东昆仑志留纪—泥盆纪关键金属成矿大爆发

钟世华, 黄宇, 刘永乐, 张勇, 白国龙, 刘智刚, 马强, 王丽君, 赵芙蓉, 何书跃. 2025. 东昆仑志留纪—泥盆纪关键金属成矿大爆发. 地质通报, 44(4): 574-586. doi: 10.12097/gbc.2024.06.020
引用本文: 钟世华, 黄宇, 刘永乐, 张勇, 白国龙, 刘智刚, 马强, 王丽君, 赵芙蓉, 何书跃. 2025. 东昆仑志留纪—泥盆纪关键金属成矿大爆发. 地质通报, 44(4): 574-586. doi: 10.12097/gbc.2024.06.020
ZHONG Shihua, HUANG Yu, LIU Yongle, ZHANG Yong, BAI Guolong, LIU Zhigang, MA Qiang, WANG Lijun, ZHAO Furong, HE Shuyue. 2025. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt. Geological Bulletin of China, 44(4): 574-586. doi: 10.12097/gbc.2024.06.020
Citation: ZHONG Shihua, HUANG Yu, LIU Yongle, ZHANG Yong, BAI Guolong, LIU Zhigang, MA Qiang, WANG Lijun, ZHAO Furong, HE Shuyue. 2025. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt. Geological Bulletin of China, 44(4): 574-586. doi: 10.12097/gbc.2024.06.020

东昆仑志留纪—泥盆纪关键金属成矿大爆发

  • 基金项目: 国家自然科学基金项目《青海野马泉矿床成矿岩浆H2O和Cl含量精细研究:对矽卡岩矿床成因的约束》(批准号:42203066)、《基于多维数据的斑岩Cu矿床成矿岩浆机器学习识别方法和矿床成因研究》(批准号:42472104)和青海省科技厅项目《青海省祁漫塔格地区铜镍钴找矿突破研究》(编号:2024028ky002)
详细信息
    作者简介: 钟世华(1989− ),男,博士,副教授,从事矿床学研究。E−mail:zhongshihua@ouc.edu.cn
    通讯作者: 刘永乐(1985− ),男,高级工程师,从事地质矿产研究工作。E−mail:281023605@qq.com
  • 中图分类号: P534.43;P534.44;P618.2

Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt

More Information
  • 研究目的

    随着地质调查和研究的深入,大量的证据显示东昆仑造山带在志留纪—泥盆纪存在大规模成矿作用,但对志留纪—泥盆纪成矿作用长期缺乏深入研究。本文旨在厘定东昆仑志留纪—泥盆纪大规模成矿的特点及其地球动力学背景,服务新一轮找矿突破战略行动。

    研究方法

    系统收集东昆仑造山带最新的找矿工作成果,对该地区志留纪—泥盆纪成矿作用类型和特点进行了综合分析研究。

    研究结果

    东昆仑地区在志留纪—泥盆纪主要发育3种矿床类型:①与基性—超基性岩有关的岩浆熔离型铜镍矿床,如夏日哈木、冰沟南等;②与花岗岩类有关的斑岩-矽卡岩矿床,可进一步分为斑岩-矽卡岩铜铁多金属矿床和矽卡岩钨锡矿床,如卡尔却卡、乌兰乌珠尔、白干湖等;③与碱性岩-碳酸岩有关的碱性岩-碳酸岩型铌矿床,以大格勒为代表。

    结论

    综合前人研究表明,东昆仑志留纪—泥盆纪大规模金属矿床的形成与原特提斯洋闭合后的演化密切相关。原特提斯洋在约435 Ma闭合后,东昆仑地区进入陆-陆碰撞环境,由于板片断离和后碰撞伸展作用,诱发软流圈地幔大规模上涌,幔源岩浆在上升过程中与陆壳物质发生不同程度的壳幔相互作用,形成了富含成矿元素的岩浆,并最终在上地壳就位,形成了不同的矿床类型。下一步,应进一步加大对东昆仑志留纪—泥盆纪基性—超基性岩、碳酸岩和花岗岩类分布范围及成矿潜力的研究,为全面认识东昆仑地区金属成矿规律、实现找矿突破提供理论指导。

  • 加载中
  • 图 1  东昆仑造山带大地构造位置图(据Fang et al., 2015; Zhong et al., 2018)

    Figure 1. 

