Chronology, geochemistry, petrogenesis and tectonic setting of Chaganhake granitic pegmatite in North Qaidam
-
摘要:
研究目的 厘定查干哈克花岗伟晶岩的形成时代、成因和构造环境对于青藏高原北缘古特提斯洋演化与稀有金属成矿作用研究具有重要意义。
研究方法 对花岗伟晶岩及其围岩黑云正长花岗岩分别开展了独居石和锆石U−Pb定年,以及岩石地球化学研究。
研究结果 花岗伟晶岩独居石U−Pb年龄为250.4±0.7 Ma(MSWD=0.1, n=27),黑云正长花岗岩锆石U−Pb年龄为374.3±8.5 Ma(MSWD=0.15,n=8)。花岗伟晶岩具有高硅、碱、铝,低钛的特征,A/CNK值为1.15~1.32,稀土元素含量很低,呈现轻稀土元素弱富集的右倾配分模式,Eu强烈亏损,δEu为0.07~0.18,具有M型稀土元素四分组效应,强烈富集Rb、K、U、P,强烈亏损Ba、Sr和Ti,中等富集高场强元素Nb、Ta、Zr、Hf;黑云母正长花岗岩富硅、钾,贫钛,A/CNK值为1.13~1.32,稀土元素含量中等,呈现轻稀土元素强烈富集的右倾配分模式,Eu亏损明显,δEu为0.19~0.32,强烈富集Rb、K、Th,强烈亏损Sr、P和Ti。
结论 年代学和地球化学结果表明,花岗伟晶岩与黑云正长花岗岩不具成因联系。结合区域地质背景认为,柴北缘西段查干哈克花岗伟晶岩不同于宗务隆花岗伟晶岩,宗务隆花岗伟晶岩是古特提斯洋大陆边缘增生造山和碰撞造山过程中形成的花岗岩经高分异演化而成,而查干哈克花岗伟晶岩形成于早三叠世古特提斯洋俯冲环境下的柴达木地块大陆内部,是大陆内部挤压混合岩化过程中达肯大坂岩群小比例部分熔融的产物,具有铌钽矿成矿潜力。
Abstract:Objective The determination of the formation age, petrogenesis, and tectonic environment of Chaganhake granite pegmatite is of great significance for the study of the evolution of the Paleo−Tethyan and the metallogenesis of rare metals in the northern margin of the Tibetan Plateau.
Methods In this paper, monazite U−Pb dating and zircon U−Pb dating have been carried out for granite pegmatite and its surrounding rocks, and their geochemistry has been studied.
Results The results show that the monazite U−Pb age of granite pegmatite is 250.4±0.7 Ma(MSWD=0.1, n=27), while the zircon U−Pb age of biotitite syenogranite is 374.3±8.5 Ma(MSWD=0.15, n=8). The granite pegatite is characterized by high Si, alkali, Al and low Ti, with A/CNK value of 1.15 to 1.32 and low rare earth element contents, showing a right−leaning partition pattern with weak enrichment of light rare earth elements (LREE), strong Eu deficit, δEu of 0.07 to 0.18, showing a four−group effect of M−type rare earth elements, significant enrichment of Rb, K, U and P, strong depletion of Ba, Sr and Ti, moderate enrichment of high field strength elements(HFSE) Nb, Ta, Zr, Hf. Biotite synenite granite is rich in Si, K, and poor Ti, with A/CNK value of 1.13 to 1.32 and moderate rare earth element contents, showing a right−leaning partition pattern of strong enrichment of LREE, obvious Eu deficit, δEu of 0.19 to 0.32, strong enrichment of Rb, K, Th, and strong depletion of Sr, P and Ti.
Conclusions Combined with the regional geological background, it is believed that the Chaganhake granite pegmatite in the western part of the North Qaidam margin is different from the Zongwulong granite pegmatite. The Zongwulong granite pegmatite evolved from the granite formed in the process of accretionary orogeny and collision orogeny of the Paleo−Tethys Ocean continental margin through high differentiation, while the Chaganhake granite pegmatite was formed in the continental interior of the Qaidam block under the Paleo−Tethys Ocean subduction environment of the Early Triassic. It is the product of small proportion partial melting of the Dakendaban rock group during the process of extrusion migmatization within the continent, and has the metallogenic potential of niobium−tantalum deposit.
-
Key words:
- chronology /
- geochemistry /
- petrogenesis; tectonic setting /
- granite-pegmatite /
- biotitite syenogranite /
- Chaganhake /
- North Qaidam
-
-
图 4 查干哈克花岗伟晶岩和黑云正长花岗岩SiO2−(Na2O+K2O)图解(a, 底图据Le Maitre, 1989)和A/CNK-A/NK图解(b, 底图据Richter, 1989)
Figure 4.
图 5 花岗伟晶岩、黑云正长花岗岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(标准化数值据Sun and McDonough, 1989)
Figure 5.
图 8 查干哈克花岗伟晶岩和黑云正长花岗岩Ce-Ce/Sm图解(a)和La-La/Sm图解(b)(底图据王秉璋等,2022)
Figure 8.
图 11 查干哈克花岗伟晶岩Y-Nb(a,底图据Pearce et al., 1984)、Yb-Ta(b,底图据Pearce et al., 1984)、Rb/30-Hf-3*Ta(c,底图据Harris et al., 1986)和R1-R2(d,底图据Batchelor et al.,1985)图解
Figure 11.
