-
摘要:
依赖高碳发展模式的资源型城市在绿色低碳转型、实现“双碳”目标过程面临诸多风险。通过提升城市韧性将减排压力转化为城市内部减排动力,更好处理“双碳”目标与高质量发展间的协同关系,是最终实现可持续发展的关键。将城市韧性作为资源型城市应对“双碳”目标的实际响应,通过构建资源型城市韧性评估体系,在量化评估2010—2019年中国30个资源型城市韧性水平的差异基础上,比较了碳排放变化与资源型城市韧性二者间变化关系,主要结果如下:①2010—2019年中国30个资源型城市韧性水平均有提升,但差距在不断扩大;在空间演变方面,资源型城市韧性水平整体呈现东部高、西部低的特征,2013年之后的表现更明显;从城市内部韧性系统看,经济韧性与生态韧性的协调度较高,为“双碳”目标下资源型城市韧性提升的良好基础;②资源型城市韧性与碳排放的比较研究表明,二者绝对值变化趋势均呈上升状态,增长速率呈现先下降、后上升的趋势,虽然尚未实现“碳达峰”,但城市韧性的增加速率远高于碳排放增速,城市韧性有望成为应对气候变化、实现“双碳”目标的重要手段。基于上述内容,提出构建“双碳”目标下资源型城市韧性评估体系与保障政策体系建设相关建议。
Abstract:Resource−based cities that rely on high−carbon development models face many risks in the process of green and low−carbon transformation and achieving the dual carbon goals. Transforming the pressure of emission reduction into the driving force for emission reduction within the city by improving urban resilience, and better handling the synergistic relationship between the dual carbon goals and high−quality development, is the key to the ultimate realization of sustainable development. This study regards urban resilience as the actual response of resource−based cities to the dual carbon goals. By constructing a resource−based city resilience assessment system, it quantitatively evaluates the differences in resilience levels of 30 resource−based cities in China from 2010 to 2019, and compares changes in carbon emissions with resource−based cities. The main results of the relationship between urban resilience are as follows: ①In terms of time evolution, the resilience of 30 resource−based cities increased over time, and the gap in resilience levels between cities continued to expand; in terms of spatial evolution, the resilience of resource−based cities show the characteristics of high in the east and low in the west, which is more obvious since 2013; in terms of the coordinated development of urban resilience, the degree of coordination between economic and ecological resilience is high, which is the resilience of resource−based cities under the dual carbon goals. ②Comparing the urban resilience with the carbon emissions of resource−based cities, the trend of their absolute values is rising, and the growth rate is decreasing first and then rising. Although the resource−based cities have not reached the peak, the growth rate of urban resilience is much higher than the growth rate of carbon emissions. Urban resilience is expected to be an important means of tackling climate change and achieving the dual carbon goals. Based on the above content, suggestions on building a resource−based urban resilience assessment system and safeguarding policy system with the dual carbon goals are put forward.
