The discovery of Carboniferous high-Mg diorites and adakites in the Jalaid Banner area, the central Great Xing'an Range and their implications for the subduction of the Nenjiang ocean
-
摘要:
扎赉特旗地区的晚古生代岩浆作用,对于揭示嫩江洋的俯冲过程与机制具有重要的约束意义。通过野外地质调查、岩石学、岩石地球化学和锆石U−Pb定年研究,在扎赉特旗元宝山和贾家屯地区新发现了晚石炭世早期的高镁闪长岩(年龄加权平均值为320.5±1.2 Ma)和O型埃达克岩(年龄加权平均值为317.9±3.3 Ma)。元宝山高镁闪长岩具有低SiO2、高MgO、高Mg#和富Na2O的特点,且Ni、Cr含量高,富集轻稀土元素和大离子亲石元素,亏损高场强元素,认为其形成于消减带之上的地幔楔环境,是由消减板片部分熔融衍生的富Si质流体交代地幔岩部分熔融形成的。贾家屯石英闪长岩具有高SiO2、富Na2O、高Sr和低Yb、Y的特点,K2O/Na2O值低,稀土元素强烈分异,富集轻稀土元素和大离子亲石元素,亏损高场强元素,无负Eu异常,且贫Mg、Cr、Ni,为消减板片部分熔融后经结晶分异形成的O型埃达克岩。新发现的晚石炭世早期的埃达克岩−赞岐岩组合,与研究区石炭纪花岗岩的形成时间(333~304 Ma)同步,且高镁闪长岩与辉长岩(325.2~317.3 Ma)伴生,反映扎赉特旗地区处于松嫩地块西缘的活动大陆边缘弧环境,推测嫩江洋至少从晚石炭世早期开始就存在向东南侧松嫩地块之下的俯冲作用。
Abstract:The Late Paleozoic magmatism in the Jalaid Banner area is of great constraint significance in revealing the subduction process and closure mechanism of the Nenjiang ocean. Through field geological survey, petrology, rock geochemistry and zircon U−Pb dating, early Late Carboniferous high−Mg diorites (weighted average age 320.5±1.2 Ma) and O−type adakites (weighted average age 317.9±3.3 Ma) have been discovered in Yuanbaoshan and Jiajiatun, Jalaid Banner. The Yuanbaoshan high−Mg diorite is characterized by low SiO2, high MgO, high Mg #, rich Na2O, and high Ni and Cr contents. It is rich in light rare earth elements (LREE) and large ion lithophilic elements (LILE), loss of high field strength elements (HFSE). It is considered that the partial melting of subduction plates results in the formation of Si−rich fluids, which displace mantle rocks and cause them to form after partial melting. The Jiajiatun quartz diorite is characterized by high SiO2, Na2O, Sr and low Yb, Y, K2O/Na2O, strong REE differentiation, enrichment of LREE and LILE, loss of HFSE, no negative Eu anomaly, poor Mg, Cr, Ni. It is an O−type adakite which formed by partial melting of subtractive plates and crystallization differentiation. The newly discovered adakite−Sanukite rock assemblage in the early Late Carboniferous is consistent with the formation time of the Carboniferous granite in the study area (333~304 Ma), and the high−Mg diorite is associated with gabbro (325.2~317.3 Ma). It is considered that the Jalaid Banner area was located in the active continental margin arc at the western edge of the Songnen massif during this period. At least since the early Late Carboniferous, the Nenjing ocean has been subducted to the southeast beneath the Songnen massif.
-
Key words:
- Jalaid Banner /
- Carboniferous /
- high-Mg diorite /
- adakite /
- subduction /
- geological survey engineering
-
-
图 1 扎赉特旗地区地质简图(a)和中国东北地区大地构造单元划分简图(b,据潘桂棠等,2009修改)
Figure 1.
图 4 扎赉特旗地区闪长岩和石英闪长岩TAS硅−碱图解(据Middlemost, 1994)
Figure 4.
图 6 扎赉特旗地区闪长岩和石英闪长岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun et al., 1989;白音宝力道埃达克岩数据据张炯飞等,2004;西藏松多高镁闪长岩数据据张雨轩等,2018;日本Kyushu岛赞岐岩数据据Kamei et al., 2004;日本Adak岛埃达克岩数据据Kay,1978)
Figure 6.
图 7 扎赉特旗地区闪长岩和石英闪长岩的高镁安山岩分类图解(底图据Kamei et al.,2004)
Figure 7.
图 8 δEu−(La/Yb)N变异图解(a)和δEu−(K2O+Na2O)变异图解(b)(底图据Chappell,1999)
Figure 8.
图 9 微量元素Yb−La/Yb (a,底图据Yogodzinski et al., 1995) 与Y−Sr/Y (b,底图据Smithies et al., 2000)关系图解
Figure 9.
图 11 扎赉特旗地区闪长岩和石英闪长岩Y−Nb (a)和Yb−Ta(b)构造环境判别图解(据Pearce et al.,1984)
Figure 11.
