Geometric characteristics and tectonic significance of Late Paleozoic mafic dyke swarms in Beishan and its adjacent areas— Based on remote sensing image research
-
摘要:
北山及邻区广泛发育晚古生代基性岩墙群,反映了该地先存裂隙(节理)的区域构造应力场和岩墙群形成后经历的构造活动,对探究岩浆活动、反演构造演化过程及分析岩墙几何特征与构造应力之间的耦合关系具有重要意义。综合遥感和地质方法,在遥感影像中解译提取1777条基性岩墙,通过几何工具计算得到岩墙走向数据,总结岩墙群空间分布规律,同时与其形成时的大陆动力学演化背景相对应。结果表明,北山及邻区岩墙优势走向方位集中于0° ~ 65°与320° ~ 360°,绝大部分岩墙是在伸展作用中张性区域应力场控制下形成的,具张性性质或剪张性性质,部分岩墙受后期碰撞挤压环境影响,具张剪性性质。岩墙群主导成因机制是区域伸展构造作用,兼以地幔柱远程效应及热点作用。
Abstract:Late Paleozoic mafic dyke swarms are widely developed in Beishan and it’s adjacent areas, which reflect the regional tectonic stress field of the pre-existing fissures (joints) and the tectonic activities experienced after the formation of dyke swarms, and are of great significance for exploring magmatic activities, inverting the tectonic evolution process, and analyzing the coupling relationship between the geometric characteristics of the dyke and the tectonic stress. Combining remote sensing and geological methods, this paper interprets and extracts 1777 basic dykes from remote sensing images, calculates the trend data of dykes through geometric tools, summarizes the spatial distribution of dyke swarms, and discusses the genetic mechanism of dyke swarm in the study area corresponding to the continental dynamic evolution background when they were formed. The dominant strike directions of the dyke in the Beishan and its adjacent areas are concentrated in 0° ~ 65° and 320° ~ 360°. Most of the dyke are formed under the control of the tensile regional stress field during the regional extension and have tensile or shear properties, while some of the dykes are affected by the late collision and extrusion environment and have the properties of tensile shear. The dominant genetic mechanism of dyke swarms is regional extensional tectonics, and also the remote effect and hot spot effect of mantle plume.
-
-
图 3 近EW向岩墙群雁列式形态形成过程(底图据侯贵廷等,2012修改;v表示岩浆入侵方向;箭头表示不同时期的主应力情况)
Figure 3.
图 4 晚古生代古亚洲洋双向俯冲消减示意图(底图据Xiao et al., 2015修改)
Figure 4.
图 5 岩墙群成因模式图(底图据侯贵廷等,2012)
Figure 5.
-
[1] Ahijado A, Casillas R, Hernández−Pacheco A. 2001. The dyke swarms of the Amanay massif, Fuerteventura, Canary Islands (Spain)[J]. Journal of Asian Earth Sciences, 19(3): 333−345. doi: 10.1016/S1367-9120(99)00066-8
[2] Chen N H, Dong J J, Chen J Y, et al. 2014. Geometry and emplacement of the Late Cretaceous mafic dyke swarms on the islands in Zhejiang Province, Southeast China: Insights from high−resolution satellite images[J]. Journal of Asian Earth Sciences, 79(pt.A): 302−311.
[3] Dai J, Xue L, Sang X, et al. 2020. Research method for dyke swarms based on UAV remote sensing in desert areas: A case study in Beishan, Gansu, China[J]. IOP Conference Series Earth and Environmental Science, 558: 32−40.
[4] Emerman S H, Marrett R. 1990. Why dikes?[J]. Geology, 18(3): 231−233. doi: 10.1130/0091-7613(1990)018<0231:WD>2.3.CO;2
[5] Fahrig W F. 1987. The tectamc settings of continental mafic swarm: failed arw and early possive maryin[C]// Halls H C, Fahrig W F. Mafic dyke swarms. Geological Assocation of Canada Special Paper, 34: 331−348.
[6] Hou G, Liu Y, Li J. 2006. Evidence for ~1.8 Ga extension of the Eastern Block of the North China Craton from SHRIMP U−Pb dating of mafic dyke swarms in Shandong Province[J]. Journal of Asian Earth Sciences, 27(4): 392−401. doi: 10.1016/j.jseaes.2005.05.001
[7] Halls H C. 1982. The importance and potential of mafic dyke swarms in studies of geodynamic processes[J]. Geoscience Canada, 9(3): 145−154.
