born in 1988, senior engineer, mainly engaged in the investigation and research of hydrogeology, environmental geology, and geothermal geology; E-mail: 841077603@qq.com .
    Corresponding author: LIU Changli, male, born in 1963, researcher, mainly engaged in research on urban geology and environmental geology; E-mail: 315850110@qq.com.
  • 研究目的

    针对寒旱区河谷型城市因地下空间利用引发的地下水位上升造成的农田生态区土地盐碱化、城镇生态区建筑破坏等生态地质安全问题,为解决此类问题探索生态地质安全风险评价理论方法。

    研究方法

    在收集已有相关资料基础上,开展了研究区地质钻探、岩土工程测试、抽水试验、生态地质观测等研究。运用水文地质等理论方法,分析了生态地质安全风险的成因机理。

    研究结果

    提出了人居、农田和林草等3类生态系统地质安全风险评价方法,建立了评价指标体系和标准,评价了海东乐都区生态系统地质安全风险。地下空间利用现状情景下,高风险区主要分布于引胜沟口、岗子沟口、峰堆沟口及其地下水影响范围内的高层建筑城镇区,中风险区主要分布于I、II级阶地低洼地带;如再沿湟水河岸建地下铁路情景下,高风险、中风险区比地下空间现状情景下有所扩大。

    结论

    此3类生态地质安全风险评价方法很有效。两种情景下都会诱发3类生态系统的地质安全风险,后一情景下造成的风险更高,影响的范围更大。需对重点地带适时监测,并运用地下水疏排技术等措施防范风险。

  • 加载中
  • 图 1  研究区工程地质图

    Figure 1. 

    图 2  研究区水文地质图

    Figure 2. 

    图 3  地下空间利用现状情况下生态地质安全风险分区图

    Figure 3. 

    图 4  沿湟水河岸边建地铁情况下生态地质安全风险分区图

    Figure 4. 

    表 1  各类土层地下水毛细水上升高度

    Table 1.  Rising height of capillary water of groundwater in various soil

    土类冲洪积黄土(粉土)风积黄土(粉土)冲洪积砂砾卵石土冲积砂卵砾石洪积碎石土冰水沉积卵砾土
    上升高度/Hm1.1820.9520.2820.0180.0360.366
    下载: 导出CSV

    表 2  地下水位上升林草生态系统地质安全风险评判标准

    Table 2.  Assessment criteria on risk of eco-geological safety of forest and grass ecosystems based on groundwater level rising

    土层类型用于风险级别的地下水位埋深值/m
    高风险中风险低风险
    冲洪积黄土(粉土)<1.981.98~2.88>2.88
    风积黄土(粉土)<1.751.75~2.65>2.65
    冲洪积砂砾卵石土<1.081.08~1.98>1.98
    冲积砂卵砾石<0.820.82~1.72>1.72
    洪积碎石土<0.830.83~1.74>1.74
    冰水沉积卵砾土<1.171.17~2.07>2.07
    下载: 导出CSV

    表 3  地下水位上升农田生态系统地质安全风险评判标准

    Table 3.  Assessment criteria on risk of eco−geological safety of farmland ecosystems based on groundwater level rising

    农田土壤类型 用于风险级别的地下水位埋深值/m
    高风险 中风险 低风险
    冲洪积黄土(粉土) <1.78 1.78~2.48 >2.48
    风积黄土(粉土) <1.55 1.55~2.25 >2.25
    冲洪积砂砾卵石土 <0.88 0.88~1.58 >1.58
    冲积砂卵砾石 <0.62 0.62~1.32 >1.32
    洪积碎石土 <0.63 0.63~1.34 >1.34
    冰水沉积卵砾土 <0.96 0.96~1.67 >1.67
    下载: 导出CSV