图 12 Zr−(Nb/Zr)N(a)和Ta/Yb−Th/Yb(b)构造环境判别图解(a据Thiéblemont et al., 1994;b据Middlemost, 1994)
Figure 12.
表 1 扎赉特旗地区闪长岩和石英闪长岩锆石LA−ICP−MS U−Th−Pb 分析结果
Table 1. Zircon LA−ICP−MS U−Th−Pb data of the diorite and quartz diorite in the Jalaid Banner
点号 含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 元宝山闪长岩(G17001b2) 1 40 94 95 1.00 0.372 0.0136 0.0513 0.0009 321 10 322 6 2 55 127 159 0.80 0.3691 0.0123 0.0518 0.0011 319 9 325 7 3 48 113 123 0.92 0.3727 0.0126 0.0509 0.0012 322 9 320 8 4 29 64 88 0.73 0.402 0.0288 0.0498 0.0012 343 21 313 8 5 20 43 83 0.52 0.3774 0.0116 0.0518 0.0012 325 9 325 7 6 16 35 63 0.55 0.3736 0.0239 0.0516 0.0012 322 18 325 7 7 22 49 88 0.56 0.3779 0.0153 0.0517 0.0016 326 11 325 10 8 185 450 278 1.62 0.3704 0.012 0.0516 0.0015 320 9 324 9 9 33 82 82 0.99 0.3633 0.0124 0.0504 0.001 315 9 317 6 10 153 381 244 1.56 0.3667 0.0117 0.0511 0.0011 317 9 321 7 11 47 111 108 1.03 0.3823 0.014 0.053 0.0014 329 10 333 9 12 23 51 98 0.52 0.3775 0.0129 0.0526 0.0013 325 10 330 8 13 69 167 173 0.96 0.3622 0.0101 0.05 0.001 314 8 315 6 14 37 83 119 0.70 0.3707 0.0119 0.0519 0.0011 320 9 326 7 15 48 116 134 0.87 0.3639 0.0118 0.051 0.0012 315 9 321 7 16 149 359 250 1.43 0.356 0.0088 0.0496 0.0007 309 7 312 4 17 9 21 33 0.63 0.3715 0.02 0.0512 0.0014 321 15 322 8 18 28 64 72 0.89 0.3812 0.0168 0.0524 0.0015 328 12 329 9 19 253 592 310 1.91 0.3972 0.0127 0.0525 0.0014 340 9 330 9 20 26 58 73 0.79 0.3798 0.0217 0.0515 0.0016 327 16 324 10 21 52 126 103 1.22 0.3598 0.0117 0.0501 0.001 312 9 315 6 22 97 239 173 1.38 0.3602 0.0097 0.0501 0.0009 312 7 315 6 23 68 155 144 1.08 0.3827 0.0118 0.0525 0.0013 329 9 330 8 24 133 322 274 1.18 0.3673 0.0109 0.0511 0.0012 318 8 321 8 25 52 121 129 0.94 0.3629 0.0101 0.05 0.0009 314 8 315 6 26 96 229 207 1.10 0.3679 0.0099 0.0511 0.0011 318 7 321 7 27 29 71 77 0.93 0.3627 0.0126 0.0498 0.0009 314 9 313 6 28 95 208 308 0.68 0.3837 0.0108 0.0531 0.0014 330 8 333 8 29 10 20 46 0.43 0.3842 0.016 0.0527 0.0015 330 12 331 10 30 19 42 66 0.63 0.3744 0.0134 0.0516 0.0011 323 10 325 7 贾家屯石英闪长岩(G17006b3) 1 32 71 56 1.27 0.4635 0.0425 0.0493 0.0012 387 30 310 7 *2 19 44 43 1.03 0.3844 0.019 0.0531 0.0015 330 14 333 9 3 38 94 64 1.47 0.368 0.0231 0.0495 0.0011 318 17 311 7 4 73 178 178 1.00 0.3698 0.0141 0.051 0.0013 320 11 321 8 5 40 102 95 1.07 0.3531 0.0122 0.0492 0.0011 307 9 310 7 6 73 181 141 1.28 0.3814 0.0197 0.0518 0.0012 328 15 326 7 7 48 104 252 0.41 0.37 0.0111 0.0515 0.0016 320 8 324 10 8 39 99 101 0.98 0.3639 0.0128 0.0503 0.0012 315 10 317 7 9 28 69 53 1.31 0.3749 0.0156 0.051 0.0012 323 12 321 7 10 118 292 227 1.29 0.3804 0.0138 0.0514 0.0015 327 10 323 9 11 33 81 78 1.04 0.3758 0.0135 0.0517 0.0015 324 10 325 9 *12 312 118 377 0.31 4.1867 0.088 0.2901 0.0059 1671 18 1642 30 13 69 174 218 0.80 0.3545 0.0105 0.0496 0.0011 308 8 312 7 14 38 96 87 1.10 0.363 0.0126 0.0502 0.0012 315 9 316 8 *15 215 492 229 2.15 