Climate change at orbital scale in Songnen Plain during the Middle and Late Pleistocene
-
摘要:
研究目的 松嫩平原位于东亚夏季风的边缘地区,研究该地区更新世湖相沉积记录的水文循环在轨道尺度上的变率,有助于认识轨道尺度上的水循环和古湖生产力在东北地区湖相记录中的演变特征。
研究方法 通过钻孔BQZK05采集样品,使用电子自旋(ESR)测年分析得到约1025 ka以来的沉积记录。结合贝叶斯-年龄深度模型处理ESR年龄数据,利用频谱分析法对TOC(总有机碳)和GR(自然伽马)数据进行周期性分析。
研究结果 ESR贝叶斯年龄-深度模型结果显示,TOC具有约173 ka和约100 ka的显著周期;自然伽马(GR)数据在870~40 ka之间显示主控约173 ka的周期。TOC约100 ka周期信号表明高纬冰量显著影响松嫩平原的植被和湖泊生物生产力变化。
结论 高纬冰量和低纬太阳辐射的变化共同驱动了松嫩平原中晚更新世的气候变化,TOC和GR数据中显著的约173 ka周期信号表明该周期对有机碳埋藏起到重要作用。
Abstract:Objective The Songnen Plain, located at the edge of the East Asian Summer Monsoon (EASM), is an important region for studying the variability of the hydrological cycle recorded by Pleistocene lacustrine sediments on orbital timescales. Investigating these variations helps to understand the evolution of the water cycle and ancient lake productivity in the lacustrine records of Northeast China.
Methods This study applied Electron Spin Resonance (ESR) dating to samples from borehole BQZK05, obtained from the Ground Substrate Survey in the Songnen Plain, to acquire sedimentary records from approximately 1025 ka. The ESR age data were processed using the Bayesian age−depth model, and spectral analysis was performed on Total Organic Carbon (TOC) and Gamma Ray (GR) data to identify periodic signals.
Results The results from the ESR Bayesian age−depth model show that TOC exhibits significant cycles of approximately 173 kyr and 100 kyr. The Gamma Ray (GR) data from 870~40 ka reveal a dominant ~173 kyr cycle. The ~100 kyr cycle observed in TOC suggests that high−latitude ice volume significantly influences vegetation content and lake biological productivity in the Songnen Plain.
Conclusions Changes in high−latitude ice volume and low−latitude solar radiation have jointly driven climate change in the Songnen Plain during the Middle to Late Pleistocene. The prominent ~173 kyr cycle observed in both TOC and GR data sequences indicates that this cycle played an important role in organic carbon burial.
-
Key words:
- Songnen Plain /
- Ground Substrate Survey /
- Orbital period /
- Pleistocene /
- East Asian Summer Monsoon
-
-
表 1 样品信息及石英ESR测年结果
Table 1. Sample information and results of quartz ESR dating
野外
编号样品
质地深度/m U/10−6 Th/10−6 K/% 含水量/% 等效剂量/Gy 剂量率 (Gy·ka−1) 年龄/ka BQZK05-G7 粘土 23.7 2.24±0.09 13.1±0.26 1.40±0.06 16±5 795±102 2.32±0.12 343±44 BQZK05-G8 粉砂质粘土 28.3 2.09±0.08 14.2±0.28 1.29±0.05 13±5 1179±162 2.37±0.12 498±68 BQZK05-G9 砂质粘土 36.47 1.31±0.05 16.1±0.32 0.79±0.03 17±5 1185±189 1.81±0.09 653±104 BQZK05-G10 砂质粘土 38.72 1.97±0.08 17.6±0.35 1.88±0.08 11±5 2198±277 3.12±0.16 705±89 BQZK05-G11 粘土 43.15 1.50±0.06 16.4±0.33 2.28±0.09 18±5 2163±302 2.98±0.15 727±101 BQZK05-G12 粉砂质泥岩 46.40 1.99±0.08 15.4±0.31 2.34±0.09 15±5 3739±508 3.19±0.16 1172±159 注:样品符合ESR测年要求,测量信号较好,年龄结果误差小于13% -
[1] Abe−Ouchi A, Saito F, Kawamura K, et al. 2013. Insolation−driven
100000 −year glacial cycles and hysteresis of ice−sheet volume[J]. Nature, 500(7461): 190−194. doi: 10.1038/nature12374[2] An Z. 2000. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 19: 171−187.
