New evidence of the new and old relationship between the Hala’alate Formation and the Aladeyikesai Formation in West Junggar: Evidence from well 424 and well 581 of Ke-Bai oilfield
-
摘要:
研究目的 岩石地层组间原始接触关系是记录和佐证相邻两组地层新老关系的关键证据,也是建立和命名组级地层单位的充要条件。西准噶尔包古图地层小区晚石炭世的哈拉阿拉特组与阿腊德依克赛组自建组以来接触关系不明,新老关素不清。
研究方法 本次于建组剖面南邻的克拉玛依−百口泉油田(克−百油田)424井、581井石炭系岩心中识别出2套岩性截然、易识别、易区别的(上)海相细碎屑岩/(下)火山角砾岩沉积建造,岩心记录及测井电性资料均证实二者为整合接触。上、下2套地层分别与哈山一带建组剖面阿腊德依克赛组下碎屑岩段层位和哈拉阿拉特组之顶部层位可对比。
研究结果 于2井海相细碎屑岩中获得了Noeggerathiopsidozonotriletes-Protohaploxypinus-Hamiapollenites等Moscovian期孢粉组合,且该套细碎屑岩整合于锆石U−Pb年龄为306.2±5.8 Ma的火山岩之上,结合哈山一带露头区该组火山岩锆石U−Pb年龄集中于303~295 Ma,故阿腊德依克赛组主体时代置于上石炭统Gzhelian阶。
结论 结合前人在581井东邻多井火山岩中获得的310.5 Ma的锆石U−Pb年龄,将这套以火山岩为主的哈拉阿拉特组置于上石炭统Kasimovian-Moscovian阶。该研究佐证了2组地层原始整合接触关系明确,新老关系清楚,也为石炭系的建造序列与沉积盆地演化提供了新资料。
Abstract:Objective The original contact relationship between lithostratigraphic groups is the key evidence to record and prove the relationship between the two adjacent lithostratigraphic units, and is also the necessary and sufficient condition to establish and name the stratigraphic units. Since the formation of the Late Carboniferous Hala’alate formations and the Aladeyikesai in the Baogutu stratigraphic area of West Junggar, it is believed that "the lithostratigraphic units contact relationship is unclear ".
Methods We have identified two sets of sedimentary formations with distinct lithology, which are easy to identify and distinguish. Both of them are from the core of the Carboniferous system of well 424 and well 581 of Ke−Bai oilfield, which are adjacent to the south of the type section, and are mainly composed of "(upper) marine fine clastic rock/(lower) volcanic breccia". The core records and logging electrical datas confirm that the two formations are conformable contact. The upper and lower sets of strata can be compared with the lower clastic rock section of the Aladeyikesai Formation and the top section of the Hala’alate Formation from the type section of the Hashan area.
Results Moscovian sporopollen assemblages from marine fine clastic rocks of two wells were obtained, such as Noeggerathiopsidozonotriletes−Protohaploxypinus−Hamiapollenites; this fine clastic rocks were conformable contact by the volcanic rocks with the zircon U−Pb age of 306.2±5.8 Ma. Combined with the zircon U−Pb ages (303~295 Ma) of the volcanic rocks in this formation in Hashan region, the main body of the Aladeyikesai Formation is placed in the Gzhelian Stage of the Upper Carboniferous.
Conclusions Combined with the 310.5 Ma zircon U−Pb age obtained in the volcanic rocks of the adjacent wells in the east of well 581, this volcanic−dominated Hala’alate Formation is placed in Kasimovian−Moscovian Stage of the Upper Carboniferous. The clear original conformable contact relationship support the old−new relations between the two stratigraphic units, and also provide new data for the formation sedimentary sequence and sedimentary basin evolution of the Carboniferous.
-
-
图 1 中亚造山带构造位置简图(a,据Jahn et al., 2000)、准噶尔盆地西北缘地质简图(b)及克拉玛依-哈山一带区域地质图(c)
Figure 1.
图 5 克84井3025~3029 m井深气孔杏仁状玄武岩样品(K84-1-10TW)锆石阴极发光图像(a)、锆石球粒陨石标准化稀土元素配分曲线图(b,标准化值据Sun et al., 1989)、锆石年龄谐和图(c)和年龄分布直方图(d)
Figure 5.