[8] Halls H C. 1987. Dyke swarms and continental rifting: some concluding remarks[C]// Halls H C, Fahrig W F. Mafic dyke swarms. Geological Association of Canada Special Paper, 34: 6−10.
[9] Hou G T, Santosh M, Qian X L, et al. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms[J]. Gondwana Research, 14: 395−409. doi: 10.1016/j.gr.2008.01.010
[10] Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[C]//Malpas J, Fletcher C J N, Ali J R, et al. Aspects of the tectonic evolution of China. Geological Society, London, Special Publications, 226(1): 73−100.
[11] Mao Q, Xiao W, Fang T, et al. 2012. Late Ordovician to Early Devonian adakites and Nb−enriched basalts in the Liuyuan area, Beishan, NW China: Implications for Early Paleozoic slab−melting and crustal growth in the southern Altais[J]. Gondwana Research, 22(2): 534−553. doi: 10.1016/j.gr.2011.06.006
[12] Pollard D D. 1987. Elementary fractuse mecharism applied to the structral interpretation of dykes[C]// Halls H C, Fahrig W F. Mafic dyke swarms. Geological Association of Canada Specta Paper, 34: 5−24.
[13] Peng P, Reec D, Us E, et al. 2019. Dyke swarms: Keys for Precambrian paleogeographic reconstruction−Proceedings of the Seventh International Dyke Conference[J]. Precambrian Research, 329: 1−4. doi: 10.1016/j.precamres.2019.01.002
[14] Srivastava R K, Söderlund U, Ernst R E, et al. 2019. Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India) – Reply[J]. Precambrian Research, 329: 5−17. doi: 10.1016/j.precamres.2018.08.001
[15] Salminen J, Oliveira E P, Piispa E J, et al. 2019. Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for Archean supercratons[J]. Precambrian Research, 329: 108−123.
[16] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022
[17] Xiao W, Kröner A, Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic[J]. International Journal of Earth Sciences, 98(6): 1185−1188. doi: 10.1007/s00531-009-0418-4
[18] Xiao W J, Mao Q, Windley B, et al. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310: 1553−1594.
[19] Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Reviews of Earth and Planetary Sciences, 43: 477−507.
[20] Zhang Y, Dostal J, Zhao Z, et al. 2011. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: implications for crust−mantle interaction[J]. Gondwana Research, 20(4): 816−830. doi: 10.1016/j.gr.2011.03.008
[21] Zhang Y Y, Yuan C, Sun M, et al. 2015. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere−lithosphere interaction in response to slab break−off[J]. Lithos, 233: 174−195.
[22] Zheng Y F, Gao P. 2021a. The production of granitic magmas through crustal anatexis at convergent plate boundaries[J]. Lithos, 402/403: 106232.
[23] Zheng R, Li J, Zhang J, et al. 2021b. A prolonged subduction−accretion in the southern Central Asian Orogenic Belt: Insights from anatomy and tectonic affinity for the Beishan complex[J]. Gondwana Research, 95: 88−112. doi: 10.1016/j.gr.2021.02.022
[24] 陈宁华, 董津津, 厉子龙, 等. 2013. 新疆北山地区二叠纪地壳伸展量估算: 基性岩墙群厚度统计的结果[J]. 岩石学报, 29(10): 3540−3546.
[25] 陈超, 潘志龙, 修迪, 等. 2017. 北山地区红柳园组沉积时代、沉积环境及源区构造背景分析[J]. 沉积学报, 35(3): 470−479.
[26] 董津津, 陈宁华, 厉子龙. 2013. 新疆库鲁克塔格地区基性岩墙群几何学与岩浆超压估算[J]. 岩石学报, 29(10): 3547−3554.
[27] 冯乾文, 周可法, 王金林. 2015. 东准噶尔琼河坝岛弧晚古生代地球动力学环境——来自和尔赛岩体暗色岩墙时空分布的证据[J]. 地质科学, 50(4): 1068−1082.
[28] 何世平, 任秉琛, 姚文光, 等. 2002. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, (4): 30−40.
