小兴安岭南段翠峦杂岩体成因及构造环境:来自地球化学及锆石Hf同位素的证据

杨元江, 张立东, 杨文鹏, 李成禄, 郭凤磊, 赵寒冬, 邓昌州, 沈龙, 申亮. 2024. 小兴安岭南段翠峦杂岩体成因及构造环境:来自地球化学及锆石Hf同位素的证据. 地质通报, 43(2~3): 416-428. doi: 10.12097/gbc.2022.09.019
引用本文: 杨元江, 张立东, 杨文鹏, 李成禄, 郭凤磊, 赵寒冬, 邓昌州, 沈龙, 申亮. 2024. 小兴安岭南段翠峦杂岩体成因及构造环境:来自地球化学及锆石Hf同位素的证据. 地质通报, 43(2~3): 416-428. doi: 10.12097/gbc.2022.09.019
YANG Yuanjiang, ZHANG Lidong, YANG Wenpeng, LI Chenglu, GUO Fenglei, ZHAO Handong, DENG Changzhou, SHEN Long, SHEN Liang. 2024. Genesis and tectonic setting of Cuiluan plutonic complex in the south section of the Xiaoxing'an Mountains: Evidences of geochemical and zircon Hf isotope. Geological Bulletin of China, 43(2~3): 416-428. doi: 10.12097/gbc.2022.09.019
Citation: YANG Yuanjiang, ZHANG Lidong, YANG Wenpeng, LI Chenglu, GUO Fenglei, ZHAO Handong, DENG Changzhou, SHEN Long, SHEN Liang. 2024. Genesis and tectonic setting of Cuiluan plutonic complex in the south section of the Xiaoxing'an Mountains: Evidences of geochemical and zircon Hf isotope. Geological Bulletin of China, 43(2~3): 416-428. doi: 10.12097/gbc.2022.09.019

小兴安岭南段翠峦杂岩体成因及构造环境:来自地球化学及锆石Hf同位素的证据

  • 基金项目: 黑龙江省地质矿产局项目《黑龙江省多宝山矿集区银金矿床成矿规律研究与找矿预测》(编号:HKY202301)、中国地质调查局项目《黑龙江矿产地质志续编与产品服务》(编号:DD20221695-8)、黑龙江省国土资源公益项目《黑龙江省1∶5万矿调成果综合研究及找矿靶区优选》(编号:GY-2018003)
详细信息
    作者简介: 杨元江(1982− ),男,高级工程师,从事地质矿产勘查方面的研究。E-mail:geolj@qq.com
    通讯作者: 申亮(1983− ),女,博士,工程师,从事区域地质调查方面的研究。E-mail:2547163401@qq.com
  • 中图分类号: P591+.1; P58

Genesis and tectonic setting of Cuiluan plutonic complex in the south section of the Xiaoxing'an Mountains: Evidences of geochemical and zircon Hf isotope

More Information
  • 通过对黑龙江省小兴安岭南段中奥陶世翠峦杂岩体的年代学、岩石地球化学、锆石Hf同位素特征的研究,探讨岩体的形成时代、成因、物质来源和构造背景。采用LA−ICP-MS锆石U−Pb定年,获得花岗闪长岩和二长花岗岩样品的年龄分别为463±2 Ma和462±2 Ma,时代为中奥陶世。全岩地球化学研究表明,岩石均具有高Si、高K富碱,贫Ti、Mg、Fe、P等特征。大离子亲石元素K、Rb富集,高场强元素Ti、Nb、Ta、P和HREE亏损,具有显著的负Eu异常(δEu=0.38~0.64),以上都显示岩浆的壳源特征。花岗闪长岩锆石的εHf(t)=2.4~ 3.4,数值集中且均分布于球粒陨石线之上,暗示岩浆源区为新生陆壳物质的部分熔融;地壳模式年龄TDMc=1070~1128 Ma,证实该地区存在中元古代地壳增生事件。本次研究认为,翠峦杂岩体形成于洋陆板块俯冲的构造环境。

  • 加载中
  • 图 1  兴蒙造山带构造简图(a,底图据董玉, 2018)和研究区地质图(b)

    Figure 1. 