0.4244 0.0123 0.0578 0.0014 359 9 362 9 16 37 91 112 0.82 0.3676 0.0132 0.0505 0.0013 318 10 317 8 17 173 451 221 2.04 0.3623 0.012 0.0504 0.0012 314 9 317 7 18 41 98 160 0.62 0.375 0.014 0.0524 0.0016 323 10 329 10 *19 324 618 523 1.18 0.5071 0.013 0.0676 0.0014 417 9 422 9 20 43 116 56 2.07 0.3557 0.014 0.0486 0.0011 309 11 306 7 21 127 326 362 0.91 0.3538 0.0101 0.0497 0.0012 308 8 312 8 22 27 65 68 0.95 0.3796 0.0327 0.051 0.0011 327 24 321 7 23 32 77 79 0.98 0.3792 0.014 0.0506 0.0012 327 10 318 7 *24 10 18 16 1.14 0.6738 0.0564 0.0536 0.0017 523 34 336 11 25 64 171 115 1.49 0.3584 0.0231 0.0493 0.0011 311 17 310 7 26 20 49 46 1.07 0.3589 0.0168 0.0512 0.0014 311 13 322 9 27 17 42 46 0.91 0.3674 0.0172 0.0506 0.0013 318 13 318 8 28 150 378 215 1.75 0.3703 0.0113 0.0515 0.0011 320 8 324 7 29 35 86 86 0.99 0.3699 0.0144 0.0513 0.0013 320 11 323 8 30 39 96 106 0.91 0.3709 0.0134 0.0513 0.0013 320 10 323 8 注:标注*的数据表示在计算年龄加权平均值及绘制锆石U−Pb谐和图时舍弃的数据,可能由于普通铅过高等原因,使年龄值偏离谐和线 表 2 扎赉特旗地区晚石炭世早期闪长岩和石英闪长岩主量、微量和稀土元素分析结果
Table 2. Analysis result of major, trace elements and REE of early Late carboniferous diorite and quartz diorite in the Jalaid Banner area
样号 岩性 Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 FeO 烧失量 总计 Na2O/K2O G17001b2-1 高镁闪长岩 4.20 6.28 16.6 53.17 0.35 1.61 5.08 1.09 0.20 3.56 5.12 2.54 99.8 2.61 G17001b2-3 高镁闪长岩 4.18 6.42 16.6 51.51 0.38 1.58 6.33 1.15 0.19 4.36 4.58 2.40 99.68 2.64 G17001b2-5 高镁闪长岩 4.48 5.80 16.57 53.43 0.38 1.52 5.11 1.26 0.18 4.17 4.74 2.34 99.97 2.94 G17006b3-1 石英闪长岩 5.76 0.87 15.74 67.94 0.15 2.14 2.52 0.37 0.07 1.54 1.71 0.73 99.53 2.70 G17006b3-2 石英闪长岩 5.54 1.13 15.24 68.83 0.14 1.95 2.28 0.36 0.07 1.41 1.98 0.73 99.66 2.84 G17006b3-3 石英闪长岩 5.48 0.92 15.9 67.66 0.14 2.39 2.77 0.36 0.07 1.58 1.62 0.84 99.74 2.29 G17006b3-4 石英闪长岩 4.76 1.06 16.39 63.27 0.17 1.78 6.73 0.51 0.17 2.34 2.34 0.65 100.1 2.68 G17006b3-5 石英闪长岩 5.71 1.02 15.26 68.81 0.14 2.00 2.35 0.38 0.08 1.64 1.77 0.77 99.94 2.85 样号 A/CNK TFeO Mg# DI SI La Ce Pr Nd Sm Eu Gd Tb Dy Ho G17001b2-1 0.93 8.33 0.57 46.97 30.29 22.2 50.9 6.95 29.3 6.43 2.09 5.17 0.81 5.32 0.95 G17001b2-3 0.83 8.50 0.57 45.99 30.57 23.7 53.3 6.95 27.5 5.48 1.89 4.41 0.69 4.38 0.78 G17001b2-5 0.91 8.49 0.55 48.74 28.14 25.9 53.8 7.90 30.0 6.12 2.24 5.21 0.82 5.44 0.99 G17006b3-1 0.96 3.09 0.33 81.59 7.21 36.4 65.2 6.94 23.3 3.19 1.28 2.56 0.27 1.32 0.21 G17006b3-2 0.99 3.25 0.38 81.1 9.38 38.9 69.8 7.44 24.9 3.31 1.25 2.63 0.29 1.31 0.20 G17006b3-3 0.96 3.04 0.35 80.4 7.72 38.1 69.0 7.28 24.5 3.27 1.36 2.63 0.27 1.25 0.19 G17006b3-4 0.75 4.44 0.30 65.91 8.64 39.5 73.2 8.00 27.8 4.02 1.24 3.29 0.37 1.90 0.33 G17006b3-5 0.96 3.25 0.36 81.8 8.38 38.8 69.9 7.09 23.8 3.08 1.23 2.76 0.26 1.31 0.20 样号 Er Tm Yb Lu Y Co Ni Hf Ta Th U Ba Cr Ga Nb G17001b2-1 2.78 0.38 2.71 0.33 26.1 32.9 78.5 0.51 0.43 2.92 0.37 1800 85.2 16.1 10.1 G17001b2-3 2.38 0.34 2.49 0.30 22.5 33.9 73.3 0.60 0.42 1.24 0.33 