[29] 何世平, 周会武, 任秉琛, 等. 2005. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, (3): 6-15.
[30] 侯贵廷, Henry H, Don D, 等. 2009. 华北基性岩墙群的古地磁极及其哥伦比亚超大陆重建意义[J]. 岩石学报, 25(3): 650−658.
[31] 侯贵廷. 2012. 华北基性岩墙群[M]. 北京: 科学出版社: 117−139.
[32] 李江海, 何文渊, 钱祥麟. 1997. 元古代基性岩墙群的成因机制、构造背景及其古板块再造意义[J]. 高校地质学报, 3(3): 272−280.
[33] 李沅柏, 李海泉, 周文孝, 等. 2021. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗岩的地球化学和年代学证据[J]. 地质通报, 40(7): 1117−1139.
[34] 李奇祥, 廖群安, 三金柱, 等. 2010. 新疆哈密四顶黑山地区镁铁质-超镁铁岩特征及其构造意义[J]. 地质科技情报, 29(4): 14−20.
[35] 林瑶, 汤庆艳, 张铭杰, 等. 2014. 新疆北部二叠纪基性岩墙群岩浆作用及其动力学背景[J]. 地球科学与环境学报, 36(3): 73−82.
[36] 梁积伟, 陈玉良, 张文卿, 等. 2014. 甘肃北山地区泥盆系三个井组碎屑锆石年龄及其地质意义[J]. 地质科技情报, 33(3): 1−9.
[37] 彭仁, 张贵山, 邱红信, 等. 2020. 甘肃北山晚古生代基性岩墙群岩石成因及其构造意义[J]. 矿物岩石地球化学通报, 39(2): 254−266.
[38] 齐琦, 王永和, 余吉远, 等. 2017. 甘肃北山牛圈子地区基性岩墙群年代学、地球化学特征及构造意义[J]. 新疆地质, 35(1): 99−106.
[39] 师震. 2019. 甘肃北山古堡泉辉绿岩脉群地质地球化学特征及形成构造环境[D]. 长安大学硕士学位论文: 2−19.
[40] 王国强, 李向民, 徐学义, 等. 2014. 甘肃北山红石山蛇绿岩锆石U−Pb年代学研究及构造意义[J]. 岩石学报, 30(6): 1685−1694.
[41] 王国强. 2015. 北山古生代蛇绿岩、火山岩研究与构造演化[D]. 长安大学博士学位论文: 23.
[42] 杨合群, 赵国斌, 李英, 等. 2012. 新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J]. 地质通报, 31(2/3): 413−421.
[43] 杨建国, 谢春林, 王小红, 等. 2012. 甘肃北山地区基本构造格局和成矿系列特征[J]. 地质通报, 31(2/3): 422−438.
[44] 杨春霞, 王启航, 高翔, 等. 2015. 甘肃北山造山带晚古生代辉绿岩墙的地球化学特征及构造背景[J]. 甘肃地质, 24(1): 19−23.
[45] 张文, 冯继承, 郑荣国, 等. 2011. 甘肃北山音凹峡南花岗岩体的锆石LA−ICP MS定年及其构造意义[J]. 岩石学报, 27(6): 1649−1661.
[46] 张贵山, 彭仁, 温汉捷, 等. 2021. 闽西南E-MORB型基性岩墙成因: 来自地球化学、锆石U−Pb年代学及Sr−Nd同位素证据[J]. 地球科学, 46(12): 4230−4246. doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112002
[47] 专少鹏, 陈超, 申宗义, 等. 2018. 北山地区早古生代洋盆俯冲记录——来自石板井高镁闪长岩的年代学、地球化学证据[J]. 岩石矿物学杂志, 37(4): 533−546.
[48] 赵宏刚, 梁积伟, 王驹, 等. 2019. 甘肃北山算井子埃达克质花岗岩年代学、地球化学特征及其构造意义[J]. 地质学报, 93(2): 329−352. doi: 10.3969/j.issn.0001-5717.2019.02.005
[49] 郑荣国, 王云佩, 张昭昱, 等. 2016. 北山南带音凹峡地区酸性火山岩年代学、地球化学研究: 二叠纪裂谷岩浆作用的新证据[J]. 大地构造与成矿学, 40(5): 1031−1048.
-