    图 2  杂岩体中不同岩石照片和镜下图像

    Figure 2. 

    图 3  锆石U−Pb谐和图(a, b)和年龄加权平均值分布图(c, d)(图a、b典型锆石图像中黑色圈为U−Pb同位素测试点,白色圈为Hf同位素测试点)

    Figure 3. 

    图 4  SiO2−K2O 图解(a,底图据Peccerillo et al., 1976)和A/CNK−A/NK图解(b,底图据Rickwood, 1989

    Figure 4. 

    图 5  稀土元素球粒陨石标准化配分图(a,标准化值据Boynton, 1984)和微量元素原始地幔标准化蛛网图(b,标准化值据McDonough et al., 1992

    Figure 5. 

    图 6  SiO2-P2O5图解(a)和Rb-Th图解(b)(a,b底图据Chappell et al., 1999

    Figure 6. 

    图 7  矿物结晶分异作用过程判别图解

    Figure 7. 

    图 8  花岗闪长岩锆石t-εHf(t)图解(底图据陶刚等,2017

    Figure 8. 

    图 9  杂岩体(Yb+Ta)−Rb图解(a)和Y−Nb (b)图解(a,b底图据Pearce.,1984)

    Figure 9. 

    表 1  杂岩体锆石U−Th−Pb分析结果

    Table 1.  The analytical results of zircon U−Th−Pb of plutonic complex

    测点含量/10−6U/Th同位素比值年龄/Ma
    PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    CL1-0119.2178.52332.970.05450.00170.56560.01770.07480.0008394.568.5125455.211.4977464.95.0470
    CL1-0234.72403921.630.05370.00160.54720.01560.07360.0006366.766.66443.210.2604457.73.8125
    CL1-0312.4066.71472.200.05570.00210.56710.02140.07370.0008442.685.175456.113.8393458.24.9447
    CL1-0423.4199.12802.830.05530.00160.57260.01600.07490.0007433.460.18459.710.3474465.64.0008
    CL1-0510.5754.81242.260.05920.00240.61170.02510.07470.0010576.087.0225484.615.7941464.15.8237
    CL1-0611.5540.71403.440.05620.00260.57740.02540.07450.0009461.299.99462.816.3439463.05.5438
    CL1-0726.141553061.970.05170.00150.53190.01640.07400.0007272.363.88433.110.8476460.34.4513
    CL1-0828.091463372.310.05610.00160.57190.01670.07340.0007457.564.81459.210.7864456.84.0313
    CL1-0918.1285.52162.530.05890.00200.60640.02010.07440.0007561.174.06481.312.7286462.54.4341
    CL1-1013.2560.51592.630.05490.00200.57130.02060.07520.0008405.683.325458.913.3121467.45.0048
    CL1-1135.332124121.940.05610.00160.57780.01590.07420.0006453.862.9575463.010.2182461.73.7063
    CL1-1218.241032142.080.05530.00200.57310.02060.07480.0008433.479.62460.013.2942465.04.8813
    CL1-1316.831011971.950.05650.00190.58980.01990.07530.0008472.375.9175470.712.7399468.24.5770
    CL1-1416.4772.71972.710.05270.00200.54730.01990.07520.0007322.382.4443.313.0300467.34.0956
    CL1-1518.8080.02282.850.05370.00180.56140.01960.07550.0008366.777.77452.412.7281469.34.9822
    CL1-1616.9996.02012.090.05460.00210.55980.02200.07410.0009398.287.0275451.414.3187460.65.3230
    CL1-1712.6675.31481.970.05350.00230.55610.02390.07520.0009350.1102.7675449.015.5963467.45.3792
    CL1-1816.8890.22012.230.05860.00210.59940.02110.07400.0008550.077.765476.813.3955460.04.6355
    CL1-1918.981102232.030.05420.00180.55570.01890.07450.0008388.975.92448.712.3357463.04.7197