    表 4  人居生态系统地质安全风险评判标准

    Table 4.  Risk assessment criteria for eco-geological safety of urban ecosystems

    地质安全风险因素情况 同时满足下列前3个条件或第4个条件:
    1.位于较大的湟水河谷支沟口及其影响地区;
    2.线性地下工程(包括条形地下墙等)长轴方向与支沟地下水流向大角度相交,或地下工程及其组合明显地改变了地下水流向或径流途径;
    3.地下工程或其组合的大部分在垂向剖面上截住了地下含水层截面面积;
    4.评价区域地面与地下工程处地面高程差小于1 m。
    同时满足下列前2个条件或第3个条件:
    1.在河谷支沟地下水影响范围外;
    2.地面多层及以上建筑物较多或地下管廊等线性地下工程分布区;
    3.评价区域地面与地下工程处地面高程差在1~5 m。
    满足下列条件之一:
    1.地面多层及以上建筑物较少或地下管廊很少分布区;
    2.包气带低渗透性土体(黄土、红黏土或粉质黏土等)厚度大于5 m的建筑居住区;
    3.评价区域地面高程比地下工程处地面高5 m以上。
    风险等级 高风险 中风险 低风险
    下载: 导出CSV
  • [1]

    Chen Shumin, Jin Zhao, Zhang Jing, Chu Guangchen, Sang Weijun, Lin Hangsheng. 2019. Current situation and influencing factors of salinization of land in different channels in northern Shaanxi[J]. Journal of the Earth Environment, 11(1): 82−91 (in Chinese with English abstract).

    [2]

    Dan Xinhui. 2007. Research and discussion on capillary water rising height of gravelly soil with different grading[J]. Geotechnical Engineering, 10(5): 42−47 (in Chinese with English abstract).

    [3]

    Dong Ying, Zhang Maoshen, Li Ning, Yang Min, Cheng Xiujuan, Zhu Caihui. 2020. Methods and contents of geological safety evaluation for urban underground space development and utilization[J]. Hydrogeology & Engineering Geology, 47(5): 162−170 (in Chinese with English abstract).

    [4]

    Ge Weiya, Wang Rui, Zhang Qing, Xing Huaixue, Zhou Jie. 2021. Conception of comprehensive utilization evaluation of urban underground space resources[J]. Geological Bulletin of China, 40(10): 1601−1608 (in Chinese with English abstract).

    [5]

    Li Hao, Yang Qiang, Luo Xuan, Wang Binghu, Shao Changqing, Wang Siyuan, Le Qilang. 2024. Suitability evaluation of urban underground space utilization in karst area in Gui'an New District[J]. Carsologica Sinica, 43(1): 176−187 (in Chinese with English abstract).

    [6]

    Li Xianrui, Li Xiaoyuan, Wang Shengling. 2015. Study on capillary water rising in vertical direction of modified loess[J]. Journal of Science, Technology and Engineering, 15(28): 191–195 (in Chinese with English abstract).

    [7]

    Li Xiaohong, Wang Hongtu, Yang Chunhe, Jia Jianqing, Hu Guozhong. 2005. Discussion about development and utilization of underground space in mountain city[J]. Chinese Journal of Underground Space and Engineering, (3): 319−322 (in Chinese with English abstract).

    [8]

    Li Xianwen, Zhou Jinlong, Zhao Yuji, Liu Yanfeng. 2011. The effect of high mineralization on the rise of capillary water in sandy soil[J]. Journal of Agricultural Engineering, 27(8): 84−89 (in Chinese with English abstract).

    [9]

    Lin J H, Lin M S, Chen W H, Zhang A, Qi X H, Hou H R. 2021. Ecological risks of geological disasters and the patterns of the urban agglomeration in the Fujian Delta region[J]. Ecological Indicators, 125(6): 451−465.

    [10]

    Liu Changli, Lin Liangjun, Zhang Yun, et al. 2017. Environmental Geological Problems and Countermeasures in Major Cities in China[M]. Beijing: Geological Publishing House, 6–11 (in Chinese with English abstract).

    [11]

    Liu Xiangfeng, Zhang Qiang, Hao Guoliang, Wang Yiteng, Sun Yingcong, Wang Laigui. 2023. The effect of root type and distribution of herbal plants on the compressive strength of root soil composite[J]. Journal of Yangtze River Scientific Research Institute, 40(9): 106−111,117 (in Chinese with English abstract).

    [12]

    Lü Qiuli, Yang Haihua. 2019. Analysis of pore structure characteristics and capillary water rising law of different soils[J]. Journal of Energy and Environmental Protection, 41(5): 101−105 (in Chinese with English abstract).

    [13]

    Ma Xingwu. 2012. Present situation and countermeasures of water resources development and utilization in Haidong District, Qinghai Province[J]. Water Conservancy Technology and Economy, 18(1): 81−85 (in Chinese with English abstract).