表 1 包古图地层小区石炭系岩石地层单位划分方案与对比标志
Table 1. Division and comparison of Carboniferous litho-tratigraphic units in the Baogutu stratigraphic area
组名 岩石组合及划分与对比标志 时代依据(李永军等,2021) 佳木河组
P1jm陆相磨拉石建造,区域性角度不整合超覆于阿腊德依克赛组之上
(李永军等,2016)Paracalamites stenocostatus, Lepidodendrales
(李永军等,2016)阿腊德依克
赛组C2al“下陆源碎屑岩-上火山岩”层序(下段以正常沉积岩为主,上段以火山岩为主)。因后期断层破坏,建组剖面及地表露头区与哈拉阿拉特组原始接触关系不明,新老关系不清(彭湘萍等,2016) Athyris circularis,Roemeriporellajunggarensis, Linoproductuscora,Neospiriferfasciger;
LA−ICP−MS锆石U−Pb年龄303~295 Ma哈拉阿拉
特组C2h下部(C2h1~3)以气孔状玄武岩为主,向上见安山岩,上部(C2h4~7)以玄武质角砾岩、集块岩为主。以深灰色、灰绿色区别于暗红色、紫红色调的成吉思汗山组。本组与包古图组、希贝库拉斯组的区别是层序上总体下熔岩上火山碎屑岩;火山喷发旋回极为发育有别于成吉思汗山组火山岩;与下伏整合接触(李甘雨等,2015,2016,2017;李永军等,2021) Balakhoniasilimica sp.,Kotorginella tentoria,Stenoscismamazhalaica, Rhomobopora sp.
Declinognathodus cf. noduliferous;
锆石U−Pb年龄309~304 Ma成吉思汗
山组C2c宏观露头以“暗红色、紫褐色”色调最为特色,正常沉积的细、粗碎屑岩均有发现。本组有别于包古图组、希贝库拉斯组的一个重要特征是灰岩层相对较厚,产出较稳定,且多有生物化石,火山岩相对较发育,岩性以玄武岩为主;与下伏为角度不整合接触(向坤鹏等,2013) Choristites sp.,Pseudotimania sp.; LA−ICP−MS
锆石U−Pb年龄319~310 Ma希贝库拉
斯组C1x以粗碎屑类为主,主要岩石组合为岩屑粗砂岩、含砾粗岩、含砾凝灰质砂岩,局地见细砾岩,偶见砾岩夹层或砾岩透镜体,本组区别于包古图组的主要标志是“粗”并且“三无”(无火山熔岩、无灰岩、无硅质岩);与下伏整合接触
(孙羽等,2014)碎屑锆石年龄最年轻322 Ma 包古图组
C1b以细碎屑岩为主,有别于区内其他各组重要标志,主要岩石组合为粉砂岩、细砂岩、凝灰岩,基本层多为厘米级小层序,火山熔岩(以(玄武)安山岩为主,局地有玄武岩)硅质岩、灰岩均呈夹层状产于包古图组内;与下伏上泥盆统红山梁组整合接触(郭丽爽等,2010;李永军等,2024) Gigantoproductus cf. edelburgensis,Linoproductuspraelongatus, Asterpylorus sp.,Rotiphyllumsokolovi
LA−ICP−MS锆石U−Pb年龄346~328 Ma表 2 克84井气孔杏仁状玄武岩(K84-1-10TW)LA−ICP−MS锆石U−Th−Pb分析结果
Table 2. LA−ICP−MS zircon U− Th−Pb analysis resultsof vesicular amygdaloid basalts in well Ke 84
样号同位素比值 同位素年龄/Ma 含量/10−6 Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ Pb206/U238 1σ Pb Th U 01 0.0521 0.0013 0.3441 0.0078 0.0479 0.0009 290 55 300 5.9 302 5.5 74.9 184.8 398.1 0.46 02 0.0541 0.0020 0.3514 0.0123 0.0471 0.0010 375 82 305 9.3 297 6.0 77.6 580.0 393.4 1.47 03 0.0534 0.0012 0.3542 0.0071 0.0481 0.0009 344 49 308 5.3 303 5.4 95.5 501.4 466.4 1.07 04 0.0522 0.0012 0.3532 0.0075 0.0491 0.0009 296 52 307 5.6 309 5.5 46.4 63.4 226.7 0.28 05 0.0543 0.0014 0.3765 0.0091 0.0503 0.0009 385 58 325 6.7 316 5.7 120.5 302.1 514.3 0.59 06 0.0527 0.0014 0.3475 0.0085 0.0479 0.0009 314 60 303 6.4 301 5.4 29.0 60.5 134.0 0.45 07 0.0506 0.0019 0.3453 0.0119 0.0495 0.0010 221 83 301 9.0 312 6.1 14.3 49.3 63.3 0.78 08 0.0524 0.0013 0.3494 0.0081 0.0484 0.0009 303 57 304 6.1 304 5.4 48.1 268.1 220.3 1.22 09 0.0544 0.0015 0.3775 0.0098 0.0503 0.0009 389 62 325 7.2 316 5.8 30.8 82.21 143.4 0.57 10 0.0527 0.0011 0.3642 0.0068 0.0501 0.0009 315 48 315 5.1 315 5.4 138.1 633.1 575.3 1.10 11 0.0531 0.0027 0.3570 0.0168 0.0487 0.0011 334 109 310 12.5 307 6.9 12.9 15.9 57.6 0.28 12 0.0547 0.0016 0.3730 0.0102 0.0495 0.0009 400 65 322 7.5 311 5.7 126.2 607.7 594.0 1.02 -
[1] Bian B L, Zhang J K, Wu J J, et al. 2019. Re−characterization of the Dazhuluogou strike−slip fault in northwestern Junggar Basin and the implications for hydrocarbon accumulation[J]. Earth Science Frontiers, 26(1): 238−247 (in Chinese with English abstract).