    CL1-2020.851142462.160.05240.00190.53890.01880.07440.0007305.683.325437.712.3794462.64.2110
    CL2-0110.2540.81263.090.05630.00250.56720.02490.07360.0009464.998.1375456.216.1197457.85.3235
    CL2-0213.0765.91572.380.05900.00270.60330.02320.07390.0010564.9101.8375479.314.7065459.55.7479
    CL2-0318.231122151.920.05710.00190.58320.01990.07400.0008494.572.215466.512.7604460.34.9522
    CL2-0429.791633572.190.05760.00150.59190.01600.07420.0007516.757.4025472.010.2177461.44.3967
    CL2-0512.5765.21512.320.05320.00200.54250.01980.07400.0009344.583.325440.113.0404460.45.3452
    CL2-0620.0287.32442.790.05740.00190.58950.01910.07440.0008509.376.8425470.512.2101462.64.9141
    CL2-0716.7270.12062.940.05580.00180.57340.01870.07430.0009442.674.0675460.212.0887462.35.1241
    CL2-0831.041653742.270.05560.00150.56690.01500.07370.0007435.262.03456.09.7473458.34.2007
    CL2-0911.3854.11382.550.05640.00230.58150.02380.07450.0010477.897.2125465.415.2988463.55.8663
    CL2-1028.221043493.360.05720.00170.58850.01660.07450.0008498.264.8075469.910.6400462.94.9271
    CL2-1119.0393.32262.420.05480.00200.56420.01900.07470.0009405.681.4725454.212.3174464.25.1986
    CL2-1214.7686.81701.960.05900.00210.60710.02040.07450.0008568.684.245481.712.8993463.34.7370
    CL2-1314.3162.81732.750.05870.00220.60200.02150.07450.0008553.781.4675478.513.6302463.54.6505
    CL2-1417.8963.52213.480.05450.00180.55810.01840.07420.0007390.871.29450.311.9930461.23.9768
    CL2-1532.911354032.990.05430.00150.55670.01560.07410.0007383.467.585449.410.1893460.74.0958
    CL2-1619.0382.62332.820.05410.00180.55950.01880.07500.0009376.075.9175451.212.2655466.05.2893
    CL2-1718.921152221.930.05500.00190.55880.01860.07380.0007413.077.77450.812.0937458.94.1504
    CL2-1814.4763.81742.730.05410.00210.55600.02070.07450.0008376.085.175448.913.5335463.04.7550
    CL2-1915.761051791.700.05560.00200.57050.02070.07410.0009435.277.77458.313.3956461.05.2748
    CL2-2027.551033373.270.05500.00150.56610.01590.07440.0007413.062.9575455.510.3178462.74.2279
    CL2-2124.901222962.430.05540.00160.56680.01660.07400.0006427.869.4375455.910.7389460.13.8453
    CL2-2210.8260.71252.060.05390.00210.55220.02070.07460.0009364.987.0275446.413.5304464.05.1212
    CL2-2325.661493022.030.05330.00170.54800.01730.07450.0007338.937.96443.711.3307462.94.4696
    CL2-2422.331372561.870.05420.00170.55470.01760.07390.0007388.973.14448.011.5039459.44.4011
    CL2-2511.4965.21352.070.05480.00210.56100.02110.07430.0009405.685.1775452.113.7599461.85.4721
    下载: 导出CSV

    表 2  杂岩体主量、微量和稀土元素分析结果及特征参数

    Table 2.  Major, trace and rare earth element compositions and key parameters of plutonic complex