    图 2  东昆仑青海段内岩浆岩和主要矿床类型分布图(据何书跃等,2023

    Figure 2. 

    图 3  东昆仑青海段内布格重力异常图(据何书跃等,2023

    Figure 3. 

    图 4  东昆仑青海段内航磁异常图(据何书跃等,2023

    Figure 4. 

    图 5  东昆仑青海段内莫霍面等深图(据何书跃等,2023

    Figure 5. 

    图 6  东昆仑地区志留纪—泥盆纪岩浆岩全岩Sr−Nd同位素图解(底图据Zhong et al., 2021b修改;数据来源:白干湖据Zheng et al., 2018;野马泉和无矿花岗岩据Chen et al., 2018;夏日哈木成矿岩体据Peng et al., 2016;夏日哈木不成矿岩体据Zhang et al., 2018;冰沟南据张照伟等,2017;大格勒据王春涛等, 2024王泰山等,2024李积清等,2024

    Figure 6. 

    表 1  东昆仑志留纪—泥盆纪主要矿床

    Table 1.  Main Silurian—Devonian deposits (points) in the East Kunlun Orogenic Belt

    序号 矿床
    (点)
    成矿岩体 出露面
    积/ km2
    成岩成矿时代 Cu资源
    量/104 t
    Ni资源
    量/104 t
    Co资源
    量/t
    WO3资源
    量/104 t
    Sn资源量/
    104 t
    备注
    岩浆熔离型铜镍矿床
    1 夏日哈木 橄榄岩、辉石岩、辉长岩 I号杂岩体1.12 辉长苏长岩423±1 Ma,二辉岩412~406 Ma,黄铁矿Re−Os年龄411 Ma(王冠等,2014Qian et al., 2020 23.83 118.3 42928
    正长花岗岩、闪长玢岩 正长花岗岩10.7 热液榍石413±3.6 Ma,闪长玢岩381.7±1.9 Ma(奥琮等,2014 0.2 夏日哈木
    东铅锌矿
    2 阿克楚
    克塞
    橄榄岩、辉石岩、辉长岩 0.01~0.1 辉长岩423.9±2.6 Ma,辉石岩427.3±
    2.3 Ma(闫佳铭, 2017
    0.04 0.6 41.78
    3 喀雅克登 橄榄岩、辉石岩、辉长岩 3.5 二辉橄榄岩386.4±3.2 Ma,辉长岩386.9±2.6Ma、403.3±3.2(张勇等,2015 0.1 0.1
    二长花岗岩、花岗岩 <13.5 二长花岗岩403.1±1.2 Ma (张勇等,2016 0.23
    4 冰沟南 辉石岩、辉长岩 0.2 辉长岩427.4±7.3 Ma,含长橄榄辉石岩377.8±3.4 Ma(何书跃等,2017张照伟等,2017 0.1 0.08
    5 石头坑德 橄榄岩、辉石岩、辉长岩 4 辉长岩423.5±3.2 Ma 0.1 14.7 7800 资源量
    数据据
    李华等,2023
    6 浪木日 橄榄辉石岩、辉石岩、辉长岩 0.1 橄榄辉石岩438.8±2.6 Ma,辉长岩439.5±2.0 Ma(孟庆鹏,2019 0.64 220
    斑岩−矽卡岩矿床多金属矿床
    7 卡尔却卡 二长花岗岩、花岗斑岩 约17.2 斑状黑云母二长花岗岩 410.1~406.4 Ma,花岗闪长岩245.1~211.8 Ma,辉钼矿Re−Os年龄 245.5~238.8 Ma,金云母Ar−Ar年龄233.9±1.4 Ma(Zhong et al., 2021b 16.83 内部
    资料
    8 牛苦头 二长花岗岩、花岗闪长岩 隐伏,地表出露,<0.01 花岗闪长岩 394.0~393.7 Ma,二长花岗岩361.8±3.4 Ma,斑状花岗岩222.7±2.2 Ma,黄铁矿Re−Os年龄 359.2±6.3Ma,石榴子石U−Pb定年 219±12 Ma(Zhong et al., 2021b;王新雨等,2023;2024) 19.56 1275.43
    9 野马泉 二长花岗岩、花岗闪长岩 <30 二长花岗岩(M13) 393±2 Ma,花岗闪长岩386±1 Ma,石英闪长岩392.4±2.2 Ma(高永宝等,2014宋忠宝等,2014 4.50 166.85
    10 哈日扎 花岗闪长岩、英云闪长岩 2 Ⅴ矿带花岗闪长岩423.8±4.3 Ma,英云闪长岩422.3±1.9 Ma(南卡俄吾,2021 8.51 详查
    报告
    11 白干湖 正长花岗岩、二长花岗岩 2 二长花岗岩 431.3±4.0 Ma,正长花岗岩 413.6±2.4 Ma(周建厚等, 2015Zheng et al., 2018 17 8
    碱性岩−碳酸岩型铌矿床
    12 大格勒 碳酸岩、橄榄岩、辉石岩 1~5.63 碳酸岩381.1±2.3 Ma, 橄榄岩和辉石岩417.7±3.4 Ma (王秉璋等, 2024) 大型
    铌矿
    下载: 导出CSV
  • [1]