[2] Chen Y C, Zhang J E, Hou Q L, et al. 2021. The basic characteristics of accretion arcs and its geological implications[J]. Scientia Geologica Sinica, 56(2): 615−634 (in Chinese with English abstract).
[3] Du H Y, Chen J F, Ma X, et al. 2019. Origin and tectonic significance of the Hoboksar ophiolitic mélange in northern West Junggar (NW China)[J]. Lithos, 336: 293−309.
[4] Duan F H, Li Y J, Zhi Q, et al. 2019. Petrogenesis and geodynamic implications of Late Carboniferous sanukitic dikes from the Bieluagaxi area of West Junggar, NW China[J]. Journal of Asian Earth Sciences, 175: 158−177. doi: 10.1016/j.jseaes.2019.01.013
[5] Feng Y M, Coleman R G, Tilton G R, et al. 1989. Tectonic evolution of the West Junggar region, Xinjiang, China[J]. Tectonics, 8: 729−752. doi: 10.1029/TC008i004p00729
[6] Guo L S, Liu Y L, Wang Z H, et al. 2010. The zircon U−Pb LA−ICP−MS geochronology of volcanic rocks in Baogutu areas, western Junggar[J]. Acta Petriogica Sinica, 26(2): 471−477 (in Chinese with English abstract).
[7] Han B F, Wang S G, Jahn B M, et al. 1997. Depleted−mantle source for the Ulungur River A−type granites from North Xinjiang, China: Geochemistry and Nd−Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 138: 135−159. doi: 10.1016/S0009-2541(97)00003-X
[8] He X X, Xiao L, Wang G C, et al. 2015. Petrogenesis and geological implications of Late Paleozoic intermediate−basic dyke swarms in western Junggar[J]. Earth Science, 40(5): 777−796 (in Chinese with English abstract).
[9] Huang H, Wang T, Tong Y, et al. 2020. Rejuvenation of ancient micro−continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth−Science Reviews, 208: 103−255.
[10] Jahn B M, Wu F Y, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh, 91: 181−193. doi: 10.1017/S0263593300007367
[11] Jiang Z B, Li Y J, Huang J X, et al. 2023. New evidence on the stratigraphy and chronology of 2140~355l.63 m Well 424 section in Karamay Oilfield and “Basin−Mountain” stratigraphic comparison[J]. Northwestern Geology, 56(2): 153−257 (in Chinese with English abstract).
[12] Li G Y, Li Y J, Wang R, et al. 2015. Zircon LA−ICP−MS U−Pb dating of volcanics in Hala'alate Formation of western Junggar[J]. Northwestern Geology, 48(3): 12−21 (in Chinese with English abstract).
[13] Li G Y, Li Y J, Xiang K P, et al. 2016. Revision and regional correlation of the Hala'alate formation in western Junggar Basin[J]. Journal of Stratigraphy, 40(1): 76−84 (in Chinese with English abstract).
[14] Li G Y, Li Y J, Wang R, et al. 2017. The discovery and significance of Late Carboniferous sanukitoids in Hala'alate Mountain, West Junggar[J]. Acta Petrologica Sinica, 33(1): 16−30 (in Chinese with English abstract).