    元素 花岗闪长岩 二长花岗岩
    CL1-25 CL1-31 CL1-32 CL1-33 CL1-34 CL1-35 CL2-26 CL2-27 CL2-28 CL2-29 CL2-30
    SiO2 67.14 70.66 71.88 66.79 70.62 68.16 70.63 72.97 70.19 71.97 67.12
    TiO2 0.37 0.33 0.35 0.38 0.31 0.41 0.35 0.30 0.37 0.35 0.37
    Al2O3 16.85 14.53 14.02 13.92 14.47 14.95 13.99 14.07 14.10 13.99 16.81
    Fe2O3 3.72 2.73 2.52 4.05 2.53 3.37 2.55 1.91 3.35 2.44 3.72
    MnO 0.14 0.05 0.06 0.05 0.05 0.07 0.04 0.04 0.06 0.05 0.14
    MgO 0.75 0.69 0.76 0.75 0.52 0.73 0.61 0.46 0.92 0.59 0.77
    CaO 3.11 1.64 1.33 1.27 1.89 2.46 1.96 0.86 2.42 1.67 3.12
    Na2O 1.42 3.04 2.92 3.47 3.41 3.18 2.81 2.72 2.47 2.80 1.45
    K2O 5.16 5.61 5.22 4.97 5.49 5.43 5.51 5.79 5.31 5.59 5.19
    P2O5 0.08 0.08 0.09 0.09 0.08 0.10 0.07 0.05 0.08 0.07 0.08
    烧失量 1.00 0.66 1.11 3.19 0.77 0.67 0.74 1.09 1.11 0.90 0.95
    FeO 3.35 2.46 2.27 3.76 2.28 3.03 2.29 1.72 3.01 2.20 3.35
    Mg 16.65 19.98 22.93 15.38 17.04 17.72 19.10 19.11 21.44 19.37 16.92
    Na2O+K2O 6.58 8.65 8.14 8.44 8.89 8.61 8.32 8.51 7.78 8.39 6.64
    AKI 0.47 0.76 0.75 0.80 0.80 0.74 0.76 0.76 0.70 0.76 0.48
    Be 3.05 3.31 3.25 3.33 3.11 3.86 2.74 2.14 2.56 3.00 4.86
    Sc 4.42 3.89 3.83 4.06 3.49 5.93 4.76 3.28 4.43 4.75 6.28
    V 19.54 17.69 20.16 20.19 16.28 23.89 22.29 14.65 25.23 20.16 13.46
    Cr 4.75 2.43 6.21 2.96 2.70 4.21 6.00 2.57 7.01 4.94 1.64
    Co 3.18 3.02 3.54 8.12 2.93 4.36 3.69 1.98 3.87 3.15 3.25
    Ni 1.74 1.65 2.86 1.80 1.38 1.90 2.21 1.82 2.74 1.89 1.43
    Ga 17.25 17.52 16.92 17.32 17.51 19.45 17.90 16.16 17.95 17.03 20.96
    Rb 285.77 240.80 238.58 233.44 207.26 226.27 255.72 306.49 271.04 286.85 256.85
    Sr 190.91 246.70 195.60 131.20 293.40 362.45 244.11 155.77 244.90 193.47 207.81
    Y 37.31 28.33 27.63 30.63 23.19 34.47 34.12 33.71 30.90 37.51 40.49
    Zr 256.68 260.48 256.30 286.19 220.27 285.96 275.02 252.92 260.26 248.28 402.82
    Nb 12.65 11.61 12.57 13.59 10.34 13.93 12.68 12.67 11.99 12.85 17.61
    Sn 4.77 3.94 3.64 7.82 2.79 4.21 4.16 4.01 4.40 4.88 3.18
    Cs 7.44 7.86 7.49 3.57 4.36 6.66 7.70 9.26 9.60 7.32 21.42
    Ba 585.36 631.88 703.97 586.99 586.69 832.00 629.51 564.99 666.58 593.30 670.11
    La 58.60 54.32 49.21 59.22 49.42 57.70 55.06 57.28 58.87 59.89 65.79