    Ao C, Sun F Y, Li B L, et al. 2014. Geochemistry, zircon U–Pb dating and geological significance of diorite porphyrite in Xiarihamu deposit, Eastern Kunlun Orogenic Belt, Qinghai[J]. Northwestern Geology, 47(1): 96−106 (in Chinese with English abstract).

    [2]

    Chen J, Wang B, Lu H, et al. 2018. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: evidence for post-collisional slab break-off[J]. International Geology Review, 60(4): 479−495.

    [3]

    Dong Y, He D, Sun S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006

    [4]

    Du W, Ling J L, Zhou W, et al. 2014. Geological characteristics and genesis of Xiarihamu nickel deposit in East Kunlun[J]. Mineral Deposits, 33(4): 713−726 (in Chinese with English abstract).

    [5]

    Fan J J, Wang Q, Li J, et al. 2020. Molybdenum and boron isotopic compositions of porphyry Cu mineralization‐related adakitic rocks in central‐eastern China: New insights into their petrogenesis and crust‐mantle interaction[J]. Journal of Geophysical Research: Solid Earth, 125(12): e2020JB020474. doi: 10.1029/2020JB020474

    [6]

    Fang J, Chen H, Zhang L, et al. 2015. Ore genesis of the Weibao lead–zinc district, Eastern Kunlun Orogen, China: Constrains from ore geology, fluid inclusion and isotope geochemistry[J]. International Journal of Earth Sciences, 104: 1209-1233.

    [7]

    Feng C, Wang S, Li G C, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678.

    [8]

    Gao Y, Hattori K, Bagas L, et al. 2023. Origin of Silurian granite in the Baiganhu field, Eastern Kulun Terrane, NW China: Implications for the tectonic setting of Sn−W mineralization[J]. Ore Geology Reviews: 105749.

    [9]

    Gao Y B, Li W Y, Qian B, et al. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647−1665 (in Chinese with English abstract).

    [10]

    Guo G H, Zhong S H, Li S Z, et al. 2023. Constructing Discrimination Diagrams for Granite Mineralization Potential by Using Machine Learning and Zircon Trace Elements: Example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).

    [11]

    Guo X Z, Jia Q Z, Li J C, et al. 2019. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance[J]. Journal of Geomechanics, 25(2): 286−300.

    [12]

    He S Y, Lin G, Zhong S H, et al. 2023. Geological Characteristics and Related Mineralization of “Qinghai Gold Belt” Formed by Orogeny[J]. Northwestern Geology, 56(6): 1−16 (in Chinese with English abstract).

    [13]

    He S Y, Sun F F, Li Y P, et al. 2017. Geochemical and geochronological significance of the Binggounan garbbro in the Qiman Tage region, Qinghai province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 582−592 (in Chinese with English abstract).

    [14]

    Huang Y, Zhong S, Li S, et al. 2024. Effects of accessory mineral inclusions and signal acquisition time on zircon U−Pb ages and trace element analysis results[J]. Earth Science Frontiers, 32(1): 388-400 (in Chinese with English abstract).

    [15]

    Jia L H, Mao J W, Li B L, et al. 2021. Geochronology and petrogenesis of the Late Silurian Shitoukengde mafic−ultramafic intrusion[J]. NW China: Implications for the tectonic setting and magmatic Ni−Cu mineralization in the East Kunlun Orogenic Belt[J]. International Geology Review, 63(5): 549−570.