表 1 查干哈克花岗伟晶岩与黑云正长花岗岩主量、微量元素含量及有关参数
Table 1. Major, trace elements and parameter of the granitic pegmatites and biotite syenogranites in Chaganhake
元素 花岗伟晶岩 黑云正长花岗岩 21CGD
104N1-121CGD
104N1-221CGD
104N1-321CGD
104N1-421CGD
104N1-521CGD
109N2-221CGD
109N2-321CGD
109N2-421CGD
109N2-5SiO2 73.65 74.59 73.34 72.37 74.49 72.75 71.83 71.55 69.86 TiO2 0.02 0.02 0.02 0.02 0.01 0.22 0.18 0.18 0.24 Al2O3 15.70 15.18 16.07 16.51 14.90 14.47 15.20 15.38 16.20 Fe2O3 0.21 0.33 0.22 0.71 0.29 0.40 0.40 0.37 0.57 FeO 0.65 0.46 0.56 0.56 0.27 1.42 1.15 1.25 1.44 MnO 0.10 0.07 0.09 0.03 0.01 0.02 0.02 0.03 0.04 MgO 0.10 0.10 0.04 0.20 0.37 0.48 0.40 0.49 1.06 CaO 1.04 0.65 1.01 0.55 0.41 1.28 1.41 1.08 1.12 Na2O 5.81 4.56 5.95 4.36 3.44 2.90 3.10 2.99 2.51 K2O 2.07 3.44 2.04 4.01 5.25 5.25 5.36 5.97 5.68 P2O5 0.08 0.08 0.08 0.10 0.11 0.08 0.13 0.05 0.22 烧失量 0.49 0.47 0.50 0.50 0.38 0.53 0.65 0.50 0.85 总计 99.91 99.93 99.93 99.92 99.95 99.79 99.82 99.82 99.79 Q 29.41 33.45 28.64 30.36 33.28 31.84 29.52 27.73 29.58 An 4.67 2.72 4.52 2.1 1.32 5.95 6.29 5.16 4.23 Ab 49.44 38.79 50.64 37.16 29.25 24.72 26.45 25.47 21.46 Or 12.3 20.44 12.13 23.87 31.17 31.25 31.93 35.51 33.92 R1 2347 2536 2286 2314 2509 2552 2403 2275 2399 R2 427 374 428 395 356 448 473 444 495 σ 2.02 2.02 2.10 2.38 2.39 2.23 2.47 2.8 2.48 K2O+Na2O 7.88 8.00 7.99 8.37 8.69 8.15 8.46 8.96 8.19 K2O/Na2O 0.36 0.75 0.34 0.92 1.53 1.81 1.73 2.00 2.26 A/NK 1.33 1.35 1.34 1.43 1.31 1.38 1.39 1.35 1.58 A/CNK 1.15 1.22 1.16 1.32 1.23 1.13 1.13 1.15 1.32 La 2.07 1.99 2.75 2.55 1.96 46.0 40.6 51.0 58.5 Ce 3.89 3.45 4.48 5.27 3.83 88.8 78.9 98.8 113 Pr 0.43 0.46 0.61 0.65 0.49 10.0 9.00 11.2 13.0 Nd 1.45 1.44 1.97 2.18 1.62 35.7 31.8 39.1 46.0 Sm 0.56 0.55 0.76 0.90 0.70 7.26 6.29 7.74 9.20 Eu 0.025 0.032 0.028 0.023 0.014 0.63 0.64 0.61 0.54 Gd 0.57 0.49 0.64 0.75 0.53 6.47 5.72 6.56 8.11 Tb 0.14 0.11 0.15 0.15 0.089 0.74 0.63 0.62 0.84 Dy 0.89 0.67 0.91 0.81 0.42 3.09 2.70 1.98 3.30 Ho 0.15 0.10 0.14 0.11 0.05 0.45 0.39 0.25 0.48 Er 0.44 0.27 0.45 0.29 0.13 1.09 1.01 0.57 1.18 Tm 0.077 0.052 0.074 0.044 0.020 0.11 0.11 0.049 0.12 Yb 0.58 0.43 0.58 0.33 0.15 0.67 0.65 0.33 0.82 Lu 0.069 0.053 0.069 0.039 0.019 0.079 0.077 0.044 0.098 Y 7.59 5.73 7.90 5.87 3.10 20.1 17.6 10.2 20.7 ΣREE 11.34 10.10 13.61 14.10 10.02 201.1 178.5 218.9 255.1 LREE/HREE 2.89 3.64 3.52 4.59 6.12 14.83 14.82 20.04 16.07 (La/Yb)N 2.56 3.32 3.40 5.54 9.37 49.24 44.83 110.92 51.13 δEu 0.13 0.18 0.12 0.08 0.07 0.28 0.32 0.25 0.19 δCe 0.96 0.85 0.81 0.98 0.93 0.97 0.97 0.97 0.96 Rb 137 270 154 306 455 319 325 314 361 Ba 10.9 9.62 8.82 47.9 6.26 257 330 312 215 Th 0.79 0.71 0.95 0.89 0.65 15.5 13.0 16.9 20.3 U 0.68 0.45 0.75 0.45 0.31 1.93 2.02 1.65 2.05 Ta 2.25 0.079 0.75 0.12 0.16 2.26 2.27 1.82 2.78 Nb 21.6 0.74 7.14 1.09 1.51 21.8 21.8 17.5 26.7 Sr 8.36 6.89 10.6 6.37 6.36 88.0 90.9 87.8 70.9 Zr 26.6 31.9 26.6 14.4 11.3 162 139 170 192 Hf 1.00 1.16 0.99 0.41 0.31 3.40 2.91 3.48 3.96 Li 19.3 15.7 16.5 11.9 6.40 40.1 36.9 28.6 54.8 Be 4.63 3.73 4.65 2.75 1.72 0.98 1.28 1.04 2.15 Sc 17.0 16.8 20.0 16.5 14.7 18.1 20.6 19.5 18.3 Cs 1.97 3.21 1.75 9.11 8.95 13.3 12.2 10.6 19.6 注:测试单位为北京燕都中实测试技术有限公司;比值单位为1;A/NK=n(Al2O3)/n(Na2O+K2O)(mol);A/CNK=n(Al2O3)/n(CaO+Na2O+K2O)(mol);AR=(Al2O3+CaO+Na2O+K2O)/ (Al2O3+ CaO-Na2O-K2O);δEu=(2*Eu岩/Eu球)/(Sm岩/Sm球+Gd岩/Gd球) ;δCe=(2*Ce岩/Ce球)/(La岩/La球+Pr岩/Pr球);R1= 4Si−11(Na+K)−2(Fe+Ti);R2=6Ca+2 Mg+Al;主量元素含量单位为%,微量元素含量单位为10−6 表 2 查干哈克花岗伟晶岩独居石LA–ICP–MS U–Th–Pb同位素数据
Table 2. LA-ICP-MS U-Th-Pb isotopic analyses of monazite from the granitic pegmatite in Chaganhake