    Ce 116.39 104.62 94.48 112.94 92.96 113.05 109.77 114.39 115.05 118.61 129.41
    Pr 12.51 11.15 9.90 11.71 9.76 12.24 11.88 12.19 12.04 12.74 13.87
    Nd 43.58 38.08 33.73 40.20 33.01 42.71 41.14 42.28 42.48 44.89 49.71
    Sm 8.20 6.37 5.67 6.70 5.59 7.91 7.19 7.33 7.02 8.29 8.80
    Eu 0.96 0.96 1.01 1.07 1.04 1.26 0.94 0.88 1.04 0.97 1.24
    Gd 7.11 4.83 4.71 5.27 4.04 6.18 6.19 5.87 5.84 6.81 7.45
    Tb 1.09 0.77 0.74 0.79 0.64 0.96 1.00 0.93 0.87 1.11 1.13
    Dy 6.67 4.69 4.56 5.05 3.84 5.87 5.99 5.70 5.29 6.84 7.10
    Ho 1.27 0.92 0.89 0.98 0.73 1.12 1.09 1.09 1.02 1.26 1.36
    Er 3.83 2.67 2.53 2.96 2.18 3.26 3.24 3.22 2.89 3.58 3.91
    Tm 0.55 0.43 0.42 0.47 0.32 0.50 0.48 0.51 0.43 0.53 0.63
    Yb 3.39 2.72 2.58 3.01 2.35 3.23 3.12 3.30 2.80 3.30 4.02
    Lu 0.52 0.43 0.40 0.47 0.33 0.51 0.48 0.50 0.43 0.49 0.61
    Hf 7.67 7.13 6.96 7.77 5.82 7.56 7.84 7.50 7.22 7.22 10.35
    Ta 1.31 1.16 1.16 1.04 0.93 1.10 1.15 1.24 1.03 1.28 1.45
    Tl 2.25 1.60 2.18 2.23 1.40 1.67 1.76 2.58 2.09 2.49 1.89
    Pb 23.22 27.80 21.49 20.63 38.26 37.54 26.23 20.73 22.37 22.73 16.77
    Th 39.02 24.00 32.57 33.01 28.70 29.77 35.99 40.74 31.66 37.90 30.44
    U 15.18 9.29 10.45 13.56 9.27 9.71 12.61 14.42 11.24 13.22 15.49
    A/NK 2.13 1.31 1.34 1.26 1.25 1.35 1.32 1.31 1.44 1.31 2.10
    A/CNK 1.24 1.03 1.09 1.04 0.97 0.96 0.99 1.14 0.99 1.02 1.23
    ∑REE 264.29 233.29 210.81 250.87 206.22 256.40 247.82 255.13 256.03 269.68 294.65
    ∑LREE 239.86 215.83 193.98 231.87 191.79 234.77 226.23 234.01 236.46 245.76 268.44
    ∑HREE 24.43 17.46 16.83 19.00 14.43 21.63 21.59 21.12 19.57 23.92 26.21
    LREE/HREE 9.82 12.36 11.53 12.20 13.29 10.85 10.48 11.08 12.08 10.27 10.24
    δEu 0.38 0.51 0.58 0.53 0.64 0.53 0.42 0.40 0.48 0.38 0.46
    Eu* 34.75 25.66 23.63 27.35 22.13 32.21 30.39 30.13 29.27 34.40 36.95
    (La/Sm)N 4.50 5.36 5.46 5.56 5.56 4.59 4.82 4.92 5.28 4.55 4.70
    (La/Yb)N 11.65 13.46 12.86 13.26 14.17 12.04 11.91 11.71 14.18 12.24 11.04
    (Sm/Nd)N 0.58 0.51 0.52 0.51 0.52 0.57 0.54 0.53 0.51 0.57 0.54
    (Gd/Yb)N 1.69 1.43 1.47 1.41 1.39 1.54 1.60 1.44 1.68 1.67 1.50
      注:主量元素含量单位为%,微量和稀土元素含量单位为10−6
    下载: 导出CSV