1600 86.1 17.2 10.6 G17001b2-5 2.89 0.37 2.79 0.34 26.3 33.0 68.4 0.45 0.43 2.30 0.48 2400 90.7 15.3 11.0 G17006b3-1 0.61 0.07 0.54 0.06 6.13 6.35 2.23 0.30 0.31 4.12 0.23 1300 5.10 15.1 6.13 G17006b3-2 0.56 0.06 0.51 0.054 5.75 7.42 2.72 0.20 0.26 3.59 0.21 1300 3.10 13.2 6.15 G17006b3-3 0.53 0.06 0.45 0.053 5.44 6.57 2.54 0.19 0.23 3.37 0.22 1400 5.60 15.5 5.70 G17006b3-4 0.93 0.11 0.87 0.094 9.13 9.53 6.45 0.42 0.29 4.25 0.48 1000 9.50 23.5 7.22 G17006b3-5 0.53 0.06 0.49 0.054 5.41 6.57 4.54 0.20 0.33 3.24 0.16 1100 4.65 14.0 6.20 样号 Rb Sr V Zr ΣREE LREE HREE LREE/
HREE(La/
Yb)NδEu δCe NbN/
ZrNG17001b2-1 50.8 615 90.4 216 136.18 117.73 18.45 6.38 5.86 1.07 1.00 0.73 G17001b2-3 49.9 642 104 162 134.57 118.81 15.76 7.54 6.80 1.14 1.01 1.03 G17001b2-5 47.8 566 101 239 144.78 125.93 18.85 6.68 6.65 1.18 0.92 0.72 G17006b3-1 57.8 449 25.8 256 141.91 136.26 5.65 24.13 48.74 1.32 0.94 0.38 G17006b3-2 58.9 387 25.6 253 151.23 145.62 5.61 25.96 54.93 1.26 0.94 0.38 G17006b3-3 62.4 494 26.3 244 149.04 143.61 5.43 26.43 60.93 1.37 0.95 0.37 G17006b3-4 47.5 670 54.2 228 161.60 153.70 7.90 19.47 32.74 1.01 0.95 0.50 G17006b3-5 60.1 392 26.2 257 149.51 143.85 5.67 25.38 57.26 1.27 0.96 0.38 注:主量元素含量单位为%,微量和稀土元素含量单位为106。Mg#=(MgO/40.31)/(MgO/40.31+TFeO/71.85);SI=100×MgO/(MgO+FeO+Fe2O3+Na2O+K2O);DI=Q2z+Or+Ab+Ne+Lc+Kp -
[1] Atherton M P, Petford N. 1993. Gencration of sodium−rich magmas from newly underplated basaltic crust[J]. Nature, 362: 144−146. doi: 10.1038/362144a0
[2] Chappell B W. 1999. Aluminium saturation in I−and S−type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535−551. doi: 10.1016/S0024-4937(98)00086-3
[3] Deng J F, Liu C, Feng Y F, et al. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): Two igneous rock types related to oceanic subduction[J]. Geology in China, 37(4): 1112−1118(in Chinese with English abstract).
[4] Feng Z Q, Li W M, Liu Y J, et al. 2018a. Early Carboniferous tectonic evolution of the northern Heihe − Nenjiang − Hegenshan suture zone, NE China: Constraints from the mylonitized Nenjiang rhyolites and the Moguqi gabbros[J]. Geological Journal, 53(3): 1005−1021. doi: 10.1002/gj.2940
[5] Feng Z Q, Liu Y J, Li L, et al. 2018b. Subduction, accretion and collision during the Neoproterozoic −Cambrian orogeny in the Great Xing'an Range, NE China: Insights from geochemistry and geochronology of the Ali River ophioliti cmélange and arc−type granodiorites[J]. Precambrian Research, 311: 117−135. doi: 10.1016/j.precamres.2018.04.013
[6] Furukawa Y, Tatsumi Y. 1999. Melting of a subducting slab and production of high−Mg andesite magmas: Unusual magmatism in SW Japan[J]. Geophys. Res. Lett., 26(15): 2271−2274. doi: 10.1029/1999GL900512
[7] Ge M C, Zhou W X, Yu Y, et al. 2011. Dissolution and supracrustal rocks dating of XilinGol Complex, Inner Mongolia, China[J]. Earth Science Frontiers, 18(5): 182−195(in Chinese with English abstract).