    [16]

    Li C S, Zhang Z W, Li W Y, et al. 2015. Geochronology, petrology and Hf−S isotope geochemistry of the newly−discovered Xiarihamu magmatic Ni, Cu, sulfide deposit in the Qinghai−Tibet plateau, western China[J]. Lithos, 216: 224−240.

    [17]

    Li H P, Liu J C, Zhang X Q, et al. 2011. Characteristics of magmatic rocks from the Sijiaoyang Fe−polymetallic ore district in the southern margin of Qaidam, Qinghai Province and their metallogenic significance[J]. Geology and Exploration, 47(6): 1009−1017 (in Chinese with English abstract).

    [18]

    Li H, Jiang S, Li S, et al. 2023. Geological characteristics, ore genetic mechanism and exploration indicators of magmatic nickel−cobalt deposits in the East Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 39(4): 1041−1060 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.04.07

    [19]

    Li J, Wang T, Wang B, et al. 2024. Geochemistry, and Sr−Nd Isotopic Characteristics of the Niobium Rich Peridotite in the Dagele Area, East Kunlun[J]. Geotectonica et Metallogenia, 48(1): 114−124 (in Chinese with English abstract).

    [20]

    Li L, Sun F, Li B, et al. 2022. Metallogenic geological conditions and regularity of magmatic Cu−Ni sulfide deposits in the East Kunlun metallogenic Belt[J]. Journal of Jilin University (Earth Science Edition), 52(5): 1461−1496 (in Chinese with English abstract).

    [21]

    Li S, Zhao S, Liu X, et al. 2018. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. doi: 10.1016/j.earscirev.2017.01.011

    [22]

    Liu Y, Genser J, Neubauer F, et al. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications[J]. Tectonophysics, 398: 199−224.

    [23]

    Meng F C, Zhang J X, Cui M H. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun Weastern China and its tectionic significance[J]. Gondwana Research, 23(2): 825−836. doi: 10.1016/j.gr.2012.06.007

    [24]

    Peng B, Sun F, Li B, et al. 2016. The geochemistry and geochronology of the Xiarihamu II mafic−ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni−Cu sulfide deposits[J]. Ore Geology Reviews, 73(1): 13−28.

    [25]

    Qian Y, Li H R, Sun F Y, et al. 2020. Zircon U−Pb dating and sulfide Re−Os isotopes of the Xiarihamu Cu−Ni sulfide deposit in Qinghai Province, NW China[J]. Canadian Journal of Earth Sciences, 57(8): 1−21.

    [26]

    Song X Y, Yi J N, Chen L M, et al. 2016. The Giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun orogenic belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29

    [27]

    Xia R, Wang C, Qing M, et al. 2015. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo−Tethys[J]. Lithos, 234/235: 47−60.

    [28]

    Xiong F H, Ma C Q, Zhang J Y, et al. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai−Tibet Plateau: implications for magma mixing during subduction of Paleo−Tethyan lithosphere[J]. Mineralogy and Petrology, 104: 211−224.

    [29]

    Yan J M, Sun F Y, Qian Y, et al. 2020. Geochemistry, geochronology, and Hf−S−Pb isotopes of the Akechukesai IV mafic−ultramafic complex, western China[J]. Minerals, 95: 275.

    [30]

    Yang L Q, Deng J, Zhang L, et al. 2024. Mantle−rooted fluid pathways and world−class gold mineralization in the giant Jiaodong gold province: Insights from integrated deep seismic reflection and tectonics[J]. Earth−Science Reviews: 104862.

    [31]

    Yu M, Dick J M, Feng C, et al. 2020. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 191: 104168. doi: 10.1016/j.jseaes.2019.104168

    [32]

    Zhang J, Lei H, Ma C, et al. 2018. Geochemical and thermodynamical modeling of magmatic sources and processes for the Xiarihamu sulfide deposit in the eastern Kunlun Orogen, western China[J]. Journal of Geochemical Exploration, 190: 345−356. doi: 10.1016/j.gexplo.2018.04.005

    [33]

    Zheng Z, Chen Y J, Deng X H, et al. 2018. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean[J]. Lithos, 296: 181-194.

