Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt
-
摘要:
研究目的 随着地质调查和研究的深入,大量的证据显示东昆仑造山带在志留纪—泥盆纪存在大规模成矿作用,但对志留纪—泥盆纪成矿作用长期缺乏深入研究。本文旨在厘定东昆仑志留纪—泥盆纪大规模成矿的特点及其地球动力学背景,服务新一轮找矿突破战略行动。
研究方法 系统收集东昆仑造山带最新的找矿工作成果,对该地区志留纪—泥盆纪成矿作用类型和特点进行了综合分析研究。
研究结果 东昆仑地区在志留纪—泥盆纪主要发育3种矿床类型:①与基性—超基性岩有关的岩浆熔离型铜镍矿床,如夏日哈木、冰沟南等;②与花岗岩类有关的斑岩-矽卡岩矿床,可进一步分为斑岩-矽卡岩铜铁多金属矿床和矽卡岩钨锡矿床,如卡尔却卡、乌兰乌珠尔、白干湖等;③与碱性岩-碳酸岩有关的碱性岩-碳酸岩型铌矿床,以大格勒为代表。
结论 综合前人研究表明,东昆仑志留纪—泥盆纪大规模金属矿床的形成与原特提斯洋闭合后的演化密切相关。原特提斯洋在约435 Ma闭合后,东昆仑地区进入陆-陆碰撞环境,由于板片断离和后碰撞伸展作用,诱发软流圈地幔大规模上涌,幔源岩浆在上升过程中与陆壳物质发生不同程度的壳幔相互作用,形成了富含成矿元素的岩浆,并最终在上地壳就位,形成了不同的矿床类型。下一步,应进一步加大对东昆仑志留纪—泥盆纪基性—超基性岩、碳酸岩和花岗岩类分布范围及成矿潜力的研究,为全面认识东昆仑地区金属成矿规律、实现找矿突破提供理论指导。
Abstract:Objective With the deepening of geological surveys and research, substantial evidence has indicated that the East Kunlun Orogenic Belt experienced large−scale mineralization during the Silurian–Devonian periods. However, there has been a long−standing lack of in−depth research on the mineralization processes of these periods. This paper aims to clarify the characteristics of large−scale mineralization during the Silurian–Devonian in East Kunlun and its geodynamic background, with the goal of supporting a new round of strategic actions for mineral exploration breakthroughs.
Methods Based on a systematic collection of the latest mineral exploration results from the East Kunlun Orogenic Belt, this paper conducts a comprehensive analysis of the types and characteristics of mineralization during the Silurian–Devonian periods in this region.
Results The East Kunlun region primarily developed three types of deposits during the Silurian−Devonian periods: magmatic segregation−type copper−nickel deposits related to mafic−ultramafic rocks, such as those found in Xiarihamu and Binggounan; porphyry–skarn deposits related to granitoids, which can be further subdivided into porphyry–skarn copper−iron polymetallic deposits and skarn tungsten−tin deposits, such as those in Kaerqueka, Wulanwuzhuer, and Baiganhu; alkaline rock−carbonatite−type niobium deposits related to alkaline rocks and carbonatites, represented by the Dagele deposit.
Conclusions Comprehensive previous studies indicate that the formation of large−scale metal deposits in East Kunlun during the Silurian−Devonian periods is closely related to the evolution following the closure of the Proto−Tethys Ocean. After the closure of the Proto−Tethys Ocean around 435 Ma, the East Kunlun region entered a continent−continent collision environment. Due to slab break−off and post−collisional extension, large−scale upwelling of the asthenospheric mantle was induced. During the ascent of mantle−derived magmas, varying degrees of crust−mantle interaction with continental crust materials occurred, forming magmas rich in ore−forming elements, which eventually emplaced in the upper crust, resulting in different types of deposits. Future research should further investigate the distribution and mineralization potential of Silurian–Devonian mafic−ultramafic rocks, carbonatites, and granitoids in East Kunlun, providing theoretical guidance for a comprehensive understanding of the metallogenic patterns in the region and achieving breakthroughs in mineral exploration.
-
Key words:
- East Kunlun /
- Proto-Tethys /
- porphyry-skarn deposit /
- magmatic deposit /
- critical metal
-
-
图 1 东昆仑造山带大地构造位置图(据Fang et al., 2015; Zhong et al., 2018)
Figure 1.