-
Key words:
- resource-based cities /
- urban resilience /
- dual carbon goals /
- coordination degree
-
-
表 1 中国资源型城市韧性评价体系
Table 1. Chinese resource-based city resilience assessment system
准则层-I 准则层-II 指标层 权重 单位 指向 社会系统
(URS)人类发展水平 城镇化率 $ {a}_{1} $ % 正向 自然增长率 $ {a}_{2} $ % 正向 人口老龄化程度 $ {a}_{3} $ % 负向 社会发展水平 R&D人员占从业人员比重 $ {a}_{4} $ % 正向 人均艺术文艺活动 $ {a}_{5} $ 个 正向 社会治理水平 期末失业率 $ {a}_{6} $ % 负向 每万人社区数量 $ {a}_{7} $ 个 正向 人均医院床位数量 $ {a}_{8} $ 张/10万人 正向 每万人本专科学生在校生数量 $ {a}_{9} $ 万人 正向 经济系统
(URE)经济禀赋 规模以上工业企业数占总企业数量比重 $ {b}_{1} $ % 正向 居民存款占居民总收入比重 $ {b}_{2} $ % 正向 人均社会消费品零售总额 $ {b}_{3} $ % 正向 采掘业产值占工业总产值的比重 $ {b}_{4} $ % 负向 人均固定资产投资 $ {b}_{5} $ % 正向 人均GDP $ {b}_{6} $ 元 正向 城镇恩格尔系数 $ {b}_{7} $ % 负向 经济结构 第三产业贡献率 $ {b}_{8} $ % 正向 外贸依存度 $ {b}_{9} $ % 负向 工程系统
(URT)基础设施水平 人均全社会用电量 $ {c}_{1} $ kW·h 正向 人均公路线路里程 $ {c}_{2} $ km 正向 人均供水管道长度 $ {c}_{3} $ km 正向 人均避难场所面积 $ {c}_{4} $ m2 正向 人均公共交通客运量 $ {c}_{5} $ 万人次 正向 人均汽车拥有量 $ {c}_{6} $ 辆 正向 人均移动电话数量 $ {c}_{7} $ 个 正向 互联网用户占总人口比率 $ {c}_{8} $ % 正向 技术创新能力 人均农业机械总动力 $ {c}_{9} $ kW 正向 人均专利授权量 $ {c}_{10} $ 件 正向 生态系统
(URC)资源利用水平 能源强度 $ {d}_{1} $ 吨标准煤/万元 负向 人均水资源 $ {d}_{2} $ m3 正向 环境治理能力 生活垃圾无害化处理率 $ {d}_{3} $ % 正向 绿化覆盖率 $ {d}_{4} $ % 正向 污水处理率 $ {d}_{5} $ % 正向 工业固体废物利用率 $ {d}_{6} $ % 正向 PM10浓度 $ {d}_{7} $ μg/m3 负向 人均二氧化硫排放量 $ {d}_{8} $ t 负向 表 2 按生命周期资源型城市分类
Table 2. Classified by life cycle resource-based cities
城市类型 资源型城市 成长型城市(5个) 朔州市、南充市、毕节市、榆林市、松原市 成熟型城市
(13个)张家口市、大同市、本溪市、大庆市、宿州市、南平市、百色市、攀枝花市、曲靖市、克拉玛依市、湖州市、东营市、衡阳市 衰退型城市
(6个)乌海市、景德镇市、焦作市、黄石市、韶关市、白银市 再生型城市
(6个)包头市、鞍山市、徐州市、洛阳市、唐山市、张掖市 表 3 按资源禀赋资源型城市分类
Table 3. Classified by resource endowment resource-based cities
城市类型 资源型城市 煤炭型城市
(12个)大同市、朔州市、包头市、乌海市、焦作市、攀枝花市、毕节市、曲靖市、榆林市、宿州市、徐州市、唐山市 油气型城市
(5个)大庆市、东营市、克拉玛依市、南充市、松原市 金属非金属矿产资源型城市
(13个)景德镇市、黄石市、韶关市、白银市、张家口市、南平市、百色市、湖州市、衡阳市、洛阳市、
本溪市、鞍山市、张掖市表 4 资源型城市韧性结果统计性描述
Table 4. Statistical description of resilience results of resource-based cities
变量 样本容量 均值 标准差 最小值 最大值 总韧性 300 0.33 0.05 0.18 0.53 社会韧性 300 0.13 0.03 0.09 0.18 经济韧性 300 0.04 0.02 0.02 0.11 工程韧性 300 0.06 0.03 0.01 0.12 生态韧性 300 0.09 0.04 0.06 0.12 -
[1] Adger W N. 2000. Social and ecological resilience: Are they related[J]. Progress in Human Geography, 24(3): 347−364. doi: 10.1191/030913200701540465
[2] Bai W. 2020. The practice and enlightenment of resilient city construction[J]. Macroeconomic Management, 12: 77−84 (in Chinese with English abstract).