[15] Li G Y, Li Y J, Wang X C, et al. 2017. Identifying late Carboniferous sanukitoids in Hala'alate Mountain, Northwest China: New constraint on the closing time of remnant ocean basin in West Junggar[J]. International Geology Review, 59(9): 1116−1130. doi: 10.1080/00206814.2016.1193773
[16] Li Y J, Xu Q, Liu J, et al. 2016. Redefinition and geological significance of Jiamuhe Formation in Hala'alate Mountain of West junggar, Xinjiang[J]. Earth Science, 41(9): 1479−1488 (in Chinese with English abstract).
[17] Li Y J, Li W D, Yang G X, et al. 2021. Formation section and regional comparison of the Devonian−Carboniferous in the East and West Junggar, Xinjiang[M]. Beijing: Geological Publishing House (in Chinese with English abstract).
[18] Li Y J, Wang P L, Zhi Q, et al. 2024. Geochronology, geochemistry and geological significance of multiporphyritic alkaline basalt from Hala'alate Formation in Urho area, West Junggar, Xinjiang. Acta Petrologica Sinica, 40(7): 2037−2055 (in Chinese with English abstract).
[19] Mao X J, Duan F H, Zheng M L, et al. 2021. Geological characteristics of the Tailegula ophiolitic tectonic Melange in West Junggar——Concurrently discussion on the abandonment of “Tailegula Formation”[J]. Xinjiang Geology, 39(3): 365−371 (in Chinese with English abstract).
[20] Ouyang S, Wang Z, Zhan J Z, et al. 2003. Palynalogy of the Carboniferous and Permian strata of Northern Xinjiing, Northwestern China[M]. Hefei: University of Scienee and Technology of China Press (in Chinese with English abstract).
[21] Peng X P, Li Y J, Li W D, et al. 2016. The stratigraphic sequence, fossil assemblage and sedimentary environment of Aladeyikesai Formation in Hala'alate Mountain, West Junggar[J]. Xinjiang Geology, 34(3): 297−301 (in Chinese with English abstract).
[22] Sengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0
[23] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.
[24] Sun Y, Li Y J, Tong L L, et al. 2014. The affirmance of Xibeikulasi Formation conformable above Baogutu Formation in West Junggar[J]. Xinjiang Geology, 32(2): 153−157 (in Chinese with English abstract).
[25] Song Y, Li Y J, Mao X J, et al. 2023. Geological map of the northwestern margin of Junggar Basin, Xinjiang (1∶100000)[M]. Beijing: Geological Publishing House (in Chinese with English abstract).
[26] Wang C X. 2014. Spore−pollen flora and paleoclimate of the Chepaizi area, Xinjiang, NW China[J]. Acta Micropalaeontologica Sinica, 31(1): 75−84 (in Chinese with English abstract).
[27] Wang T, Huang H, Zhang J, et al. 2023. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 10(2):64−79.
[28] Wang X J, Song Y, Zheng M L, et al. 2022. Tectonic evolution of and hydrocarbon accumulation in the western Junggar Basin[J]. Earth Science Frontiers, 29(6): 188−205 (in Chinese with English abstract).
[29] Wang Y J, Jin Y G, Jiang N Y. 1987. Discussion of the age and paleoenvironment of the Hala'alate Formation[J]. Journal of Stratigraphy, 11(1): 53−57 (in Chinese with English abstract).
[30] Wilhem C, Windley B F, Stampfli G M. 2012. The Altaids of Central Asia: A tectonic and evolutionary innovative review[J]. Earth−Science Reviews, 113: 303−341. doi: 10.1016/j.earscirev.2012.04.001
[31] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022
[32] Wu K Y, Pei Y W, Li T R, et al. 2018. Structural characteristics and implication on tectonic evolution of the Daerbute strike−slip fault in West Junggar area, NW China[J]. Frontiers of Earth Science, 12(3): 555−568.
[33] Wu K Y, Qu J H, Wang H H. 2014. Strike−slip characteristics, forming mechanisms and controlling reservoirs of Dazhuluogou fault in Junggar Basi[J]. Journal of China University of Petroleum(Edition of Natural Science), 38(5): 41−47 (in Chinese with English abstract).
[34] Xiang K P, Li Y J, Xu L, et al. 2013. The definition or Chcngjisihanshan Formation and its significances in Baijiantan Region, West Junggar, Xinjiang[J]. Northwestern Geology, 46(2): 63−68 (in Chinese with English abstract).