图 2 东昆仑青海段内岩浆岩和主要矿床类型分布图(据何书跃等,2023)
Figure 2.
图 3 东昆仑青海段内布格重力异常图(据何书跃等,2023)
Figure 3.
图 4 东昆仑青海段内航磁异常图(据何书跃等,2023)
Figure 4.
图 5 东昆仑青海段内莫霍面等深图(据何书跃等,2023)
Figure 5.
图 6 东昆仑地区志留纪—泥盆纪岩浆岩全岩Sr−Nd同位素图解(底图据Zhong et al., 2021b修改;数据来源:白干湖据Zheng et al., 2018;野马泉和无矿花岗岩据Chen et al., 2018;夏日哈木成矿岩体据Peng et al., 2016;夏日哈木不成矿岩体据Zhang et al., 2018;冰沟南据张照伟等,2017;大格勒据王春涛等, 2024;王泰山等,2024;李积清等,2024)
Figure 6.
表 1 东昆仑志留纪—泥盆纪主要矿床
Table 1. Main Silurian—Devonian deposits (points) in the East Kunlun Orogenic Belt
序号 矿床
(点)成矿岩体 出露面
积/ km2成岩成矿时代 Cu资源
量/104 tNi资源
量/104 tCo资源
量/tWO3资源
量/104 tSn资源量/
104 t备注 岩浆熔离型铜镍矿床 1 夏日哈木 橄榄岩、辉石岩、辉长岩 I号杂岩体1.12 辉长苏长岩423±1 Ma,二辉岩412~406 Ma,黄铁矿Re−Os年龄411 Ma(王冠等,2014;Qian et al., 2020) 23.83 118.3 42928 正长花岗岩、闪长玢岩 正长花岗岩10.7 热液榍石413±3.6 Ma,闪长玢岩381.7±1.9 Ma(奥琮等,2014) 0.2 夏日哈木
东铅锌矿2 阿克楚
克塞橄榄岩、辉石岩、辉长岩 0.01~0.1 辉长岩423.9±2.6 Ma,辉石岩427.3±
2.3 Ma(闫佳铭, 2017)0.04 0.6 41.78 3 喀雅克登 橄榄岩、辉石岩、辉长岩 3.5 二辉橄榄岩386.4±3.2 Ma,辉长岩386.9±2.6Ma、403.3±3.2(张勇等,2015) 0.1 0.1 二长花岗岩、花岗岩 <13.5 二长花岗岩403.1±1.2 Ma (张勇等,2016) 0.23 4 冰沟南 辉石岩、辉长岩 0.2 辉长岩427.4±7.3 Ma,含长橄榄辉石岩377.8±3.4 Ma(何书跃等,2017;张照伟等,2017) 0.1 0.08 5 石头坑德 橄榄岩、辉石岩、辉长岩 4 辉长岩423.5±3.2 Ma 0.1 14.7 7800 资源量
数据据
李华等,20236 浪木日 橄榄辉石岩、辉石岩、辉长岩 0.1 橄榄辉石岩438.8±2.6 Ma,辉长岩439.5±2.0 Ma(孟庆鹏,2019) 0.64 220 斑岩−矽卡岩矿床多金属矿床 7 卡尔却卡 二长花岗岩、花岗斑岩 约17.2 斑状黑云母二长花岗岩 410.1~406.4 Ma,花岗闪长岩245.1~211.8 Ma,辉钼矿Re−Os年龄 245.5~238.8 Ma,金云母Ar−Ar年龄233.9±1.4 Ma(Zhong et al., 2021b) 16.83 内部
资料8 牛苦头 二长花岗岩、花岗闪长岩 隐伏,地表出露,<0.01 花岗闪长岩 394.0~393.7 Ma,二长花岗岩361.8±3.4 Ma,斑状花岗岩222.7±2.2 Ma,黄铁矿Re−Os年龄 359.2±6.3Ma,石榴子石U−Pb定年 219±12 Ma(Zhong et al., 2021b;王新雨等,2023;2024) 19.56 1275.43 9 野马泉 二长花岗岩、花岗闪长岩 <30 二长花岗岩(M13) 393±2 Ma,花岗闪长岩386±1 Ma,石英闪长岩392.4±2.2 Ma(高永宝等,2014;宋忠宝等,2014) 4.50 166.85 10 哈日扎 花岗闪长岩、英云闪长岩 2 Ⅴ矿带花岗闪长岩423.8±4.3 Ma,英云闪长岩422.3±1.9 Ma(南卡俄吾,2021) 8.51 详查
报告11 白干湖 正长花岗岩、二长花岗岩 2 二长花岗岩 431.3±4.0 Ma,正长花岗岩 413.6±2.4 Ma(周建厚等, 2015;Zheng et al., 2018) 17 8 碱性岩−碳酸岩型铌矿床 12 大格勒 碳酸岩、橄榄岩、辉石岩 1~5.63 碳酸岩381.1±2.3 Ma, 橄榄岩和辉石岩417.7±3.4 Ma (王秉璋等, 2024) 大型
铌矿 -
[1] Ao C, Sun F Y, Li B L, et al. 2014. Geochemistry, zircon U–Pb dating and geological significance of diorite porphyrite in Xiarihamu deposit, Eastern Kunlun Orogenic Belt, Qinghai[J]. Northwestern Geology, 47(1): 96−106 (in Chinese with English abstract).
[2] Chen J, Wang B, Lu H, et al. 2018. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: evidence for post-collisional slab break-off[J]. International Geology Review, 60(4): 479−495.
[3] Dong Y, He D, Sun S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006