[8] Grove T L, Parman S W, Bowring S A, et al. 2002. The role of H2O rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California[J]. Contributions to Mineralogy and Petrology, 142: 375−396. doi: 10.1007/s004100100299
[9] Han G Q, Liu Y J, Neubauer F, et al. 2015. U−Pb age and Hf isotopic data of detrital zircons from the Devonian and Carboniferous sandstones in Yimin area, NE China: New evidences to the collision timing between the Xing’an and Erguna blocks in eastern segment of Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 97: 211−228. doi: 10.1016/j.jseaes.2014.08.006
[10] Jahn B M, Windley B, Natal'in B, et al. 2004. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 23(5): 599−603. doi: 10.1016/S1367-9120(03)00124-X
[11] Jahn B M, Litvinovsky B A, Zanvilevich A N, et al. 2009. Peralkaline granitoidmagmatism in the Mongolian−Transbaikalian Belt: Evolution, petrogenesis and tectonic significance[J]. Lithos, 113 (3/4): 521−539.
[12] Jenner G A. 1981. Geochemistry of high−Mg andesites from Cape Vogel, Papa New Guinea[J]. Chem. Geol., 33: 307−332.
[13] Jian P, Kröner A, Windley B F, et al. 2012. Carboniferous and Cretaceous mafic−ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”[J]. Lithos, 142/143: 48−66.
[14] Kamei A, Owada M, Nagao T, et al. 2004. High−Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions[J]. Lithos, 75: 359−371. doi: 10.1016/j.lithos.2004.03.006
[15] Kay R W. 1978. Alertian magnesian andesite: Melts from subducted Pacific 0cean crust[J]. Journal of Volcanology and Geothermal Research, 4: 117−132. doi: 10.1016/0377-0273(78)90032-X
[16] Kelemen P B. 1995. Genesis of high Mg# andesites and the continental crust[J]. Contributions to Mineralogy and Petrology, 120: 1−19. doi: 10.1007/BF00311004
[17] Lassiter J C, Depaolo D J. 1997. Plumes/ lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotope constraints[C]//Mahoney J. Large Igneous Provinces: Continental, Oceallic, and Planetary F1ood Volcanism. Geophysical Monography 100, American Geophysical Union: 335−355.
[18] Li J Y. 1998. Some new ideas on tectonices of NE China and its neighboring areas[J]. Geological Review, 44(4): 339−347(in Chinese with English abstract).
[19] Li J Y, Liu J F, Qu J F, et al. 2019. Paleozoic tectonic units of Northeast China: Continental blocks or orogenic belts?[J]. Earth Science, 44(10): 3157−3177(in Chinese with English abstract).
[20] Li S L, Ouyang Z Y. 1998. Tectonic framework and evolution of xing’anling−mongolian orogenic belt(xmob) and its adjacent region[J]. Marine Geology and Quaternary Geology, 18(3): 45−54(in Chinese with English abstract).
[21] Li Y, Ling M X, Ding X, et al. 2009. Adakites or adakitic rocks and associated metallogenesis in eastern China[J]. Geotectonicaet Metallogenia, 33(3): 448−464(in Chinese with English abstract).
[22] Liang S, Peng Y J, Jiang Z L. 2009. Discussion on “multi−laminatestructure” of basement in Songliao Basin and its significance[J]. Global Geology, 28(4): 430−437,475(in Chinese with English abstract).
[23] Liu Y J, Zhang X Z, Jin W, et al. 2010. Late paleozoic tectonic evolution in northeast China[J]. Geology in China, 37(4): 943−951(in Chinese with English abstract).
[24] Liu Y J, Zhang X J, Chi X G, et al. 2011. Deformation and tectonic layer division of the upper paleozoic in Daxing’anling area[J]. Journal of Jilin University(Earth Science Edition), 41(5): 1304−1313(in Chinese with English abstract).
[25] Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013
[26] Liu Y J, Feng Z Q, Jiang L W, et al. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05
[27] Ludwig K R. 2003. Isoplot/Ex Version 3.0 A- Geochronological Toolkit for Mircrosoft Excel[M].Berkeley:Berkeley Geochronological Centre Special Publication.
[28] Ma Y F. 2019. The late Paleozoic tectonic evolution of the central Great Xing’an Range, NE China[D]. Jilin University Doctorate Dissertation (in Chinese with English abstract).
[29] Ma Y F, Liu Y J, Qin T, et al. 2020. Late Devonian to Early Carboniferous magmatism in the western Songliao−Xilinhot block, Northeast China: Implications foreastward subduction of the Nenjiang oceanic lithosphere[J]. Geological Journal, 55(3): 2208−2231. doi: 10.1002/gj.3739
[30] Ma Y F, Liu Y J, Qin T, et al. 2022. Closure mechanism of the Nenjiang Ocean: Constraint from the deformation pattern and age of the Yinder Complex in Jalaid Banner area, SE Inner Mongolia, China[J]. Acta Petrologica Sinica, 38(8): 2419−2441(in Chinese with English abstract).
[31] Ma Y F, Liu Y J, Peskov A Y, et al. 2022. Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China[J]. China Geology, 5(4): 555−578.