测点 元素含量/10−6 同位素比值 表面年龄/Ma U Th Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 48000 56300 2327 0.05101 0.00035 0.28025 0.00272 0.03975 0.00034 242 16 251 2 251 2 2 58900 57500 2801 0.05120 0.00023 0.28109 0.00200 0.03974 0.00028 250 10 252 2 251 2 3 19800 127000 2021 0.05126 0.00027 0.27938 0.00196 0.03947 0.00026 253 12 250 2 250 2 4 48900 63200 2467 0.05104 0.00021 0.27777 0.00158 0.03942 0.00021 243 10 249 1 249 1 5 30400 130000 2455 0.05085 0.00019 0.27860 0.00167 0.03968 0.00023 234 9 250 1 251 1 6 24400 113000 2054 0.05136 0.00021 0.28018 0.00177 0.03952 0.00023 257 10 251 1 250 1 7 18600 108000 1798 0.05111 0.00032 0.28091 0.00218 0.03979 0.00027 246 14 251 2 252 2 8 18200 125000 1940 0.05103 0.00027 0.27872 0.00223 0.03952 0.00027 242 12 250 2 250 2 9 22500 107000 1928 0.05100 0.00020 0.27869 0.00181 0.03957 0.00023 241 9 250 1 250 1 10 29100 112000 2233 0.05102 0.00022 0.27844 0.00179 0.03953 0.00025 242 10 249 1 250 2 11 17300 131000 1986 0.05122 0.00025 0.28029 0.00201 0.03965 0.00026 251 11 251 2 251 2 12 46400 92600 2652 0.05051 0.00026 0.27668 0.00232 0.03965 0.00030 219 12 248 2 251 2 13 15900 110000 1718 0.05582 0.00055 0.32052 0.00456 0.04147 0.00043 445 22 282 4 262 3 14 27200 133000 2350 0.05090 0.00028 0.27788 0.00198 0.03956 0.00026 236 13 249 2 250 2 15 28600 125000 2332 0.05123 0.00022 0.28047 0.00201 0.03968 0.00028 251 10 251 2 251 2 16 31100 76300 1923 0.05083 0.00030 0.27781 0.00249 0.03958 0.00030 233 14 249 2 250 2 17 35900 101000 2355 0.05095 0.00021 0.27914 0.00201 0.03970 0.00026 238 9 250 2 251 2 18 19700 127000 2019 0.05105 0.00024 0.27909 0.00225 0.03961 0.00029 243 11 250 2 250 2 19 19000 102000 1730 0.05119 0.00020 0.27955 0.00244 0.03956 0.00031 249 9 250 2 250 2 20 39500 101000 2492 0.05096 0.00020 0.27869 0.00214 0.03961 0.00026 239 9 250 2 250 2 21 58400 135000 3475 0.05085 0.00027 0.27823 0.00307 0.03964 0.00037 234 12 249 2 251 2 22 16100 123000 1855 0.05146 0.00027 0.28146 0.00258 0.03967 0.00033 262 12 252 2 251 2 23 27100 116000 2176 0.05112 0.00025 0.27952 0.00243 0.03963 0.00030 246 11 250 2 251 2 24 31300 43500 1593 0.05064 0.00026 0.27693 0.00297 0.03962 0.00035 225 12 248 2 251 2 25 22300 100000 1884 0.05068 0.00023 0.27677 0.00251 0.03962 0.00035 226 10 248 2 251 2 26 18400 122000 1893 0.05125 0.00024 0.27957 0.00280 0.03957 0.00037 252 11 250 2 250 2 27 22000 104000 1794 0.05189 0.00045 0.28387 0.00414 0.03968 0.00054 281 20 254 3 251 3 28 23400 106000 1961 0.05123 0.00023 0.27957 0.00277 0.03961 0.00039 251 10 250 2 250 2 29 19900 92300 1682 0.05290 0.00035 0.29111 0.00348 0.03990 0.00040 324 15 259 3 252 3 30 18300 119000 1921 0.05280 0.00026 0.29355 0.00319 0.04033 0.00042 320 11 261 3 255 3 表 3 查干哈克黑云正长花岗岩锆石LA–ICP–MS U–Th–Pb同位素数据
Table 3. LA-ICP-MS U-Th-Pb isotopic analyses of zircon from the biotite syenogranite in Chaganhake
测点 元素含量/10−6 同位素比值 表面年龄/Ma U Th Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 457 223 121 0.0816 0.0008 2.3476 0.0303 0.2083 0.0019 1235 19 1227 9 1220 10 2 2176 525 133 0.0533 0.0015 0.3914 0.0045 0.0526 0.0004 343 65 335 3 331 2 3 1440 668 108 0.0542 0.0013 0.4595 0.0100 0.0607 0.0007 389 52 384 7 380 5 4 487 260 179 0.1596 0.0017 6.7465 0.2175 0.3017 0.0082 2452 17 2079 29 1700 41 5 2830 47 171 0.0533 0.0012 0.4012 0.0045 0.0545 0.0004 343 45 343 3 342 2 6 680 222 47 0.0568 0.0026 0.4195 0.0128 0.0551 0.0013 483 100 356 9 346 8 7 3150 40 203 0.0568 0.0006 0.4629 0.0076 0.0591 0.0005 485 25 386 5 370 3 8 1464 355 174 0.0610 0.0007 0.8714 0.0157 0.1037 0.0013 638 26 636 8 636 7 9 2736 131 183 0.0550 0.0006 0.4655 0.0063 0.0612 0.0005 413 24 388 4 383 3 10 1174 440 147 0.0624 0.0012 0.8677 0.0106 0.1003 0.0007 687 36 634 6 616 4 11 2453 918 171 0.0554 0.0006 0.4544 0.0051 0.0593 0.0003 432 24 380 4 371 2 12 437 140 93 0.0984 0.0010 2.6140 0.0542 0.1914 0.0033 1594 19 1305 15 1129 18 13 1796 976 144 0.0556 0.0006 0.4566 0.0056 0.0594 0.0005 435 24 382 4 372 3 14 2017 527 133 0.0517 0.0022 0.4588 0.0093 0.0614 0.0010 333 98 383 6 384 6 15 492 360 73 0.0673 0.0009 1.2890 0.0348 0.1377 0.0031 856 27 841 15 832 18 16 2720 85 179 0.0551 0.0007 0.4588 0.0062 0.0602 0.0005 417 28 383 4 377 3 17 3360 115 207 0.0548 0.0006 0.4249 0.0052 0.0560 0.0004 467 19 360 4 351 2 18 473 235 41 0.0555 0.0020 0.5256 0.0122 0.0680 0.0005 432 80 429 8 424 3 19 1323 288 91 0.0548 0.0014 0.4609 0.0057 0.0608 0.0005 406 59 385 4 380 3 20 541 193 147 0.1004 0.0010 3.0455 0.0666 0.2180 0.0038 1631 19 1419 17 1271 20 21 3663 974 197 0.0539 0.0011 0.3549 0.0043 0.0478 0.0003 365 45 308 3 301 2 22 1003 184 70 0.0552 0.0006 0.4774 0.0091 0.0624 0.0010 420 31 396 6 390 6 23 2351 150 159 0.0556 0.0006 0.4634 0.0056 0.0602 0.0005 435 24 387 4 377 3 24 1220 86 98 0.0562 0.0018 0.5526 0.0074 0.0708 0.0006 461 72 