[4] Du W, Ling J L, Zhou W, et al. 2014. Geological characteristics and genesis of Xiarihamu nickel deposit in East Kunlun[J]. Mineral Deposits, 33(4): 713−726 (in Chinese with English abstract).
[5] Fan J J, Wang Q, Li J, et al. 2020. Molybdenum and boron isotopic compositions of porphyry Cu mineralization‐related adakitic rocks in central‐eastern China: New insights into their petrogenesis and crust‐mantle interaction[J]. Journal of Geophysical Research: Solid Earth, 125(12): e2020JB020474. doi: 10.1029/2020JB020474
[6] Fang J, Chen H, Zhang L, et al. 2015. Ore genesis of the Weibao lead–zinc district, Eastern Kunlun Orogen, China: Constrains from ore geology, fluid inclusion and isotope geochemistry[J]. International Journal of Earth Sciences, 104: 1209-1233.
[7] Feng C, Wang S, Li G C, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678.
[8] Gao Y, Hattori K, Bagas L, et al. 2023. Origin of Silurian granite in the Baiganhu field, Eastern Kulun Terrane, NW China: Implications for the tectonic setting of Sn−W mineralization[J]. Ore Geology Reviews: 105749.
[9] Gao Y B, Li W Y, Qian B, et al. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647−1665 (in Chinese with English abstract).
[10] Guo G H, Zhong S H, Li S Z, et al. 2023. Constructing Discrimination Diagrams for Granite Mineralization Potential by Using Machine Learning and Zircon Trace Elements: Example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).
[11] Guo X Z, Jia Q Z, Li J C, et al. 2019. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance[J]. Journal of Geomechanics, 25(2): 286−300.
[12] He S Y, Lin G, Zhong S H, et al. 2023. Geological Characteristics and Related Mineralization of “Qinghai Gold Belt” Formed by Orogeny[J]. Northwestern Geology, 56(6): 1−16 (in Chinese with English abstract).
[13] He S Y, Sun F F, Li Y P, et al. 2017. Geochemical and geochronological significance of the Binggounan garbbro in the Qiman Tage region, Qinghai province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 582−592 (in Chinese with English abstract).
[14] Huang Y, Zhong S, Li S, et al. 2024. Effects of accessory mineral inclusions and signal acquisition time on zircon U−Pb ages and trace element analysis results[J]. Earth Science Frontiers, 32(1): 388-400 (in Chinese with English abstract).
[15] Jia L H, Mao J W, Li B L, et al. 2021. Geochronology and petrogenesis of the Late Silurian Shitoukengde mafic−ultramafic intrusion[J]. NW China: Implications for the tectonic setting and magmatic Ni−Cu mineralization in the East Kunlun Orogenic Belt[J]. International Geology Review, 63(5): 549−570.