[35] Xiao W J, Han C M, Yuan C, et al. 2006. Unique Carboniferous−Permian tectonic−metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain[J]. Acta Petrologica Sinica, 22(5): 1062−1076 (in Chinese with English abstract).
[36] Xiao W J, Han C M, Liu W, et al. 2014. How many sutures in the southern Central Asian Orogenic Belt: Insights from East Xinjiang−West Gansu (NW China)?[J]. Geoscience Frontiers, 5(4): 525−536. doi: 10.1016/j.gsf.2014.04.002
[37] Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three collage systems in the Permian−Middle Triassic in Central Asia: Oroclines, sutures and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477−507.
[38] Xiao W J, Song D F, Windley B F, et al. 2020. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 63: 329−361. doi: 10.1007/s11430-019-9524-6
[39] Xiao W J, Song D F, Mao Q G, et al. 2022. How to determine the time limits of accretionary orogenesis?[J]. Earth Science, 47(10): 3770−3771 (in Chinese with English abstract).
[40] Yang G X, Li Y J, Xiao W J, et al. 2015. OIB−type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts[J]. Earth−Science Reviews, 150: 477−496. doi: 10.1016/j.earscirev.2015.09.002
[41] Yang G X, Li Y J, Gu P Y, et al. 2012. Geochronological and geochemical study of the Darbut ophiolitic complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 21: 1037−1049. doi: 10.1016/j.gr.2011.07.029
[42] Yin J Y, Yuan C, Sun M, et al. 2010. Late Carboniferous high−Mg dioritic dikes in western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications[J]. Gondwana Research, 17(1): 145−152. doi: 10.1016/j.gr.2009.05.011
[43] Zhang C, Zhai M G, Allen B, et al. 1993. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central Asia[J]. Journal of Geological Society, 150: 551−561. doi: 10.1144/gsjgs.150.3.0551
[44] Zhang J E, Chen Y C, Xiao W J, et al. 2022. Architecture of ophiolitic mélanges in the Junggar region, NW China[J]. Geosystems and Geoenvironment, 2(3): 100175.
[45] Zhang Y Y, Guo Z J. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection[J]. Acta Petrologica Sinica, 26(2): 422−430 (in Chinese with English abstract).
[46] Zheng B, Han B F, Wang Z Z, et al. 2020. An example of Phanerozoic continental crustal growth: The West Junggar Orogenic Belt, Northwest China[J]. Lithos, 376/377: 105745.
[47] Zhi Q, Li Y J, Duan F H, et al. 2021. Geochronology and geochemistry of early Carboniferous basalts from Baogutu Formation in West Junggar, Northwest China: Evidence for a back−arc extension[J]. International Geology Review, 63: 1521−1539. doi: 10.1080/00206814.2020.1783704
[48] Zhu Y F, Chen B, Qiu T. 2015. Geology and geochemistry of the Baijiantan−Baikouquan ophiolitic mélanges: Implications for geological evolution of West Junggar, Xinjiang, NW China[J]. Geological Magazine, 152(1): 41−69. doi: 10.1017/S0016756814000168
[49] Zong R W, Fan R Y, Jiang T, et al. 2014. New information about the Carboniferous Hala'alate Formation in western Junggar, Xinjiang[J]. Journal of Stratigraphy, 38(3): 290−298 (in Chinese with English abstract).
[50] 卞保力, 张景坤, 吴俊军, 等. 2019. 准噶尔盆地西北缘大侏罗沟走滑断层油气成藏效应[J]. 地学前缘, 26(1): 238−247.
[51] 长安大学. 2016. 新疆西准噶尔玛依塔巴克地区L45E011006(玛依塔巴克幅)、L45E011007(可克额默林哈拉格幅)、L45E012006 (白杨河水库幅)、L45E012007(乌尔禾幅)1∶5万区域地质调查报告[R].
[52] 陈艺超, 张继恩, 侯泉林, 等. 2021. 增生弧基本特征与地质意义[J]. 地质科学, 56(2): 615−634. doi: 10.12017/dzkx.2021.031
[53] 郭丽爽, 刘玉琳, 王政华, 等. 2010. 西准噶尔包古图地区地层火山岩锆石LA−ICP−MS U−Pb年代学研究[J]. 岩石学报, 26(2): 471−477.
[54] 贺新星, 肖龙, 王国灿, 等. 2015. 西准噶尔晚古生代中基性岩墙群岩石学成因及地质意义[J]. 地球科学(中国地质大学学报), 40(5): 777−796.