[3] Chen Y M, Li K C. 2017. Overseas studies progress and practice exploration on resilient city −Based on the perspective of public administration[J]. Chinese Public Administration, 33(1): 137−143 (in Chinese with English abstract).
[4] Feng X Z, Cai B F, Wang M, et al. 2017. A comparative study on CO2 emission of resource−based cities in China[J]. China Population, Resources and Environment, 27(2): 5−9(in Chinese with English abstract).
[5] Gao E X. 2016. Defensiveness, vulnerability and resilience: three paradigms of urban safety studies[J]. Chinese Public Administration, (11): 105−110(in Chinese with English abstract).
[6] Janssen M A, Ostrom E. 2006. Resilience, vulnerability, and adaptation: A cross−cutting theme of the International Human Dimensions Program on Global Environmental Change[J]. Global Environmental Change, 16(3): 237−239. doi: 10.1016/j.gloenvcha.2006.04.003
[7] Johansson C , Abreu P C , Carstensen J , et al. 2016. Human activities and climate variability drive fast−paced change across the world's estuarine–coastal ecosystems[J]. Global Change Biology, 22(2): 513−529.
[8] Li G, Kou C, Wang Y et al. 2020. System dynamics modelling for improving urban resilience in Beijing, China[J]. Resources, Conservation and Recycling, 161: 104954.
[9] Liu L N, Lei Y L. 2022. Research on the resilience changes and influencing factors of China's provincial capital cities[J]. Science & Technology and Economy, 35(205): 1−5(in Chinese with English abstract).
[10] McGlade C, Ekins P. 2015. The geographical distribution of fossil fuels unused when limiting global warming to 2℃[J]. Nature, 517(Jan. 8 TN. 7533): 187−190.
[11] Nathwani J, Lu X, Wu C, et al. 2019. Quantifying security and resilience of Chinese coastal urban ecosystems[J]. Science of the Total Environment, 672: 51−60. doi: 10.1016/j.scitotenv.2019.03.322
[12] Premakumara J, Maeda T, Huang J. 2014. Building Resilient Cities: Lessons Learned from Four Asian Cities[R]. ISAP.
[13] Pan J H. 2013. Low−carbon: the symbol of building an ecological city[J]. Informatization of China Construction, (23): 14−15(in Chinese with English abstract).
[14] Pan J H. 2022. Transformation of development paradigm and overall coordination of carbon neutrality revolution[J]. Yuejiang Academic Journal, 14(1): 19−33, 171−172(in Chinese with English abstract).
[15] Qiu B X. 2018. Methods and principles of designing resilient city based on complex adaptive system theory[J]. Urban Development Studies, 25(10): 1−3(in Chinese with English abstract).
[16] Reckien D, Salvia M, Oliver C, et al. 2018. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU−28[J]. Journal of Cleaner Production, 191: 207−219. doi: 10.1016/j.jclepro.2018.03.220
[17] Rockefeller Foundation. 2014. City resilience framework [EB/OL]. Http: www. rockerfeller foundation. org/app/uploads/City-Resilience-Framework1. pdf.
[18] Sharifi A, Yamagata Y. 2014. Major principles and criteria for development of an urban resilience assessment index[C]//International Conference & Utility Exhibition on Green Energy for Sustainable Development. IEEE.
[19] Sun Y P, Liu L N. 2022. Actively respond to the impact of climate risks on economic resilience[N]. GuangMing Daily, 011(in Chinese with English abstract).
[20] Tan J, Zhang X, Liu L, et al. 2020. Research on the urban transformation performance of China’s resource−Based cities[J]. Economic Geography, 40(4): 57−64.
[21] Walker B , Salt D. 2012. Resilience Practice−Describing the System[M]. Island Press/Center for Resource Economic.