447 5 441 4 25 4380 1289 218 0.0519 0.0017 0.3464 0.0048 0.0474 0.0006 283 78 302 4 299 4 26 1288 307 165 0.0621 0.0015 0.9171 0.0109 0.1064 0.0009 680 49 661 6 652 5 27 280 144 48 0.0659 0.0008 1.2317 0.0151 0.1351 0.0008 803 19 815 7 817 5 28 1151 96 120 0.0774 0.0018 1.5607 0.1043 0.1342 0.0071 1131 46 955 41 812 40 29 1726 128 122 0.0550 0.0009 0.4639 0.0081 0.0612 0.0004 411 35 387 5 383 2 30 3020 120 196 0.0552 0.0007 0.4454 0.0052 0.0584 0.0004 420 31 374 4 366 3 31 1280 204 89 0.0534 0.0014 0.4456 0.0062 0.0602 0.0005 346 90 374 4 377 3 32 1582 98 108 0.0554 0.0007 0.4612 0.0058 0.0601 0.0005 432 −5 385 4 376 3 33 1351 378 147 0.0586 0.0011 0.7148 0.0138 0.0884 0.0012 553 39 548 8 546 7 34 3473 348 198 0.0546 0.0006 0.3856 0.0048 0.0512 0.0004 396 24 331 3 322 3 35 1727 1499 89 0.0531 0.0019 0.3217 0.0056 0.0447 0.0007 332 79 283 4 282 4 36 1043 414 94 0.0923 0.0015 1.0248 0.0247 0.0797 0.0013 1473 30 716 12 494 8 37 1385 607 135 0.0573 0.0007 0.6212 0.0080 0.0786 0.0005 505 27 491 5 488 3 38 3205 396 183 0.0535 0.0021 0.3823 0.0050 0.0518 0.0007 349 87 329 4 326 5 39 271 104 25 0.0554 0.0009 0.5673 0.0108 0.0741 0.0007 428 37 456 7 461 4 40 432 71 34 0.0556 0.0011 0.5216 0.0081 0.0678 0.0006 435 43 426 5 423 4 41 1075 322 77 0.0554 0.0006 0.4498 0.0065 0.0588 0.0007 428 −6 377 5 368 4 42 3657 69 228 0.0544 0.0012 0.4180 0.0050 0.0556 0.0005 391 50 355 4 349 3 43 1818 1398 136 0.0542 0.0006 0.4505 0.0077 0.0602 0.0008 381 25 378 5 377 5 44 435 244 103 0.0795 0.0007 2.1409 0.0284 0.1947 0.0021 1187 19 1162 9 1147 11 45 707 537 99 0.0619 0.0007 0.9321 0.0127 0.1093 0.0010 670 23 669 6 668 6 46 716 526 108 0.0641 0.0014 1.0783 0.0196 0.1205 0.0018 746 46 743 10 734 10 47 795 670 110 0.0625 0.0017 0.9585 0.0184 0.1104 0.0016 700 57 683 10 675 10 48 1060 399 143 0.0611 0.0006 0.8812 0.0125 0.1045 0.0009 644 23 642 7 641 5 49 850 129 90 0.0594 0.0016 0.9102 0.0325 0.1059 0.0030 589 57 657 17 649 18 50 1914 255 115 0.0539 0.0011 0.4034 0.0072 0.0542 0.0008 365 44 344 5 340 5 -
[1] Ballouard C, Poujol M, Boulvais P, et al. 2016. Nb − Ta fractionation in peraluminous granites: A marker of the magmatic − hydrothermal transition[J]. Geology, 44(3): 231−234. doi: 10.1130/G37475.1
[2] Batchelor R A , Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1/4): 43−55.
[3] Cai P J, Zhang Y, Xu R K, et al. 2019. Zircon U−Pb geochronology, geochemistry, and Sr−Nd isotopes of Shuangkoushan quartz−syenite, Northern Qaidam, China[J]. Geotectonica et Metallogenia, 43(2): 322−338 (in Chinese with English abstract).
[4] Černý P. 1991. Rare − element granitic pegmatites. Part I: Anatomy and internal evolution pegmatite deposits[J]. Geoscience Canada, 18(2): 49−67.
[5] Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005−2026. doi: 10.2113/gscanmin.43.6.2005
[6] Chen M, Xue C J, Xue W W, et al. 2020. Discovery and geological significance of Xuji diorite in Zongwulong tectonic belt on the northern margin of Qaidam Basin[J]. Acta Petrologica et Mineralogica, 39(5): 552−568 (in Chinese with English abstract).
[7] Davidson J P. 1987. Crustal contamination versus subduction zone enrichment: Examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks[J]. Geochimica et Cosmochimica Acta, 51(8): 2185−2198. doi: 10.1016/0016-7037(87)90268-7
[8] Defant M J, Drummond M S. 1990. Derivation of some modern arcmagmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662−665. doi: 10.1038/347662a0
[9] Deng J F, Luo Z H, Su S G. 2004. Petrogenesis, tectonic environment and mineralization[M]. Beijing: Geological Publishing House: 1−375 (in Chinese with English abstract).
[10] Dill H G. 2016. The CMS classification scheme (chemical composition − mineral assemblage − structural geology) — linking geology to mineralogy of pegmatitic and aplitic rocks[J]. Journal of Mineral and Geochemistry, 193(3): 231−263.
[11] Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust − mantle system[J]. Chemical Geology, 120(3/4): 347−359.
[12] Guo A L, Zhang G W, Qiang J, et al. 2009. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai−Tibet plateau[J]. Acta Petrologica Sinica, 25(1): 1−12 (in Chinese with English abstract).