[32] Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite−trondhjemite− granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1): 1−24.
[33] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215−224. doi: 10.1016/0012-8252(94)90029-9
[34] Müntener O, Kelemen P B, Grove T L. 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study[J]. Contributions to Mineralogy and Petrology, 141: 643−658. doi: 10.1007/s004100100266
[35] Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−4(in Chinese with Einglish abstract).
[36] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956
[37] Pei F P, Xu W L, Yang D B, et al. 2006. Zircon U−Pb geochronology of basement metamorphic rocks in Songliao basin and its geological significance[J]. Chinese Science Bulletin, 51(24): 2881−2887(in Chinese). doi: 10.1360/csb2006-51-24-2881
[38] Polat A, Kerrich R. 2001. Magnesian andesites, Nb−enriched basalt−andesites, and adakites from late−Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic pr[J]. Contributions to Mineralogy and Petrology, 14(1): 36−52.
[39] Qian C, Lu L, Qin T, et al. 2018. The early late−paleozoic granitic magmatism in the zalantun region, northern Great Xing’an Range, NE China: Constraints on the timing of amalgamation of Erguna−Xing’an and Songnen blocks[J]. Acta Geologica Sinica, 92(11): 2190−2214(in Chinese with English abstract).
[40] Qiu L G, Ren F L, Cao Z X, et al. 2008. Late mesozoic magmatic activities and their constraints on geotectonics of Jiaodong region[J]. Geotectonicaet Metallogenia, 32(1): 117−123(in Chinese with English abstract).
[41] Shi Y, Chen J S, Wei M H, et al. 2020. Evolution of eastern segment of the Paleo−Asian Ocean in the Late Paleozoic: Geochronology and geochemistry constraints of granites in Faku area, North Liaoning, NE China[J]. Acta Petrologica Sinica, 36(11): 3287−3308(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.11.03
[42] Shimoda G, Tatsumi Y, Nohda S, et al. 1998. Setouchi high−Mg andesites revisited: Geochemical evidence for melting of subducted sediments[J]. Earth and Planetary Science Letters, 160: 479−492. doi: 10.1016/S0012-821X(98)00105-8
[43] Smithies R H, Champion D C. 2000. The Archaean high−Mg diorite suite: Links to tonalite −trondhjemite −granodiorite magmatism and implications for Early Archaean crustal growth[J]. Journal of Petrology, 41(12): 1653−1671. doi: 10.1093/petrology/41.12.1653
[44] Song B, Zhang Y H, Wan Y, et al. 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(S1): 26−30(in Chinese with English abstract).
[45] Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantle−derived, LILE−enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province[J]. Canadian Journal of Earth Sciences, 26(9): 1688−1712. doi: 10.1139/e89-145
[46] Stevenson R, Herry P, Gariepy C. 1999. Assimilation−fractional crystallization origin of Archean sanukitoid suites: Western Superior Province, Canada[J]. Precambrian Res., 96: 83−89. doi: 10.1016/S0301-9268(99)00009-1
[47] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in Ocean Basins. Geological Society of London, Specical Publications, 42(1) : 313−345.
[48] Tatsumi Y, Ishikawa N, Anno K, et al. 2001. Tectonic setting of high−Mg andesite magmatism in the SW Japan arc: K−Ar chronology of the Setouchi volcanic belt[J]. Geophysical Journal International, 144(3): 625−631. doi: 10.1046/j.1365-246x.2001.01358.x
[49] Tatsumi Y, Shukuno H, Sato K, et al. 2003. The petrology and geochemistry of high− magnesium andesites at the western tip of the Setourhi volcanic belt, SW Japan[J]. Journal of Petrology, 44(9): 1561−1578. doi: 10.1093/petrology/egg049
[50] Thiéblemont D, Tegyey M. 1994. One discrimination géochimique desroches différenciées témoin de la diversité d’origine et de situation tectonique des magmas calco−alcalins[J]. Comptes Rendusde l’Académiedes Sciences Paris, 319: 87−94(in France).
[51] Wang C, Sun F, Liu D, et al. 2022. Discovery of the Early Paleozoic Akechukesai high−Mg diorites in the western segment of East Kunium Orogenic Belt and its constraints on the mechanism of break−off from Proto−Tethys Oceane subducted slab[J]. Geosciences Journal, 26: 1−16.
[52] Wang Y, Fu J Y, Na F C, et al. 2013. Geochemical characteristics and zircon U−Pb age of the gabbro −diorite in Jalaid Banner of Inner Mongolia and their geological significance[J]. Geological Bulletin of China, 32(10): 1525−1535(in Chinese with English abstract).
[53] Wu G, Sun F Y, Zhao C S, et al. 2005. Discovery of early Paleozoic post−collisional granites in the northern margin of Erguna block and its geological significance[J]. Chinese Science Bulletin, 50(20): 2278−2288(in Chinese). doi: 10.1360/972004-679
[54] Wu S Y, Hou L, Ding J, et al. 2017. Deep magma evolution in the extensional Youjiang Basin in late Yanshanian period: Evidence from geochemical characteristics of Baiceng ultramafic rock, Guizhou Province[J]. Geological Bulletin of China, 36(2/3): 445−458(in Chinese with English abstract).