    表 3  花岗闪长岩锆石Hf同位素分析结果

    Table 3.  Zircon Hf isotope analysis table of the granodiorite

    点号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM1/Ma TDMc/Ma fLu/Hf
    CL1-01 458 0.028200 0.000009 0.000772 0.000016 0.282590 0.000512 −6.43 3.4 18.13 932 1070 −0.976739
    CL1-02 460 0.028547 0.000009 0.000776 0.000022 0.282580 0.000796 −6.79 3.1 28.20 946 1088 −0.976613
    CL1-03 460 0.034437 0.000009 0.000917 0.000019 0.282583 0.000798 −6.69 3.2 28.24 946 1085 −0.972376
    CL1-04 461 0.036062 0.000008 0.000957 0.000012 0.282564 0.000602 −7.36 2.5 21.32 973 1120 −0.971162
    CL1-05 460 0.024758 0.000008 0.000657 0.000013 0.282566 0.000670 −7.30 2.6 23.70 964 1112 −0.980219
    CL1-06 463 0.015717 0.000008 0.000436 0.000002 0.282577 0.000184 −6.89 3.2 6.50 942 1088 −0.986864
    CL1-07 462 0.044822 0.000008 0.001247 0.000046 0.282567 0.001554 −7.24 2.6 55.03 976 1118 −0.962447
    CL1-08 458 0.033730 0.000008 0.000913 0.000021 0.282563 0.000945 −7.38 2.4 33.46 973 1121 −0.972496
    CL1-09 463 0.027405 0.000009 0.000745 0.000011 0.282557 0.000462 −7.61 2.4 16.35 978 1128 −0.977573
    CL1-10 463 0.027997 0.000009 0.000778 0.000003 0.282563 0.000200 −7.40 2.6 7.08 971 1119 −0.976552
    下载: 导出CSV
  • [1]

    Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 38(1): 1−25. doi: 10.1016/0012-821X(78)90123-1

    [2]

    Amelin Y, Lee D C, Halliday A N. 2000. Early−middle archaean crustal evolution deduced from Lu−Hf and U−Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 64(24): 4205−4225.

    [3]

    Belousova E A, Griffin W L, O’ Reilly S Y. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from eastern Australian granitoids[J]. Journal of Petrology, 47(2): 329−353. doi: 10.1093/petrology/egi077

    [4]

    Boehnke P, Watson E B, Trail D, et al. 2013. Zircon saturation Re−revisited[J]. Chemical Geology, 351: 324−334. doi: 10.1016/j.chemgeo.2013.05.028

    [5]

    Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies[C]//Devolopments in Geochemistry, 63−114.

    [6]

    Chappell B W. 1999. Aluminium saturation in I and S−type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535−551. doi: 10.1016/S0024-4937(98)00086-3

    [7]

    Deng C Z, Sun D Y, Sun G Y, et al. 2018. Age and geochemistry of Early Ordovician A−type granites in the Northeastern Songnen Block, NE China[J]. Acta Geochim., 37(6): 805−819. doi: 10.1007/s11631-018-0294-3

    [8]

    Dong Y, Ge W C, Yang H, et al. 2017. Permian tectonic evolution of the Mudanjiang Ocean: evidence from zircon U−Pb−Hf isotopes and geochemistry of a NS trending granitoid belt in the Jiamusi Massif, NE China[J]. Gondwana Research, 49(9): 147−163.

    [9]

    Gibbs A K. 1986. The continental crust: its composition and evolution[J]. Journal of Geology, 94(4): 632−633. doi: 10.1086/629067

    [10]

    Jahn B M, Wu F Y, Chen B, et al. 2000. Granitoids of the central asian orogenic belt and continental growth in the phanerozoic[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 91(1/2): 181−193.

    [11]

    Janousek V, Finger F, Roberts M, et al. 2004. Deciphering the petrogenesis of deeply buried granites: whole−rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian zone of the Bohemian Massif[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1/2): 141−159.

    [12]

    Li Z X, Li X H. 2007. Formation of the 1300 km−wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat−slab subduction model[J]. Geology, 35(2): 179−182. doi: 10.1130/G23193A.1

    [13]

    Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

    [14]

    McDonough W F, Sun S S, Ringswood A E, et al. 1992. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 56(3): 1001−1012. doi: 10.1016/0016-7037(92)90043-I

    [15]

    Mcdonough W F, Sun S S. 1995. The composition of the earth[J]. Chemical Geology, 120(3/4): 223−253.