[13] Guo C J. 1957. On the relationship between the classification of granite pegmatites and the search for rare − element minerals[J]. Geological Knowledge, (1): 1−5 (in Chinese with English abstract).
[14] Guo Z F, Deng J F, Xu Z Q, et al. 1998. Late Palaeozoic−Mesozoic intracontinental orogenic process and intermedate−acidic igneous rocks from the Eastern Kunlun Mountains of northwestern China[J]. Geoscience, 12(3): 51−59 (in Chinese with English abstract).
[15] Han B F. 2007. Diverse post−collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 14(3): 64−72 (in Chinese with English abstract).
[16] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision − zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67−81.
[17] Hofmann A W, Jochum K P, Seufert M et al. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 79(1−2): 33−45.
[18] Hou K J, Li Y H, Tian Y R. 2009. In situ U−Pb zircon dating using laser ablation−multi ion Couting−ICP−MS[J]. Mineral Deposits, 28(4): 481−492 (in Chinese with English abstract).
[19] Hou Z Q, Lv Q T, Wang A J, et al. 2003. Continental Collision and Related Metallogeny: A Case Study of Mineralization in Tibetan Orogen[J]. Mineral Deposits, 22(4): 319−333 (in Chinese with English abstract).
[20] Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu−(Mo−Au) Deposits Related to Oceanic−Slab Subduction: Examples from Chinese Porphyry Deposits in Continental Settings[J]. Geoscience, 21(2): 332−351 (in Chinese with English abstract).
[21] Hu Y M. 2023. Paleozoic − Early Mesozoic continental crust growth, evolution and deep − seated dynamic processes in the eastern segment of the East Kunlun Mountains[D]. Doctor Thesis of China University of Geosciences (Beijing), 1−100 (in Chinese with English abstract).
[22] Johannes W, Holtz F. 1996. Petrogenesis and experimental petrology of granitic rocks[M]. Berlin: Springer − Verlag, 1−335.
[23] Le Maitre R W. 1989. A classification of igneous rocks and glossary of terms[M]. Oxford, U K: Blackwell Scientific Publications: 1−224.
[24] Li S P, Zhan S Z, Jin T T, et al. 2016. Ree geochemical characteristics and provenance analysis of the Shaliuquan niobium tantalum pegmatite ore, Qinghai Province[J]. Chinese Rare Earths, 222(1): 39−46 (in Chinese with English abstract).
[25] Li S P, Pan T, Wang B Z, et al. 2021. Characteristics and tectonic significance of beryl−bearing pegmatites in Qiemoge mountain, northern margin of Qaidam basin[J]. Geotectonica et Metallogenia, 182(3): 608−619 (in Chinese with English abstract).
[26] Liang X X, Gao R, Liu H. 2023. Age and geochemical characteristics of Late Cretaceous leucogranites pluton and dykes in Xieqiong area, Tibet: constraints on the post−collisional setting of Bangong Co−Nujiang belt[J]. Geological Bulletin of China, 42(1): 92−106 (in Chinese with English abstract).
[27] Liu C X, Sun F Y, Qian Y, et al. 2021. Vertical zonation characteristics of Chakabeishan Li−−Be rare−metal pegmatite deposit in northern margin of Qaidam Basin, Qinghai Province[J]. Global Geology, 40(4): 847−859, 880 (in Chinese with English abstract).
[28] Liu J H, Wang Q, Xu C B, et al. 2022. Geochronology of the Chakabeishan Li − (Be) rare − element pegmatite, Zongwulong orogenic belt, northwest China: Constraints from columbite − tantalite U − Pb and muscovite − lepidolite 40Ar/39Ar dating[J]. Ore Geology Reviews, 146: 104930. doi: 10.1016/j.oregeorev.2022.104930
[29] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA − ICP − MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.
[30] Liu Y S, Gao S, Hu Z C, et al. 2010. Continental and oceanic crust recycling − induced melt − peridotite interactions in the Trans − North China orogen: U − Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.
[31] London D. 2005. Granitic Pegmatites: an Assessment of Current Concepts and Directions for the Future[J]. Lithos, 80(1/4): 281−303.
[32] Luan S W, Mao Y Y, Fan L M. 1996. Rare − metal mineralization and prospecting in the Keketuohai area[M]. Chengdu: Chengdu University of Science and Technology Press: 63−148 (in Chinese with English abstract).
[33] Ludwig K R. 2003. User’s manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[J]. Berkely Geochronology Center, (4): 71.
[34] Lv X Q. 2012. Genesis and an evaluation for granite−pegmatite typecolumbotantalite ore−forming potential in the northernmargin of the qaidam basin, qinghai, pr. china[D]. Master's thesis of Chang’an University: 1–62 (in Chinese with English abstract).
[35] Lv Z H, Zhang H, Tang Y, et al. 2018. Petrogenesis of syn − orogenic rare metal pegmatites in the Chinese Altai: evidences from geology, mineralogy, zircon U − Pb age and Hf isotope[J]. Ore Geology Reviews, 95(1): 161−181.
[36] Lv Z H, Zhang H, Tang Y. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Alta[J]. Lithos, 380/381: 105865. doi: 10.1016/j.lithos.2020.105865
[37] Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite − trondhjemite − granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1/2): 1−24.
[38] Melleton J, Gloaguen E, Frei D, et al. 2012. How are the emplacement of rare − element pegmatites, regional metamorphism and magmatism interrelated in the moldanubian domain of the variscan Bohemian Massif, Czech Republic?[J]. Canadian Mineralogist, 50(6): 1751−1773. doi: 10.3749/canmin.50.6.1751
[39] Mo X X, Luo Z H, Deng J F, et al. 2007. Granitoids and Crustal Growth in the East−Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403−414 (in Chinese with English abstract).
[40] Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract).
[41] Pan T. 2019. Discussion on the minerogenetic series of deposits in Qinghai, China[J]. Journal of Earth Sciences and Environment, 41(3): 297−315 (in Chinese with English abstract).
[42] Pan T, Ding Q F, Zhou X, et al. 2021. Columbite−tantalite group mineral U−Pb geochronology of Chaqiabeishan Li − rich granite pegmatites in the Quanji Massif, NW China: Implications for the genesis and emplacement ages of pegmatites[J]. Science, 8: 606951.