[55] Wu Y B, Zheng Y F. 2004. Origin mineralogy of zircon and its constraints on U−Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589−1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
[56] Xu B, Zhao P, Bao Q Z, et al. 2014. Preliminary study on the pre−Mesozoic tectonic unitdivision of the Xing−Meng Orogenic Belt ( XMOB)[J]. Acta Petrologica Sinica, 30(7): 1841−1857(in Chinese with English abstract).
[57] Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing’an−Mongolian Orogenic Belt[J]. Earth Science, 44(5): 1620−1646(in Chinese with English abstract).
[58] Yang X L. 2007. Geological characteristics and study of detrital zircon Geochronology of epimetamorphic rock series in Zhalantun area[D]. Jilin University Master's Degree Thesis(in Chinese with English abstract).
[59] Ye H W, Zhang X Z, Zhou Y W. 1994. 40Ar−39Ar age and its geologic significance of vein crossite in glaucophane−schist, Mudanjiang area[J]. Journal of changchun university of earth sciences, 24(4): 369−372(in Chinese with English abstract).
[60] Yin J Y, Yuan C, Sun M, et al. 2010. Late Carboniferous high−Mg dioritic dikes in western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications[J]. Gondwana Research, 17: 145−152. doi: 10.1016/j.gr.2009.05.011
[61] Yogodzinski G M, Kay R W, Volynets O N, et al. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge[J]. Geological Society of America Bulletin, 107(5): 505−519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
[62] Yuan H L, Wu F Y, Gao S, et al. 2003. U−Pb dating and rare earth element composition analysis of the Cenozoic human body invasion in northeast China[J]. Chinese Science Bulletin, (14): 1511−1520(in Chinese).
[63] Zhang J F, Li Z T, Jin C Z. 2004. Adakites in northeastern China and their mineralized implications[J]. Acta Petrologica Sinica, 20(2): 361−369(in Chinese with English abstract).
[64] Zhang Q, Qian Q, Wang E Q, et al. 2001a. An East China plateau in Mid−Late Yanshanian period: Implication from adakites[J]. Chinese Journal of Geology, 36(2): 248−255(in Chinese with English abstract).
[65] Zhang Q, Wang Y, Qian Q, et al. 2001b. The characteristics and tectonic−metal logenic significances of the adakites in Yanshan period from eastern China[J]. Acta Petrologica Sinica, 17(2): 236−244(in Chinese with English abstract).
[66] Zhang Q, Qian Q, Zhai M G, et al. 2005. Geochemistry petrogenesis and geodynamic implications of sanukite[J]. Acta Petrologica et Mineralogica, (2): 117−125(in Chinese with English abstract).
[67] Zhang Y X, Xie C M, Yu Y P, et al. 2018. The Early Jurassic subduction of Neo−Tethyan oceanic slab: Constraints from zircon U−Pb age and Hf isotopic compositions of Sumdo high−Mg diorite[J]. Geological Bulletin of China, 37(8): 1387−1399(in Chinese with English abstract).
[68] Zhou J B, Wang B, Zeng W S, et al. 2014. Detrital zircon U−Pb dating of the Zhalantun Metamorphic Complex and its tectonic implications, Great Xing’an, NE China[J]. Acta Petrologica Sinica, 30(7): 1879−1888(in Chinese with English abstract).
[69] 邓晋福, 刘翠, 冯艳芳, 等. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩 类[J]. 中国地质, 37(4): 1112−1118. doi: 10.3969/j.issn.1000-3657.2010.04.025
[70] 葛梦春, 周文孝, 于洋, 等. 2011. 内蒙古锡林郭勒杂岩解体及表壳岩系年代确定[J]. 地学前缘, 18(5): 182−195.
[71] 李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, 44(4): 339−347. doi: 10.3321/j.issn:0371-5736.1998.04.002
[72] 李锦轶, 刘建峰, 曲军峰, 等. 2019. 中国东北地区古生代构造单元: 地块还是造山带?[J]. 地球科学, 44(10): 3157−3177.
[73] 李双林, 欧阳自远. 1998. 兴蒙造山带及邻区的构造格局与构造演化[J]. 海洋地质与第四纪地质, 18(3): 45−54.
[74] 李印, 凌明星, 丁兴, 等. 2009. 中国东部埃达克岩及成矿作用[J]. 大地构造与成矿学, 33(3): 448−464. doi: 10.3969/j.issn.1001-1552.2009.03.016
[75] 梁爽, 彭玉鲸, 姜正龙. 2009. 松辽盆地基底“多层结构”的探讨及其意义[J]. 世界地质, 28(4): 430−437,475. doi: 10.3969/j.issn.1004-5589.2009.04.004
[76] 刘永江, 张兴洲, 金巍, 等. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951. doi: 10.3969/j.issn.1000-3657.2010.04.010
[77] 刘永江, 张兴洲, 迟效国, 等. 2011. 大兴安岭地区上古生界变形特征及构造层划分[J]. 吉林大学学报(地球科学版), 41(5): 1304−1313.