[22] Wang Z, Deng X, Wong C, et al. 2018. Learning Urban Resilience from a Social−Economic−Ecological System Perspective: a case study of Beijing from 1978−2015[J]. Journal of Cleaner Production, 183: 343−357. doi: 10.1016/j.jclepro.2018.02.128
[23] Wang Y, Chen H, Long R, et al. 2022. Has the Sustainable Development Planning Policy Promoted the Green Transformation in China's Resource−based Cities? [J]. Resources, Conservation and Recycling, 180: 106181.
[24] Wei Q L. 2000. Data envelope analysis(DEA)[J]. Chinese Science Bulletin, 17: 1793−1808(in Chinese with English abstract).
[25] WHO. 2016. WHO household energy database[C]. Retrieved from https://www.who.int/airpollution/data/household-energy-database/en/.
[26] Wu D. 2009. Study on the coordinated development evaluation of integrated transportation system based on DEA[D]. Master’s thesis of Beijing Jiaotong University (in Chinese with English abstract).
[27] Zhang L J, Zhang X. 2015. Weighted clustering method based on an improved CRITIC method[J]. Statistics & Decision, 22: 65−68(in Chinese with English abstract).
[28] Zhou W, Liu L N, Ge J P. 2021-10-29. To enhance ecological resilience and protect urban security[N]. China Natural Resources News, 003(in Chinese with English abstract).
[29] Zhu Y S, Wu H Y, Ma M, et al. Multi−scale Spatial Relationship Between Carbon Emissions and Influencing Factors in the Yangtze River Delta[J/OL]. Geological Bulletin of China: 1-10[2024-07-07]. http://kns.cnki.net/kcms/detail/11.4648.P.20240319.0933.003.html(in Chinese with English abstract).
[30] 白玮. 2020. 韧性城市建设的实践与启示[J]. 宏观经济管理, 12: 77−84.
[31] 陈玉梅, 李康晨. 2017. 国外公共管理视角下韧性城市研究进展与实践探析[J]. 中国行政管理, 33(1): 137−143. doi: 10.3782/j.issn.1006-0863.2017.01.23
[32] 高恩新. 2016. 防御性、脆弱性与韧性: 城市安全管理的三重变奏[J]. 中国行政管理, (11): 105−110. doi: 10.3782/j.issn.1006-0863.2016.11.18
[33] 刘玲娜, 雷涯邻. 2022. 中国省会城市韧性时空演变及影响因素研 究[J]. 科技与经济, 35(205): 1−5.
[34] 潘家华. 2013. 低碳: 建设生态城市的标志[J]. 中国建设信息, (23): 14−15.
[35] 仇保兴. 2018. 基于复杂适应系统理论的韧性城市设计方法及原则[J]. 城市发展研究, 25(10): 1−3. doi: 10.3969/j.issn.1006-3862.2018.10.001
[36] 孙永平, 刘玲娜. 2022. 积极应对气候风险对经济韧性的冲 击[N]. 光明日报理论版, 011.
[37] 魏权龄. 2000. 数据包络分析(DEA)[J]. 科学通报, 17: 1793−1808. doi: 10.3321/j.issn:0023-074X.2000.17.001
[38] 吴丹. 2009. 基于DEA的综合交通运输系统协调发展评价研究[D]. 北京交通大学硕士学位论文.
[39] 张立军, 张潇. 2015. 基于改进CRITIC法的加权聚类方法[J]. 统计与决策, 22: 65−68.
[40] 周伟, 刘玲娜, 葛建平. 2021. 提升生态韧性, 守护城市安全[N]. 中国自然资源报, 003.
[41] 朱一姝, 吴涵宇, 马明, 等. 长江三角洲城市群碳排放及其影响因素的多尺度空间关系研究[J/OL]. 地质通报: 1-10[2024-07-07]. http://kns. cnki.net/kcms/detail/11.4648.P.20240319.0933.003.html.
-