[43] Pan T, Li S P, Wang T, et al. 2022. Metallogenic characteristics and prospecting potentiaof lithium deposits in the Qinghai Province[J]. Acta Geologica Sinica, 96(5): 1827−1854 (in Chinese with English abstract).
[44] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956
[45] Peng Y, Ma Y S, Liu C L, et al. 2016. Geological characteristics and tectonic significance of the Indonesian granodiorites from the Zongwulong tectonic belt in North Qaidam[J]. Earth Science Frontiers, 118(2): 206−221 (in Chinese with English abstract).
[46] Qin K Z, Zhou Q F, Tang D M, et al. 2019. Types, internal structural patterns, mineralization and prospects of rareelement pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970−982 (in Chinese with English abstract).
[47] Richter F M. 1989. Simple models for trace element fractionation duringmelt segregateon[J]. Earth and Planetary Science Letters, 77(3/4): 333−344.
[48] Shen M T, Guo W M, Xu M, et al. 2021. Characteristics of typical niobium−tantalum deposits in Brazil and their resource distribution regularity and prospecting directions[J]. Mineral Deposits, 40(3): 603−624 (in Chinese with English abstract).
[49] Song S G, Zhang G B, Zhang C, et al. 2013. Dynamic process of oceanic subduction and continental collision: petrological constraints of HP−UHP belts in Qilian−Qaidam, the northern Tibetan Plateau[J]. Chinese Science Bulletin, (23): 2240−2245 (in Chinese with English abstract).
[50] Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”[J]. Geology, 41(3): 303−306. doi: 10.1130/G33781.1
[51] Sun H W, Wang J, Ren J P, et al. 2021. Geological characteristics analysis of granite type and pegmatite type tantalum deposits in southern Africa[J]. Geological Review, 67(1): 265−278 (in Chinese with English abstract).
[52] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[53] Sun W L, Zhao Z D, Mo X X, et al. 2023. Age and composition of columbite − tantalite groupminerals in the spodumene pegmatite from the Chakabeishan deposit, northern Tibetan Plateau and their implications[J]. Minerals, 13(2): 201. doi: 10.3390/min13020201
[54] Tang W L, Fu C, Wang J, et al. 2022. Metallogenic regularity and resources potential of Alto Ligonha Ta−Nb rare element metallogenic belt in Mozambique[J]. Geological Bulletin of China, 41(7): 1269−1281 (in Chinese with English abstract).
[55] Wang B Z, Han J, Xie X L, et al. 2020. Discovery of the indosinian (beryl−bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the northeastern margin of the Tibetan Plateau: implications for Li−Be mineralization[J]. Geotectonica et Metallogenia, 174(1): 69−79 (in Chinese with English abstract).
[56] Wang B Z, Fu C L, Pan T, et al. 2022. Early Paleozoic magmatism in the Saishiteng area, North Qaidam and their constraint on tectonic evolution[J]. Acta Petrologica Sinica, 38(9): 2723−2742 (in Chinese with English abstract).
[57] Wang B Z, Pan T, Wang Q, et al. 2023. Discovery of Indosinian highliractionated granites in the Chagiabeishan area, NE Tibetan Plateau and its prospecting significance[J]. Acta Petrologica Sinica, 39(8): 2402−2428 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.08.10
[58] Wang D H, Li J K, Fu X F. 2015. Dating for the Jiajika pegmatite−type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 36(6): 541−546 (in Chinese with English abstract).
[59] Wang H, Li P, Ma H D, et al. 2017. Discovery of the Bailongshan Superlarge Lithium−Rubidium Deposit in Karakorum, Hetian, Xinjiang, and its Prospecting Implication[J]. Geotectonica et Metallogenia, 41(6): 1053−1062 (in Chinese with English abstract).
[60] Wang Q, Hou K J. 2015. In situ U−Pb monazite dating by LA−ICP−Ms[J]. Acta Geological Sinica, 89(S1): 41−43 (in Chinese with English abstract). doi: 10.1111/1755-6724.12302_20
[61] Wang R C, Fontan F, Xu S J, et al. 1997. The Association of Columbite, Tantalite and Tapiolite in the Suzhou Granite, China[J]. The Canadian Mineralogist, 35(3): 699−706.
[62] Wu C L, Gao Y H, Wu S P, et al. 2008. Zircon SHRIMP U−Pb dating and petrogeochemical characteristics of granites in the western member of the northern Margin of Qaidam Basin[J]. Science in China Series D: Earth Sciences, 38(8): 930−949 (in Chinese with English abstract).
[63] Wu C L, Lei M, Wu D, et al. 2016. Zircon SHRIMP dating and genesis of granites in Wulan area of northern Qaidam[J]. Acta Geoscientica Sinica, 37(4): 493−516 (in Chinese with English abstract).
[64] Wu F Y, Liu X C, Ji W Q, et al. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745−765 (in Chinese with English abstract).
[65] Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217−1238.
[66] Wu F Y, Wan B, Zhao L, et al. 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627−1674 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01
[67] Xu Z Q, Wang R C, Zhao Z B, et al. 2018. On the structural backgrounds of the large−scale "Hard−rock Type" lithium ore belts in China[J]. Acta Geologica Sinica, 92(6): 1091−1106 (in Chinese with English abstract).
[68] Yan Z Q, Wang H T, Li Y M, et al. 2018. The potential evaluation of pegmatite−type lithium−beryllium mineral resources in Dahongliutan, west Kunlun[J]. Gansu Geology, 27(3/4): 42−48 (in Chinese with English abstract).
[69] Yao Y Z, Li L X, Fu J F, et al. 2023. Geochronological constraints on Early Precambrian granitic pegmatite type Nb−Ta mineralization of the Lijiapuzi deposit in North China craton[J]. Geological Bulletin of China, 42(6): 1047−1049 (in Chinese with English abstract).
[70] Yue X Y, Zhou X, Zhang Y, et al. 2018. Discovery of the pegmatite lithium veins with predicted super − large size resources in the Sizemuzu district of the Keeryin, China[J]. China Geology, 1(2): 310−311. doi: 10.31035/cg2018030
[71] Zeng W, Zhou H Y, Sun F Y, et al. 2021. Cassiterite U−Pb age of rare metal pegmatites in Guanpo area, North Qinling, China[J]. Geological Bulletin of China, 319(12): 2179−2182 (in Chinese with English abstract).