[3] An Z, Clemens S C, Shen J, et al. 2011. Glacial−interglacial Indian summer monsoon dynamics[J]. Science, 333(6043): 719−723. doi: 10.1126/science.1203752
[4] An Z, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya−Tibetan plateau since Late Miocene times[J]. Nature, 411(6833): 62−66. doi: 10.1038/35075035
[5] Bao R, Sheng X, Meng X, et al. 2023. 100 ky pacing of the East Asian summer monsoon over the past five glacial cycles inferred from land snails[J]. Geology, 51(2): 179−183. doi: 10.1130/G50243.1
[6] Blaauw M, Christen J A. 2011. Flexible paleoclimate age−depth models using an autoregressive gamma process[J]. Bayesian Analysis, 6(3): 457−474. doi: 10.1214/ba/1339616472
[7] Boulila S, Vahlenkamp M, De Vleeschouwer D, et al. 2018. Towards a robust and consistent middle Eocene astronomical timescale[J]. Earth and Planetary Science Letters, 486: 94−107. doi: 10.1016/j.jpgl.2018.01.003
[8] Cai Y, Fung I Y, Edwards R L, et al. 2015. Variability of stalagmite−inferred Indian monsoon precipitation over the past
252000 yr[J]. Proceedings of the National Academy of Sciences of the United States of America, 112: 2954−2959.[9] Caley T, Roche D M, Renssen H. 2014. Orbital Asian summer monsoon dynamics revealed using an isotope−enabled global climate model[J]. Nature Communications, 5: 5371.
[10] Cao M, Wang Z, Sui Y, et al. 2021. Mineral dust coupled with climate‐carbon cycle on orbital timescales over the Past 4 Ma[J]. Geophysical Research Letters, 48, e2021GL095327. https://doi.org/10.1029/2021GL095327.
[11] Cheng H, Edwards R L, Broecker W S, et al. 2009. Ice age terminations[J]. Science, 326: 248−252.
[12] Cheng H, Edwards R L, Sinha A, et al. 2016. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 534: 640−648.
[13] Clemens S C, Prell W L, Sun Y, et al. 2010. Orbital‐scale timing and mechanisms driving Late Pleistocene Indo‐Asian summer monsoons: Reinterpreting cave speleothem δ18O[J]. Paleoceanography, 25. doi:10.1029/2010PA001926.
[14] Clemens S C, Holbourn A, Kubota Y, et al. 2018. Precession−band variance missing from East Asian monsoon runoff[J]. Nat. Commun., 9(1): 3364. doi: 10.1038/s41467-018-05814-0
[15] De Vleeschouwer D, Vahlenkamp M, Crucifix M, et al. 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 my[J] Geology, 45(4): 375−378.
[16] Ding Z L, Derbyshire E, Yang S L, et al. 2002. Stacked 2.6−Ma grain size record from the Chinese loess based on five sections and correlation with the deep−sea δ18O record[J]. Paleoceanography, 17(3): doi.10.1029/2001PA000725.
[17] Gallagher S J, Sagawa T, Henderson A C G, et al. 2018. East Asian Monsoon History and Paleoceanography of the Japan Sea Over the Last 460, 000 Years[J]. Paleoceanography and Paleoclimatology. doi.org/10.1029/2018PA003331.
[18] Goldsmith Y, Broecker W. S, Xu H, et al. 2017. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales[J]. Proceedings of the National Academy of Sciences, 114: 1817−1821.
[19] Hao Q, Wang L, Oldfield F, et al. 2012. Delayed build−up of Arctic ice sheets during 400, 000−year minima in insolation variability[J]. Nature, 490: 393−396.
[20] Herzschuh U, Zhang C, Mischke S, et al. 2005. A late Quaternary lake record from the Qilian Mountains (NW China): Evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data[J]. Global and Planetary Change, 46: 361−379.
[21] Hilgen F, Zeeden C, Laskar J. 2020. Paleoclimate records reveal elusive ~200 kyr eccentricity cycle for the first time[J]. Global and Planetary Change, 194: 103296. doi: 10.1016/j.gloplacha.2020.103296
[22] Huang H, Gao Y, Ma C, et al. 2021. Organic carbon burial is paced by a~ 173 ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 7(28): eabf9489. doi: 10.1126/sciadv.abf9489
[23] Huybers, P. 2011. Combined obliquity and precession pacing of late Pleistocene deglaciations[J]. Nature, 480(7376): 229−232. doi: 10.1038/nature10626
[24] Jin C S, Xu D, Li M, et al. 2023. Tectonic and orbital forcing of the South Asian monsoon in central Tibet during the Late Oligocene[J]. Proceedings of the National Academy of Sciences, 120(15): e2214558120. doi: 10.1073/pnas.2214558120
[25] Kang S, Du J, Wang N, et al. 2020. Early Holocene weakening and Mid−Late Holocene strengthening of the East Asian winter monsoon[J]. Geology, 48(11): 1043−1047. doi: 10.1130/G47621.1
[26] Kang S, Wang X, Du J, et al. 2022. Paleoclimates inform on a weakening and amplitude−reduced East Asian winter monsoon in the warming future[J]. Geology, 50(11): 1224−1228. doi: 10.1130/G50246.1
[27] Li T, Liu F, Abels H A, et al. 2017. Continued obliquity pacing of East Asian summer precipitation after the Mid−Pleistocene transition[J]. Earth and Planetary Science Letters, 457: 181−190.