    [14]

    Kuz’min M I, Kuznetsova A N. 2018. Ecological–geologic risks related to the development of resource regions[J]. Geography and Natural Resources, 39(2): 95−102. doi: 10.1134/S1875372818020014

    [15]

    Qi Kai, Xin Zhiming, Zhang Jingbo, Zhu Yajuan. 2019. Root distribution characteristics of typical plant communities in Ulanbuhe Desert[J]. Journal of Grassland Science, 36(7): 1706−1715 (in Chinese with English abstract).

    [16]

    Qian Q H. 2016. Present state problems and development trends of urban underground space in China[J]. Tunneling and Underground Space Technology, 55: 280−289. doi: 10.1016/j.tust.2015.11.007

    [17]

    Shi Z Y, Xiang X, Guo Y M. 2023. Ecological risk of geohazard and its combination patterns: A case study of an ecologically fragile region, NW China[J]. Ecological Informatics, 77(1): 128−139.

    [18]

    Su Dong, Huang Maolong, Han Wenlong, Chen Xiangsheng. 2024. Evaluation model of geological environment resilience in the urban deep underground space and its application[J]. Geology in China, 51(1): 157−169 (in Chinese with English abstract).

    [19]

    Trofimov V T. 2004. Approaches, principles and criteria of evaluation of ecological geological conditions[J]. Frontiers of Earth Science, 11(2): 533−542.

    [20]

    Vahaaho I. 2014. Underground space planning in Helsinki[J]. Journal of Rock Mechanics and Geotechnical Engineering, 6(5): 387−398. doi: 10.1016/j.jrmge.2014.05.005

    [21]

    Vahaaho I. 2015. An introduction to the development for urban underground space in Helsinki[J]. Tunnelling and Underground Space Technology, 55: 324−328.

    [22]

    Wang Junhui, Han Xuan, Zhou Honglei, Zhang Zaiming. 2011. Interaction between groundwater environment and urban underground space during operation[J]. Journal of Civil, Architectural & Environmental Engineering, 33(S2): 50–55 (in Chinese with English abstract).

    [23]

    Wang X, Zhen F, Huang X J, Zhang M, Liu Z H. 2013. Factors influencing the development potential of urban underground space: Structural equation model approaches[J].Tunnelling and Underground Space Technology, 38(3): 235−243.

    [24]

    Xie Heping, Gao Mingzhong, Zhang Ru, Xu Heng, Wang Yongwei, Deng Jianhui. 2017. The subversive idea and its key technical prospect ecological city and ecosystem underground[J]. Chinese Journal of Rock Mechanics and Engineering, 36(6): 1301−1313 (in Chinese with English abstract).

    [25]

    Xing Yi, Zhang Surong, Liu Jihong, Wang Chaoyu. 2019. Analysis of the impact of crop root soil on the safety of agricultural products[J]. Geological Survey of China, 42(3): 219−224, 234 (in Chinese with English abstract).

    [26]

    Zhao W J, Peng L F, Wang T Q, Zhang X Y, Jiang B N. 2015. Advances in master planning of urban underground space (UUS) in China[J]. Tunnelling and Underground Space Technology, 55(5): 290−307.

    [27]

    Zhou Qi, Chen Taihong, Zhu Zhenlan, Zhang Qi, Wu Aihong, Li Jianbo. 2015. Experimental simulation study on capillary water rising law of loess subgrade[J]. Journal of Yantai University (Natural Science and Engineering Edition, 28(1): 54−61 (in Chinese with English abstract).

    [28]

    Zhou Xiaocheng, Li Yongmei, Wang Zilin, Bai Lushun, Zhou Guifei, Fan Maopan. 2017. Relationship between crop root system and aggregate stability in red soil of sloping farmland[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 37(11): 818−824 (in Chinese with English abstract).

    [29]

    陈淑敏, 金钊, 张晶, 褚光琛, 桑维峻, 林杭生. 2019. 陕北不同沟道土地盐碱化现状及影响因素[J]. 地球环境学报, 11(1): 82−91.

    [30]

    但新惠. 2007. 不同级配砾石土毛细水上升高度的研究与探讨[J]. 岩土工程学报, 10(5): 42−47.