[55] 蒋志斌, 李永军, 黄家瑄, 等. 2023. 克拉玛依油田424井2140~3551.63 m井段层序、年代学新证及“盆-山”地层对比[J]. 西北地质, 56(2): 153−257.
[56] 李甘雨, 李永军, 王冉, 等. 2015. 西准噶尔哈拉阿拉特组火山岩LA−ICP−MS锆石U−Pb年龄[J]. 西北地质, 48(3): 12−21. doi: 10.3969/j.issn.1009-6248.2015.03.002
[57] 李甘雨, 李永军, 王冉, 等. 2017. 西准噶尔哈拉阿拉特山一带晚石炭世赞岐岩的发现及其地质意义[J]. 岩石学报, 33(1): 16−30.
[58] 李甘雨, 李永军, 向坤鹏, 等. 2016. 西准噶尔哈拉阿拉特组的重新厘定及区域对比[J]. 地层学杂志, 40(1): 76−84.
[59] 李永军, 李卫东, 杨高学, 等. 2021. 新疆东西准噶尔泥盆系—石炭系建组剖面及区域对比[M]. 北京: 地质出版社.
[60] 李永军, 王盼龙, 支倩, 等. 2024. 西准噶尔乌尔禾地区哈拉阿拉特组富斑碱性玄武岩年代学、地球化学及地质意义[J]. 岩石学报, 40(7): 2037−2055. doi: 10.18654/1000-0569/2024.07.03
[61] 李永军, 徐倩, 刘佳, 等. 2016. 新疆西准噶尔哈山地区佳木河组的重新厘定及地质意义[J]. 地球科学, 41(9): 1479−1488.
[62] 毛新军, 段丰浩, 郑孟林, 等. 2021. 西准噶尔太勒古拉蛇绿构造混杂岩地质特征——兼论“太勒古拉组”的废弃[J]. 新疆地质, 39(3): 365−371. doi: 10.3969/j.issn.1000-8845.2021.03.002
[63] 欧阳舒, 王智, 詹家祯, 等. 2003. 新疆北部石炭纪—二叠纪孢子花粉研究[M]. 合肥: 中国科技大学出版社.
[64] 彭湘萍, 李永军, 李卫东, 等. 2016. 西准哈拉阿拉特山一带阿腊德依克赛组层序、化石组合及沉积环境[J]. 新疆地质, 34(3): 297−301. doi: 10.3969/j.issn.1000-8845.2016.03.001
[65] 宋永, 李永军, 毛新军, 等. 2023. 新疆准噶尔盆地西北缘地质图(1∶
100000 )[M]. 北京: 地质出版社.[66] 孙羽, 李永军, 佟丽莉, 等. 2014. 西准噶尔希贝库拉斯组整合于包古图组之上的确认[J]. 新疆地质, 32(2): 153−157.
[67] 王小军, 宋永, 郑孟林, 等. 2022. 准噶尔西部陆内盆地构造演化与油气聚集[J]. 地学前缘, 29(6): 188−205.
[68] 王玉净, 金玉玕, 江纳言. 1987. 论哈拉阿拉特组的时代及古环境特征[J]. 地层学杂志, 11(1): 53−57.
[69] 王长轩. 2014. 新疆车排子地区孢粉植物群与古气候[J]. 微体古生物学报, 31(1): 75−84.
[70] 吴孔友, 瞿建华, 王鹤华. 2014. 准噶尔盆地大侏罗沟断层走滑特征、形成机制及控藏作用[J]. 中国石油大学学报(自然科学版), 38(5): 41−47.
[71] 向坤鹏, 李永军, 徐磊, 等. 2013. 新疆西准噶尔白碱滩一带成吉思汗山组的建立及地质意义[J]. 西北地质, 46(2): 63−68. doi: 10.3969/j.issn.1009-6248.2013.02.008
[72] 肖文交, 韩春明, 袁超, 等. 2006. 新疆北部石炭纪—二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 22(5): 1062−1076. doi: 10.3321/j.issn:1000-0569.2006.05.002
[73] 肖文交, 宋东方, 毛启贵, 等. 2022. 如何有效厘定增生造山作用时限?[J]. 地球科学, 47(10): 3770−3771.
[74] 张元元, 郭召杰. 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 26(2): 422−430.
[75] 纵瑞文, 范若颖, 蒋涛, 等. 2014. 西准噶尔石炭系哈拉阿拉特组新知[J]. 地层学杂志, 38(3): 290−298.
-