[72] Zhang A K, Mo X X, Yuan W M, et al. 2016. Petrogensis and tectonic setting of Yemaquan triassic granite from the west of the Eastern Kunlun mountain range, China[J]. Acta Mineralogica Sinica, 36(2): 157−173 (in Chinese with English abstract).
[73] Zhang A K, Yuan W M, Liu G L, et al. 2023. Metallogenic regularity and exploration direction of Strategic Metallic Minerals around Qaidam Basin[J/OL]. Earth Science Frontiers, 1−25 (in Chinese with English abstract).
[74] Zhang H, Lv Z H, Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegma−tite−type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792−814 (in Chinese with English abstract).
[75] Zhang H, Lv Z H, Tang Y. 2021. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geologica Sinica, 95(10): 2955−2970 (in Chinese with English abstract).
[76] Zhang J P, Niu M L, Li C, et al. 2022. Petrogenesis and geological significance of Late Permian−Middle Triassic granites in Wulan area, eastern segment of the northern margin of the Qaidam Basin[J]. Chinese Journal of Geology, 57(4): 1103−1129 (in Chinese with English abstract).
[77] Zhang Y, Pan T, Zhang A K, et al. 2023. Spatial Relationship between Eclogite and Copper − Nickel Mineralization in East Kunlun, China[J]. Minerals, 13(3): 330. doi: 10.3390/min13030330
[78] Zhao D J, Chen Y M, Zhang W B, et al. 2021. Geological characteristics, genetic types, and exploration and development status of niobium − tantalum deposits in Africa[J]. Geology and Exploration, 57(6): 1243−1256 (in Chinese with English abstract).
[79] Zhao Z H, Yan S. 2023. Some issues relevant to rare metal metallogeny of granitic pegmatites[J]. Geotectonica et Metallogenia, 47(1): 1−41 (in Chinese with English abstract).
[80] Zhao Z H, Bao Z W, Qiao Y L. 2010. A peculiar composite M− and W−type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China[J]. Chinese Science Bulletin, 55(15): 1474−1488 (in Chinese with English abstract). doi: 10.1360/csb2010-55-15-1474
[81] Zhao Z H, Chen H Y, Han J S. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 61(1): 1−26 (in Chinese with English abstract).
[82] Zheng Y, Li W F, Zhang X Y, et al. 2024. Age and protolith characteristics of metamorphic surrounding rock of Chakabeishan pegmatitic lithium−beryllium ore in the northern margin of Qaidam[J]. Geological Bulletin of China, 43(7): 1104−1119 (in Chinese with English abstract).
[83] Zou T R, Yang Y Q, Guo Y Q. 1985. Some problems related to pegmatite deposits[J]. Geological Science and Technology Information, 4(4): 100−107 (in Chinese with English abstract).
[84] 蔡鹏捷, 张宇, 许荣科, 等. 2019. 柴北缘双口山石英正长岩锆石 U−Pb 定年、地球化学及 Sr−Nd 同位素特征[J]. 大地构造与成矿学, 42(2): 322−338.
[85] 曾威, 周红英, 孙丰月, 等. 2021. 北秦岭官坡地区稀有金属伟晶岩锡石 U−Pb 年龄[J]. 地质通报, 39(12): 2179−2182. doi: 10.12097/j.issn.1671-2552.2021.12.020
[86] 陈敏, 薛春纪, 薛万文, 等. 2020. 柴北缘宗务隆构造带蓄集地区闪长岩的发现及其地质意义[J]. 岩石矿物学杂志, 39(5): 552−568. doi: 10.3969/j.issn.1000-6524.2020.05.004
[87] 邓晋福, 罗照华, 苏尚国. 2004. 岩石成因、构造环境与成矿作用 [M]. 北京: 地质出版社: 1−375.
[88] 郭安林, 张国伟, 强娟, 等. 2009. 青藏高原东北缘印支期宗务隆造山带 [J]. 岩石学报, 25(1): 1−12.
[89] 郭承基. 1957. 论花岗律晶岩的分类与寻找稀有元素矿物的关系[J]. 地质知识, (1): 1−5.
[90] 郭正府, 邓晋福, 许志琴, 等. 1998. 青藏东昆仑晚古生代末 — 中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 12(3): 51−59.
[91] 韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 14(3): 64−72. doi: 10.3321/j.issn:1005-2321.2007.03.006
[92] 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS 锆石微区原位 U−Pb 定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010
[93] 侯增谦, 吕庆田, 王安建, 等. 2003. 初论陆 − 陆碰撞与成矿作用 —— 以青藏高原造山带为例[J]. 矿床地质, 22(4): 319−333. doi: 10.3969/j.issn.0258-7106.2003.04.001
[94] 侯增谦, 潘小菲, 杨志明, 等. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质, 21(2): 332−351. doi: 10.3969/j.issn.1000-8527.2007.02.019
[95] 胡阳鸣. 2023. 东昆仑东段早古生代 — 早中生代陆壳生长和演化及深部动力学过程 [D]. 中国地质大学(北京)博士学位论文: 1−100.
[96] 李善平, 湛守智, 金婷婷, 等. 2016. 青海沙柳泉铌钽矿床伟晶岩稀土元素地球化学特征及物源分析[J]. 稀土, 222(1): 39−46.
[97] 李善平, 潘彤, 王秉璋, 等. 2021. 柴达木盆地北缘锲墨格山含绿柱石花岗伟晶岩特征及构造意义[J]. 大地构造与成矿学, 182(3): 608−619.
[98] 梁肖肖, 高睿, 刘函. 2023. 西藏谢穷地区晚白垩世淡色花岗岩体和岩脉年龄及地球化学特征: 对班公湖−怒江带后碰撞背景的制约[J]. 地质通报, 42(1): 92−106. doi: 10.12097/j.issn.1671-2552.2023.01.009
[99] 刘承先, 孙丰月, 钱烨, 等. 2021. 青海柴北缘地区茶卡北山锂铍稀有金属伟晶岩型矿床垂向分带特征[J]. 世界地质, 40(4): 847−859, 880. doi: 10.3969/j.issn.1004-5589.2021.04.008
[100] 栾世伟, 毛玉元, 范良明. 1996. 可可托海地区稀有金属成矿与找矿 [M]. 成都: 成都科技大学出版社: 63−148.
[101] 吕晓强. 2012. 柴北缘生格地区花岗伟晶岩型铌钽矿成因及成矿潜力评价 [D]. 长安大学硕士学位论文: 1−62.