    [34]

    Zhong S, Feng C, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: Constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53: 855−870. doi: 10.1007/s00126-017-0787-8

    [35]

    Zhong S, Li S, Feng C, et al. 2021a. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai−Tibet Plateau: A zircon perspective[J]. Ore Geology Reviews, 139: 104560.

    [36]

    Zhong S, Li S, Feng C, et al. 2021b. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth−Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524

    [37]

    Zhou J, Jin C, Suo Y, et al. 2022. The Yanshanian (Mesozoic) metallogenesis in China linked to crust−mantle interaction in the western Pacific margin: An overview from the Zhejiang Province[J]. Gondwana Research, 102: 95−132. doi: 10.1016/j.gr.2020.11.003

    [38]

    奥琮, 孙丰月, 李碧乐, 等. 2014. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U−Pb年代学、地球化学及其地质意义[J]. 西北地质, 47(1): 96−106. doi: 10.3969/j.issn.1009-6248.2014.01.007

    [39]

    杜玮, 凌锦兰, 周伟, 等. 2014. 东昆仑夏日哈木镍矿床地质特征与成因[J]. 矿床地质, 33(4): 713−726. doi: 10.16111/j.0258-7106.2014.04.023

    [40]

    丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 665−678.

    [41]

    高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.

    [42]

    郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70.

    [43]

    国显正, 贾群子, 李金超, 等. 2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义[J]. 地质力学学报, 25(2): 286−300.

    [44]

    何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16.

    [45]

    何书跃, 孙非非, 李云平, 等. 2017. 青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义[J]. 矿物岩石地球化学通报, 36(4): 582−592.

    [46]

    黄宇, 钟世华, 李三忠, 等. 2025. 副矿物包裹体和信号采集时间对锆石U−Pb年龄和微量元素分析结果的影响[J/OL]. 地学前缘, 32(1): 388−400.

    [47]

    李洪普, 刘具仓, 张喜全, 等. 2011. 青海省柴南缘四角羊铁多金属矿区岩浆岩特征及其成矿意义[J]. 地质与勘探, 47(6): 1009−1017.

    [48]

    李华, 蒋少涌, 李世金, 等. 2023. 东昆仑造山带岩浆型镍钴矿床地质特征、成因机制与找矿标志分析[J]. 岩石学报, 39(4): 1041−1060.

    [49]

    李积清, 王涛, 王秉璋, 等. 2024. 东昆仑大格勒地区富铌橄榄岩矿物学、地球化学及Sr−Nd同位素特征[J]. 大地构造与成矿学, 48(1): 114−124.

    [50]

    李良, 孙丰月, 李世金, 等. 2022. 东昆仑成矿带岩浆铜镍硫化物矿床成矿地质条件与成矿规律[J]. 吉林大学学报(地球科学版), 52(5): 1461−1496.

    [51]

    李世金, 孙丰月, 高永旺, 等. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185−191.

    [52]

    李五福, 王强, 王秉璋, 等. 2024. 东昆仑大格勒地区碱性杂岩体中辉石角闪石岩的年代学、地球化学特征及地质意义[J]. 大地构造与成矿学, 48(1): 144−167.

    [53]

    刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56.

    [54]

    刘月高, 张江伟, 冯志兴, 等. 2024. 青藏高原东北缘岩浆型铜镍钴硫化物矿床勘查模型与研究进展[J/OL]. 中国地质: 1−46. http://kns.cnki.net/kcms/detail/11.1167.P.20230511.0845.002.html.

    [55]

    陆济璞, 李江, 覃小锋, 等. 2005. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, (4): 46-54.

    [56]

    马忠元, 张爱奎, 李军, 等. 2023. 东昆仑哈日扎矿床V矿带银多金属矿物赋存状态研究[J]. 青海大学学报, 41(6): 78−87.

    [57]

    孟繁聪, 崔美慧, 贾丽辉, 等. 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据[J]. 岩石学报, 31(12): 3581−3594.

    [58]

    孟庆鹏. 2019. 青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文.

    [59]

    毛景文, 周振华, 丰成友, 等. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437−1471.

    [60]

    莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, (3): 403−414.

    [61]

    南卡俄吾. 2021. 青海东昆仑构造带志留纪–泥盆纪侵入岩浆活动及含矿性研究[D]. 长安大学博士学位论文.