[28] Lisiecki L E, Raymo M E. 2005. A Pliocene−Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 20(1): PA1003, doi:10.1029/2004PA001071.
[29] Liu C, Nie J, Li Z, et al. 2021. Eccentricity forcing of East Asian monsoonal systems over the past 3 million years[J]. Proceedings of the National Academy of Sciences, 118(43), e2107055118. https://doi.org/10.1073/pnas.2107055118.
[30] Liu J, Chen J, Zhang X, et al. 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth−Science Reviews, 148: 194−208.
[31] Liu W, Liu Z, An Z, et al. 2014. Late Miocene episodic lakes in the arid Tarim Basin, western China[J]. Proc. Natl. Acad. Sci. USA, 111(46): 16292−16296. doi: 10.1073/pnas.1410890111
[32] Liu X, Liu J, Chen S, et al. 2020. New insights on Chinese cave δ18O records and their paleoclimatic significance[J]. Earth−Science Reviews, 207: 103216. https://doi.org/10.1026/j.earscirev.2020.103216.
[33] Maher B A, Thompson R. 2012. Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime[J]. Journal of Quaternary Science, 27: 615−624.
[34] Melles M, Brighamgrette J, Minyuk P S, et al. 2012. 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE Russia[J]. Science, 337(6092): 315−320. doi: 10.1126/science.1222135
[35] Nie J. 2018. The Plio−Pleistocene 405 kyr climate cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 26−30.
[36] Nie J, Wang W, Heermance R, et al. 2022. Late Miocene Tarim desert wetting linked with eccentricity minimum and East Asian monsoon weakening[J]. Nature Communications, 13(1): 3977.
[37] Nakagawa T, Okuda M, Yonenobu H, et al. 2008. Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms[J]. Geology, 36: 491−494.
[38] Paillard D, Labeyrie L, Yiou P. 1996. Macintosh program performs time-series analysis[J]. Eos Transactions American Geophysical Union, 77(39): 379−379.
[39] Qiu S, Xia Y, Wang P, et al. 1988. Study of the Pleistocene stratigraphy and sedimentary environment of the Songliao Plain[J]. Science in China (Series B), 4: 431−442(in Chinese with English abstract).
[40] Qiu S, Wang X, Zhang S, et al. 2012. Evolution of the ancient lake in the Songliao Plain and the formation of its plain[J]. Quaternary Research, 32(5): 1011−1021(in Chinese with English abstract).
[41] Saltzman B, Maasch K A. 1988. Carbon cycle instability as a cause of the Late Pleistocene ice age oscillations: Modeling the asymmetric response[J]. Global Biogeochemical Cycles, 2(2): 177−185. doi: 10.1029/GB002i002p00177
[42] Schnyder J, Ruffell A, Deconinck J F, et al. 2006. Conjunctive use of spectral gamma−ray logs and clay mineralogy in defining Late Jurassic–Early Cretaceous palaeoclimate change (Dorset, UK) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 229(4): 303−320.
[43] Shao X, Hou H, Ren B, et al. 2024. Sedimentary characteristics analysis and paleoenvironmental restoration of the ground substrate in the Baiquan County, Qiqihar area, Songnen Plain[J]. Geological Bulletin of China, 43(9): 1498−1514(in Chinese with English abstract).
[44] Shi F, Duan A, Yin Q, et al. 2021. Modulation of the relationship between summer temperatures in the Qinghai–Tibetan Plateau and Arctic over the past millennium by external forcings[J]. Quaternary Research, 103: 130−138. doi: 10.1017/qua.2021.3
[45] Shi Z G, Liu X D, Sun Y B, et al. 2011. Distinct responses of East Asian summer and winter monsoons to astronomical forcing[J]. Climate of the Past, 7: 1363−1370.
[46] Song C, Hu S, Han W, et al. 2014. Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 395: 67−76.
[47] Sun Y, Clemens S C, An Z, et al. 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6−Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 25: 33−48.
[48] Sun Y, Clemens S C, Morrill C, et al. 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 5: 46−49.
[49] Sun Y, Kutzbach J, An Z, et al. 2015. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 115: 132−142.
[50] Sun Y, Liang L, Bloemendal J, et al. 2016. High−resolution scanning XRF investigation of Chinese loess and its implications for millennial−scale monsoon variability[J]. Journal of Quaternary Science, 31: 191−202.
[51] Sun Y, Yin Q, Crucifix M, et al. 2019. Diverse manifestations of the mid−Pleistocene climate transition[J]. Nature Communications, 10(1): 352.