    [16]

    Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745

    [17]

    Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbar: Implications for continental growth and crust−mantle recycling[J]. Journal of Petrology, 36(4): 891−931. doi: 10.1093/petrology/36.4.891

    [18]

    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247−263. doi: 10.1016/0024-4937(89)90028-5

    [19]

    Tang J, Xu W L, Wang F, et al. 2016. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China[J]. Gondwana Research, 31: 218−240. doi: 10.1016/j.gr.2014.12.010

    [20]

    Wang F, Xu W L, Meng E, et al. 2012. Early Paleozoic amalgamation of the Songnen−Zhangguangcai range and Jiamusi massifs in the eastern segment of the central asian orogenic belt: geochronological and geochemical evidence from granitoids and rhyolites[J]. Journal of Asian Earth Sciences, 49(3): 234−248.

    [21]

    Wang Z W, Xu W L, Pei F P, et al. 2016. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing’ an Range, NE China: implications for the tectonic evolution of the eastern Central Asian Orogenic Belt[J]. Lithos, 261: 144−163. doi: 10.1016/j.lithos.2015.11.006

    [22]

    Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202

    [23]

    Windley B F, Allen M B, Zhang C, et al. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 18(2): 128−131. doi: 10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2

    [24]

    Wu F Y, Jahn B M, Wilder S A, et al. 2003. Highly fractionated I− type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241−273.

    [25]

    Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Asian Earth Sciences, 41: 1−30. doi: 10.1016/j.jseaes.2010.11.014

    [26]

    Xiao W J, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt[J]. Tectonics, 22(6): 1069−1084.

    [27]

    Xu W L, Ji W Q, Pei F P , et al. 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 34(3): 392−402.

    [28]

    Zhou L M, Wang R, Hou Z Q, et al. 2018. Hot Paleocene−Eocene gangdese arc: Growth of continental crust in southern Tibet[J]. Gondwana Research, 62: 178−197. doi: 10.1016/j.gr.2017.12.011

    [29]

    崔玉荣, 肖志斌, 涂家润, 等. 2022. 氧化物型含铀矿物微区原位Hf同位素分析技术研究进展[J]. 岩矿测试, 41(5): 691−703.

    [30]

    董磊, 李光明, 黄勇, 等. 2018. 藏南雅鲁藏布江结合带东段琼结杂岩早白垩世变辉绿岩地球化学特征及其地质意义[J]. 沉积与特提斯地质, 38(4): 1−12.

    [31]

    董玉. 2018. 佳木斯地块与松嫩−张广才岭地块拼合历史: 年代学与地球化学证据[D]. 吉林大学博士学位论文: 5−78.

    [32]

    葛文春, 吴福元, 周长勇, 等. 2005. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 50(12): 1239−1247.

    [33]

    韩振新, 郝正平, 侯敏. 1995. 小兴安岭地区与加里东期花岗岩类有关的矿床成矿系列[J]. 矿床地质, 14(4): 293−302.

    [34]

    颉颃强, 张福勤, 苗来成, 等. 2008. 东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U−Pb定年及其地质学意义[J]. 岩石学报, 24(6): 1237−1250.

    [35]

    李伟民, 刘永江, 赵英利, 等. 2020. 佳木斯地块构造演化[J]. 岩石学报, 36(3): 665−684.

    [36]

    李响, 王令占, 涂兵, 等. 2021. 粤西北印支期太保岩体的锆石U−Pb年代学、地球化学及岩石成因[J]. 地球科学, 46(4): 1199−1216.

    [37]

    刘昌实, 陈小明, 陈培荣, 等. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573−591.

    [38]

    刘建峰, 迟效国, 董春艳, 等. 2008. 小兴安岭东部早古生代花岗岩的发现及其构造意义[J]. 地质通报, 27(4): 534−544.

    [39]

    马鹏飞, 夏小平, 徐健, 等. 2021. 腾冲早白垩世花岗岩的高分异成因及其构造意义[J]. 岩石学报, 37(4): 1177−1195.

    [40]

    任飞, 尹福光, 彭智敏, 等. 2022. 班公湖−怒江俯冲增生杂岩带东段晚古生代辉绿岩锆石U−Pb年龄、Hf同位素特征及其构造意义[J]. 地学前缘, 29(2): 164−179.