    [31]

    董英, 张茂省, 李宁, 杨敏, 程秀娟, 朱才辉. 2020. 城市地下空间开发利用的地质安全评价内容与方法[J]. 水文地质工程地质, 47(5): 162−170.

    [32]

    葛伟亚, 王睿, 张庆, 邢怀学, 周洁. 2021. 城市地下空间资源综合利用评价工作构想[J]. 地质通报, 40(10): 1601−1608. doi: 10.12097/j.issn.1671-2552.2021.10.001

    [33]

    李浩, 杨强, 罗旋, 王兵虎, 邵长庆, 王思源, 乐琪浪. 2024. 贵安新区生态新城岩溶区地下空间利用适宜性评价[J]. 中国岩溶, 43(1): 176−187. doi: 10.11932/karst2021y38

    [34]

    李先瑞, 李晓媛, 王圣麟. 2015. 改性黄土垂直方向毛细水上升作用研究[J]. 科学技术与工程, 15(28): 191−195. doi: 10.3969/j.issn.1671-1815.2015.28.036

    [35]

    李晓红, 王宏图, 杨春和, 贾剑青, 胡国忠. 2005. 城市地下空间开发利用问题的探讨[J]. 地下空间与工程学报, (3): 319−322. doi: 10.3969/j.issn.1673-0836.2005.03.001

    [36]

    栗现文, 周金龙, 赵玉杰, 刘延锋. 2011. 高矿化度对砂性土毛细水上升影响[J]. 农业工程学报, 27(8): 84−89. doi: 10.3969/j.issn.1002-6819.2011.08.014

    [37]

    刘长礼, 林良俊, 张云, 等. 2017. 全国主要城市环境地质问题及其对策[M]. 北京: 地质出版社, 6–11.

    [38]

    刘向峰, 张强, 郝国亮, 王逸腾, 孙颖聪, 王来贵. 2023. 草本植物根系类型和分布对根土复合体无侧限抗压强度的影响[J]. 长江科学院院报, 40(9): 106−111,117. doi: 10.11988/ckyyb.20220407

    [39]

    吕秋丽, 杨海华. 2019. 不同土质孔隙结构特点及其毛细水上升规律分析[J]. 能源与环保, 41(5): 101−105.

    [40]

    马兴武. 2012. 青海省海东地区水资源开发利用现状与对策[J]. 水利科技与经济, 18(1): 81−85. doi: 10.3969/j.issn.1006-7175.2012.01.034

    [41]

    齐凯, 辛智鸣, 张景波, 朱雅娟. 2019. 乌兰布和沙漠典型植物群落的根系分布特征[J]. 草业科学, 36(7): 1706−1715.

    [42]

    苏栋, 黄茂隆, 韩文龙, 陈湘生. 2024. 城市深层地下空间地质环境韧性评估模型与应用[J]. 中国地质, 51(1): 157−169. doi: 10.12029/gc20230104001

    [43]

    王军辉, 韩煊, 周宏磊, 张在明. 2011. 地下水环境与运营期的城市地下空间相互作用[J]. 土木建筑与环境工程, 33(S2): 50−55.

    [44]

    谢和平, 高明忠, 张茹, 徐恒, 王勇威, 邓建辉. 2017. 地下生态城市与深地生态圈战略构想及其关键技术展望[J]. 岩石力学与工程学报, 36(6): 1301−1313.

    [45]

    邢怡, 张素荣, 刘继红, 王昌宇. 2019. 农作物根系土对农产品安全的影响分析—以保定东部地区为例[J]. 地质调查与研究, 42(3): 219−224, 234.

    [46]

    周奇, 陈太红, 朱振南, 张琦, 吴爱红, 李剑波. 2015. 黄土路基毛细水上升规律试验模拟研究[J]. 烟台大学学报(自然科学与工程版), 28(1): 54−61.

    [47]

    周晓晨, 李永梅, 王自林, 白录顺, 周贵飞, 范茂攀. 2017. 坡耕地红壤农作物根系与团聚体稳定性的关系[J]. 山西农业大学学报(自然科学版), 37(11): 818−824.

  • 加载中

(4)

(4)

计量
  • 文章访问数:  73
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-04-21
修回日期:  2023-10-09
刊出日期:  2025-05-25

目录