[52] Sun Y, Wang T, Yin Q, et al. 2022. A review of orbital−scale monsoon variability and dynamics in East Asia during the Quaternary[J]. Quaternary Science Reviews, 288: 107593. doi: 10.1016/j.quascirev.2022.107593
[53] Tian J, Xie X, Ma W, et al. 2011. X‐ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea[J]. Paleoceanography, 26(4): PA402, doi:10.1029/2010PA002045.
[54] Vaucher R, Zeeden C, Hsieh A I, et al. 2023. Hydroclimate dynamics during the Plio−Pleistocene transition in the Northwest Pacific realm[J]. Global and Planetary Change: 104088. https://doi.org/10.1016/j.gloplacha.2023.104088.
[55] Wang Y, Cheng H, Edwards R L, et al. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 308: 854−857.
[56] Wang Y, Cheng H, Edwards R L, et al. 2008. Millennial−and orbital−scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 451: 1090−1093.
[57] Wang Y, Lu H, Wang K, et al. 2020. Combined high−and low−latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period[J]. Science Advances, 6(46): eabc2414. doi: 10.1126/sciadv.abc2414
[58] Wang Z, Huang C, Kemp D B, et al. 2021. Distinct responses of Late Miocene eolian and lacustrine systems to astronomical forcing in NE Tibet[J]. Geological Society of America Bulletin, 133(11): 2266−2278.
[59] Wen X, Liu Z, Wang S, et al. 2016. Correlation and anti−correlation of the East Asian summer and winter monsoons during the last 21, 000 years[J]. Nature Communications, 7: 11999.
[60] Westerhold T, Bickert T, Röhl U. 2005. Middle to Late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): New constrains on Miocene climate variability and sea−level fluctuations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 217(3/4): 205−222.
[61] Yi L, Shi Z, Tan L, et al. 2017. Orbital−scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary[J]. Climate Dynamics, 50: 2183−2197.
[62] Zhan T, Zeng F, Xie Y, et al. 2019. Magnetic stratigraphy dating of boreholes in the Northeast Plain and the evolution of the ancient Songnen Lake[J]. Chinese Science Bulletin, 64(11): 1179−1190(in Chinese with English abstract). doi: 10.1360/N972018-01212
[63] Zhan Z, Xi G, Ren B, et al. 2024. The spatial changes of carbon storage and carbon fixation potential in five counties of Qiqihar, Heilongjiang Province[J]. Geological Bulletin of China, 43(9): 1470−1484(in Chinese with English abstract).
[64] Zhang R, Li X, Xu Y, et al. 2022. The 173-kyr obliquity cycle pacing the Asian Monsoon in the Eastern Chinese Loess Plateau from Late Miocene to Pliocene[J]. Geophysical Research Letters, 49(2): e2021GL097008. doi: 10.1029/2021GL097008
[65] Zhang W, De Vleeschouwer D, Shen J, et al. 2018. Orbital time scale records of Asian eolian dust from the Sea of Japan since the early Pliocene[J]. Quaternary Science Reviews, 187: 157−167.
[66] Zhang Y G, Ji J, Balsam W, et al. 2009. Mid−Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation[J]. Geology, 37(7): 599−602. doi: 10.1130/G25670A.1
[67] Zhao S, Liu Z, Christophe C, et al. 2018. Responses of the East Asian summer monsoon in the low−latitude South China Sea to high−latitude millennial−scale climatic changes during the last glaciation: Evidence from a high−resolution clay mineralogical record[J]. Paleoceanography & Paleoclimatology, 33(7): 745−765.
[68] Zhao Y, Tzedakis P C, Li Q, et al. 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years[J]. Science Advances, 6(19): eaay6193. doi: 10.1126/SCiadv.aay6193
[69] 裘善文, 王锡魁, 张淑芹, 等. 2012. 松辽平原古大湖演变及其平原的形成[J]. 第四纪研究, 32(5): 1011−1021. doi: 10.3969/j.issn.1001-7410.2012.05.17
[70] 裘善文, 夏玉海, 汪佩芳, 等. 1988. 松辽平原更新世地层及其沉积环境的研究[J]. 中国科学(B辑), (4): 431−442.
[71] 邵兴坤, 侯红星, 任柄璋, 等. 2024. 松嫩平原齐齐哈尔地区拜泉县地表基质特征及其古环境恢复[J]. 地质通报, 43(9): 1498−1514.
[72] 詹涛, 曾方明, 谢远云, 等. 2019. 东北平原钻孔的磁性地层定年及松嫩古湖演化[J]. 科学通报, 64(11): 1179−1190.
[73] 詹泽东, 西广越, 任柄璋, 等. 2024. 黑龙江省齐齐哈尔五县碳存储量空间变化规律及固碳潜力研究[J]. 地质通报, 43(9): 1470−1484. doi: 10.12097/gbc.2023.09.028
-