    [41]

    谭红艳, 舒广龙, 吕骏超, 等. 2012. 小兴安岭鹿鸣大型钼矿LA−ICP−MS锆石U−Pb和辉钼矿Re−Os年龄及其地质意义[J]. 吉林大学学报(地球科学版), 42(6): 1757−1770.

    [42]

    陶刚, 朱利东, 李智武, 等. 2017. 祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义: 年代学、地球化学及Hf同位素证据[J]. 地球科学, 42(12): 2258−2275.

    [43]

    王枫. 2010. 黑龙江省东部张广才岭群新兴组: 岩石组合、时代及其构造意义[D]. 吉林大学硕士学位论文: 1−90.

    [44]

    王志伟. 2017. 小兴安岭−张广才岭早古生代火成岩的岩石学与地球化学: 对块体拼合历史和地壳属性的制约[D]. 吉林大学博士学位论文: 1−30.

    [45]

    魏庆国, 高昕宇, 赵太平, 等. 2010. 大别北麓汤家坪花岗斑岩锆石LA−ICP−MS U−Pb定年和岩石地球化学特征及其对岩石成因的制约[J]. 岩石学报, 26(5): 1550−1562.

    [46]

    吴福元, 孙德有, 林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 15(2): 22−30.

    [47]

    肖庆辉, 邱瑞照, 邓晋福, 等. 2005. 中国花岗岩与大陆地壳生长方式初步研究[J]. 中国地质, 24(3): 343−352.

    [48]

    徐平, 吴福元, 谢烈文, 等. 2004. U−Pb同位素定年标准锆石的Hf同位素[J]. 科学通报, 49(14): 1403−1410.

    [49]

    许赛华, 任涛, 吕昶良, 等. 2019. 滇东南白垩纪高分异S型花岗岩研究进展[J]. 矿物学报, 39(2): 149−165.

    [50]

    许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.

    [51]

    许文良, 王枫, 孟恩, 等. 2012. 黑龙江省东部古生代—早中生代的构造演化: 火成岩组合与碎屑锆石U−Pb年代学证据[J]. 吉林大学学报(地球科学版), 42(5): 1378−1389.

    [52]

    杨元江, 邓昌州, 李成禄, 等. 2021. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学及岩石成因[J]. 吉林大学学报(地球科学版), 51(4): 1065−1081.

    [53]

    杨元江, 李成禄, 邓昌州, 等. 2020. 大兴安岭大洋山钼矿成矿岩体地球化学、锆石U−Pb年龄及构造背景[J]. 现代地质, 34(5): 1092−1102.

    [54]

    张海驲, 栾慧敏, 陈乐国. 1991. 黑龙江省印支期花岗岩的确定及其意义[J]. 黑龙江地质, 1(1): 25−27.

    [55]

    张兴洲, 曾振, 高锐, 等. 2015. 佳木斯地块与松嫩地块俯冲碰撞的深反射地震剖面证据[J]. 地球物理学报, 58(12): 4415−4424.

    [56]

    赵寒冬. 2009. 东北地区小兴安岭南段−张广才岭北段古生代火成岩组合与构造演化[D]. 中国地质大学(北京)博士学位论文: 1−55.

    [57]

    中国国家标准化管理委员会. 2010a. 硅酸盐岩石化学分析方法第28部分: 16个主次成分量测定: GB/T 14506.28—2010[S]. 北京: 中国标准出版社: 1−7.

    [58]

    中国国家标准化管理委员会. 2010b. 硅酸盐岩石化学分析方法第30部分: 44个元素量测定: GB/T 14506.30—2010[S]. 北京: 中国标准出版社: 1-8.

    [59]

    周若. 1994. 花岗岩混合作用[J]. 地学前缘, 1(1/2): 87−97.

  • 加载中

(9)

(3)

计量
  • 文章访问数:  687
  • PDF下载数:  70
  • 施引文献:  0
出版历程
收稿日期:  2022-09-21
修回日期:  2023-02-27
刊出日期:  2024-03-15

目录