[78] 刘永江, 冯志强, 蒋立伟, 等. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047.
[79] 马永非. 2019. 大兴安岭中段晚古生代构造演化研究[D]. 吉林大学博士学位论文.
[80] 马永非, 刘永江, 秦涛, 等. 2022. 嫩江洋闭合机制: 来自内蒙古东南部扎赉特旗地区音德尔杂岩构造变形样式与时代的启示[J]. 岩石学报, 38(8): 2419−2441. doi: 10.18654/1000-0569/2022.08.11
[81] 潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−4. doi: 10.3969/j.issn.1000-3657.2009.01.001
[82] 裴福萍, 许文良, 杨德彬, 等. 2006. 松辽盆地基底变质岩中锆石U−Pb年代学及其地质意义[J]. 科学通报, 51(24): 2881−2887. doi: 10.3321/j.issn:0023-074X.2006.24.012
[83] 钱程, 陆露, 秦涛, 等. 2018. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳−兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 92(11): 2190−2214. doi: 10.3969/j.issn.0001-5717.2018.11.002
[84] 邱连贵, 任凤楼, 曹忠祥, 等. 2008. 胶东地区晚中生代岩浆活动及对大地构造的制约[J]. 大地构造与成矿学, 32(1): 117−123. doi: 10.3969/j.issn.1001-1552.2008.01.015
[85] 时溢, 陈井胜, 魏明辉, 等. 2020. 古亚洲洋东段晚古生代演化过程: 辽宁北部法库地区花岗岩年代学和地球化学的制约[J]. 岩石学报, 36(11): 3287−3308. doi: 10.18654/1000-0569/2020.11.03
[86] 宋彪, 张玉海, 万渝, 等. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(S1): 26−30.
[87] 汪岩, 付俊彧, 那福超, 等. 2013. 内蒙古扎赉特旗辉长岩−闪长岩地球化学特征和 LA−ICP−MS 锆石 U−Pb年龄[J]. 地质通报, 32(10): 1525−1535. doi: 10.3969/j.issn.1671-2552.2013.10.004
[88] 吴松洋, 侯林, 丁俊, 等. 2017. 贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据[J]. 地质通报, 36(2/3): 445−458.
[89] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[90] 武广, 孙丰月, 赵财胜, 等. 2005. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 50(20): 2278−2288. doi: 10.3321/j.issn:0023-074X.2005.20.017
[91] 徐备, 赵盼, 鲍庆中, 等. 2014. 兴蒙造山带前中生代构造单元划分初 探[J]. 岩石学报, 30(7): 1841−1857.
[92] 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.
[93] 杨现力. 2007. 扎兰屯浅变质岩系地质特征及碎屑锆石年代学研 究[D]. 吉林大学硕士学位论文.
[94] 叶慧文, 张兴洲, 周裕文. 1994. 牡丹江地区蓝片岩中脉状青铝闪石40Ar− 39Ar年龄及其地质意义[J]. 长春地质学院学报, 24(4): 369−372.
[95] 袁洪林, 吴福元, 高山, 等. 2003. 东北地区新生代侵入体的锆石激光探针U−Pb年龄测定与稀土元素成分分析[J]. 科学通报, (14): 1511−1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
[96] 张炯飞, 李之彤, 金成洙. 2004. 中国东北部地区埃达克岩及其成矿意义[J]. 岩石学报, 20(2): 361−369. doi: 10.3321/j.issn:1000-0569.2004.02.016
[97] 张旗, 钱青, 王二七, 等. 2001a. 燕山中晚期的中国东部高原: 埃达克岩的启示[J]. 地质科学, 36(2): 248−255. doi: 10.3321/j.issn:0563-5020.2001.02.014
[98] 张旗, 王焰, 钱青, 等. 2001b. 中国东部燕山期埃达克岩的特征及其构 造−成矿意义[J]. 岩石学报, (2): 236−244. doi: 10.3969/j.issn.1000-0569.2001.02.008
[99] 张旗, 钱青, 翟明国, 等. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义[J]. 岩石矿物学杂志, (2): 117−125. doi: 10.3969/j.issn.1000-6524.2005.02.005
[100] 张雨轩, 解超明, 于云鹏, 等. 2018. 早侏罗世新特提斯洋俯冲作用—— 来自松多高镁闪长岩锆石U−Pb定年及Hf同位素的制约[J]. 地质通报, 37(8): 1387−1399. doi: 10.12097/j.issn.1671-2552.2018.08.003
[101] 周建波, 王斌, 曾维顺, 等. 2014. 大兴安岭地区扎兰屯变质杂岩的碎屑锆石U−Pb年龄及其大地构造意义[J]. 岩石学报, 30(7): 1879−1888.
-