[102] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010
[103] 潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001
[104] 潘彤. 2019. 青海矿床成矿系列探讨[J]. 地球科学与环境学报, 166(3): 297−315. doi: 10.3969/j.issn.1672-6561.2019.03.004
[105] 潘彤, 李善平, 王涛, 等. 2022. 青海锂矿成矿特征及找矿潜力[J]. 地质学报, 96(5): 1827−1854. doi: 10.3969/j.issn.0001-5717.2022.05.020
[106] 彭渊, 马寅生, 刘成林, 等. 2016. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义 [J]. 地学前缘, 118(2): 206−221.
[107] 秦克章, 周起凤, 唐冬梅, 等. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景 —— 兼与阿尔泰地区对比[J]. 矿床地质, 38(5): 970−982.
[108] 沈莽庭, 郭维民, 徐鸣, 等. 2021. 巴西铌钽矿典型矿床特征及其资源分布规律和找矿方向[J]. 矿床地质, 40(3): 603−624.
[109] 宋述光, 张贵宾, 张聪, 等. 2013. 大洋俯冲和大陆碰撞的动力学过程: 北祁连 − 柴北缘高压 − 超高压变质带的岩石学制约[J]. 科学通报, (23): 2240−2245.
[110] 孙宏伟, 王杰, 任军平, 等. 2021. 南部非洲花岗岩型与伟晶岩型钽矿床地质特征[J]. 地质论评, 67(1): 265−278.
[111] 唐文龙, 付超, 王杰, 等. 2022. 莫桑比克上利戈尼亚钽−铌稀有元素成矿带成矿规律及资源潜力[J]. 地质通报, 41(7): 1269−1281. doi: 10.12097/j.issn.1671-2552.2022.07.013
[112] 王秉璋, 韩 杰, 谢祥镭, 等. 2020. 青藏高原东北缘茶卡北山印支期 (含绿柱石) 锂辉石伟晶岩脉群的发现及 Li−Be 成矿意义[J]. 大地构造与成矿学, 174(1): 69−79.
[113] 王秉璋, 付长垒, 潘彤, 等. 2022. 柴北缘赛什腾地区早古生代岩浆活动与构造演化[J]. 岩石学报, 38(9): 2723−2742. doi: 10.18654/1000.0569/2022.09.13
[114] 王秉璋, 潘彤, 王强, 等. 2023. 青藏高原东北缘茶卡北山地区印支期高分异花岗岩的发现及找矿意义[J]. 岩石学报, 39(8): 2402−2428. doi: 10.18654/1000-0569/2023.08.10
[115] 王登红, 李建康, 付小方. 2015. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 36(6): 541−546.
[116] 王核, 李沛, 马华东, 等. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 41(6): 1053−1062.
[117] 王倩, 侯可军. 2015. 独居石 LA−ICP−MS 微区原位 U−Pb 同位素年龄测定[J]. 地质学报, 89(S1): 41−43.
[118] 吴才来, 郜源红, 吴锁平, 等. 2008. 柴北缘西段花岗岩锆石 SHRIMP U−Pb 定年及其岩石地球化学特征[J]. 中国科学 (D 辑: 地球科学), 38(8): 930−949.
[119] 吴才来, 雷敏, 吴迪, 等. 2016. 柴北缘乌兰地区花岗岩锆石 SHRIMP 定年及其成因[J]. 地球学报, 37(4): 493−516. doi: 10.3975/cagsb.2016.04.11
[120] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238.
[121] 吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.
[122] 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. doi: 10.18654/1000-0569/2020.06.01
[123] 许志琴, 王汝成, 赵中宝, 等. 2018. 试论中国大陆 “硬岩型” 大型锂矿带的构造背景[J]. 地质学报, 92(6): 1091−1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
[124] 燕洲泉, 王怀涛, 李元茂, 等. 2018. 西昆仑大红柳滩伟晶岩型锂铍矿产资源潜力评价 [J]. 甘肃地质, 27(3/4): 42−48.
[125] 姚玉增, 李立兴, 付建飞, 等. 2023. 华北克拉通辽宁李家堡子早前寒武纪花岗伟晶岩型铌钽成矿的年龄证据[J]. 地质通报, 42(6): 1671−2552.
[126] 张爱奎, 莫宣学, 袁万明, 等. 2016. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 36(2): 157−173.
[127] 张爱奎, 袁万明, 刘光莲, 等. 2024. 柴达木盆地周缘战略性金属矿产成矿规律与勘查方向[J]. 地学前缘, (3): 260−283.
[128] 张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 38(4): 792−814.
[129] 张辉, 吕正航, 唐勇. 2021. LCT 型伟晶岩及其锂矿床成因概述[J]. 地质学报, 95(10): 2955−2970. doi: 10.3969/j.issn.0001-5717.2021.10.003
[130] 张金鹏, 牛漫兰, 李晨, 等. 2022. 柴北缘构造带东段乌兰地区晚二叠世 — 中三叠世花岗岩成因及其地质意义[J]. 地质科学, 57(4): 1103−1129. doi: 10.12017/dzkx.2022.063
[131] 赵东杰, 陈玉明, 张伟波, 等. 2021. 非洲铌钽矿地质特征、矿床类型及勘查开发现状分析[J]. 地质与勘探, 57(6): 1243−1256. doi: 10.12134/j.dzykt.2021.06.005
[132] 赵振华, 包志伟, 乔玉楼. 2010. 一种特殊的 “M” 与 “W” 复合型稀土元素四分组效应: 以水泉沟碱性正长岩为例[J]. 科学通报, 55(15): 1474−1488.
[133] 赵振华, 陈华勇, 韩金生. 2022. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J]. 中山大学学报 (自然科学版), 61(1): 1−26.
[134] 赵振华, 严爽. 2023. 花岗伟晶岩成矿有关的几个问题讨论[J]. 大地构造与成矿学, 47(1): 1−41.
[135] 郑英, 李五福, 张小永, 等. 2024. 柴北缘茶卡北山伟晶岩型锂铍矿变质围岩时代及原岩特征[J]. 地质通报, 43(7): 1104−1119.
[136] 邹天人, 杨岳清, 郭永泉. 1985. 有关伟晶岩矿床的一些问题[J]. 地质科技情报, 4(4): 100−107.
-