    [62]

    潘彤, 王福德, 薛万文, 等. 2025. 青海省成矿规律与百年勘查成果及新一轮找矿突破行动建议——《中国矿产地质志·青海卷》研编[J]. 地球学报, (1): 159−171.

    [63]

    祁生胜, 宋述光, 史连昌, 等. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 30(11): 3345−3356.

    [64]

    宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉深部的华力西期花岗闪长岩U−Pb年龄及其意义[J]. 现代地质, 28(6): 1161−1169.

    [65]

    王秉璋, 李积清, 付长垒, 等. 2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探[J]. 地球科学, 47(4): 1253−1270. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204007

    [66]

    王秉璋, 李五福, 金婷婷, 等. 2024. 东昆仑大格勒稀有金属矿化碳酸岩和橄榄岩斜锆石U−Pb年代学研究和找矿意义[J]. 地球科学, 49(4): 1245−1260.

    [67]

    王春涛, 李五福, 王秉璋, 等. 2024. 东昆仑大格勒地区碱性杂岩体中辉石岩的年代学、地球化学、Sr−Nd同位素特征及其地质意义[J]. 大地构造与成矿学, 48(1): 125−147.

    [68]

    王冠, 孙丰月, 李碧乐, 等. 2014. 东昆仑夏日哈木铜镍矿镁铁质—超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21(6): 381−401.

    [69]

    王强, 李五福, 王秉璋, 等. 2024. 与碱性岩-碳酸岩杂岩共生的铌-稀土成矿作用——兼论东昆仑大格勒铌-稀土矿床中的碱性岩-碳酸岩杂岩成因[J]. 大地构造与成矿学, 48(1): 1−37.

    [70]

    王泰山, 李五福, 王秉璋, 等. 2024. 东昆仑大格勒富铌碳酸岩地球化学特征及成因初探[J]. 大地构造与成矿学, 48(1): 97−113.

    [71]

    王涛, 王秉璋, 袁博武, 等. 2024. 东昆仑大格勒地区碱性岩-碳酸岩型铌矿勘查进展及找矿前景[J]. 大地构造与成矿学, 48(1): 50−60.

    [72]

    王新雨, 王书来, 吴锦荣, 等. 2023. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 56(6): 71−81.

    [73]

    吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674.

    [74]

    许志琴, 杨经绥, 李文昌, 等. 2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 29(6): 1847−1860.

    [75]

    姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169. doi: 10.3969/j.issn.1671-2552.2016.07.011

    [76]

    闫佳铭. 2017. 青海东昆仑阿克楚克塞铜镍矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文.

    [77]

    张勇, 刘国燕, 喻忠鸿, 等. 2016. 东昆仑喀雅克登锌多金属矿床成因探讨[J]. 矿产勘查, 7(2): 267−274. doi: 10.3969/j.issn.1674-7801.2016.02.004

    [78]

    张勇, 李泽峰, 刘国燕, 等. 2015. 东昆仑喀雅克登中泥盆世二辉橄榄岩的发现及找矿意义[J]. 矿产勘查, 6(4): 405−412.

    [79]

    张照伟, 王亚磊, 钱兵, 等. 2017. 东昆仑冰沟南铜镍矿锆石SHRIMP U−Pb 年龄及构造意义[J]. 地质学报, 91(4): 724−735.

    [80]

    钟世华. 2018. 新疆维宝铜铅锌矿床成因研究[D]. 中国地质科学院博士学位论文.

    [81]

    钟世华, 丰成友, 李大新, 等. 2017a. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 91(5): 1066−1082.

    [82]

    钟世华, 丰成友, 任雅琼, 等. 2017b. 新疆维宝矽卡岩铜铅锌矿床维西矿段成矿流体性质和来源[J]. 矿床地质, 36(2): 483−500.

    [83]

    钟世华, 丰成友, 李大新, 等. 2017c. 新疆维宝多金属矿区辉绿岩脉SIMS年代学和地球化学[J]. 地质学报, 91(4): 762−775.

    [84]

    周建厚, 丰成友, 李大新, 等. 2015. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 31(8): 2277−2293.

  • 加载中

(6)

(1)

计量
  • 文章访问数:  41
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2024-06-11
修回日期:  2024-12-11
刊出日期:  2025-04-15

目录