[16] Li C S, Zhang Z W, Li W Y, et al. 2015. Geochronology, petrology and Hf−S isotope geochemistry of the newly−discovered Xiarihamu magmatic Ni, Cu, sulfide deposit in the Qinghai−Tibet plateau, western China[J]. Lithos, 216: 224−240.
[17] Li H P, Liu J C, Zhang X Q, et al. 2011. Characteristics of magmatic rocks from the Sijiaoyang Fe−polymetallic ore district in the southern margin of Qaidam, Qinghai Province and their metallogenic significance[J]. Geology and Exploration, 47(6): 1009−1017 (in Chinese with English abstract).
[18] Li H, Jiang S, Li S, et al. 2023. Geological characteristics, ore genetic mechanism and exploration indicators of magmatic nickel−cobalt deposits in the East Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 39(4): 1041−1060 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.04.07
[19] Li J, Wang T, Wang B, et al. 2024. Geochemistry, and Sr−Nd Isotopic Characteristics of the Niobium Rich Peridotite in the Dagele Area, East Kunlun[J]. Geotectonica et Metallogenia, 48(1): 114−124 (in Chinese with English abstract).
[20] Li L, Sun F, Li B, et al. 2022. Metallogenic geological conditions and regularity of magmatic Cu−Ni sulfide deposits in the East Kunlun metallogenic Belt[J]. Journal of Jilin University (Earth Science Edition), 52(5): 1461−1496 (in Chinese with English abstract).
[21] Li S, Zhao S, Liu X, et al. 2018. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. doi: 10.1016/j.earscirev.2017.01.011
[22] Liu Y, Genser J, Neubauer F, et al. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications[J]. Tectonophysics, 398: 199−224.
[23] Meng F C, Zhang J X, Cui M H. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun Weastern China and its tectionic significance[J]. Gondwana Research, 23(2): 825−836. doi: 10.1016/j.gr.2012.06.007
[24] Peng B, Sun F, Li B, et al. 2016. The geochemistry and geochronology of the Xiarihamu II mafic−ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni−Cu sulfide deposits[J]. Ore Geology Reviews, 73(1): 13−28.
[25] Qian Y, Li H R, Sun F Y, et al. 2020. Zircon U−Pb dating and sulfide Re−Os isotopes of the Xiarihamu Cu−Ni sulfide deposit in Qinghai Province, NW China[J]. Canadian Journal of Earth Sciences, 57(8): 1−21.
[26] Song X Y, Yi J N, Chen L M, et al. 2016. The Giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun orogenic belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29
[27] Xia R, Wang C, Qing M, et al. 2015. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo−Tethys[J]. Lithos, 234/235: 47−60.
[28] Xiong F H, Ma C Q, Zhang J Y, et al. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai−Tibet Plateau: implications for magma mixing during subduction of Paleo−Tethyan lithosphere[J]. Mineralogy and Petrology, 104: 211−224.
[29] Yan J M, Sun F Y, Qian Y, et al. 2020. Geochemistry, geochronology, and Hf−S−Pb isotopes of the Akechukesai IV mafic−ultramafic complex, western China[J]. Minerals, 95: 275.
[30] Yang L Q, Deng J, Zhang L, et al. 2024. Mantle−rooted fluid pathways and world−class gold mineralization in the giant Jiaodong gold province: Insights from integrated deep seismic reflection and tectonics[J]. Earth−Science Reviews: 104862.
[31] Yu M, Dick J M, Feng C, et al. 2020. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 191: 104168. doi: 10.1016/j.jseaes.2019.104168
[32] Zhang J, Lei H, Ma C, et al. 2018. Geochemical and thermodynamical modeling of magmatic sources and processes for the Xiarihamu sulfide deposit in the eastern Kunlun Orogen, western China[J]. Journal of Geochemical Exploration, 190: 345−356. doi: 10.1016/j.gexplo.2018.04.005
[33] Zheng Z, Chen Y J, Deng X H, et al. 2018. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean[J]. Lithos, 296: 181-194.
[34] Zhong S, Feng C, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: Constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53: 855−870. doi: 10.1007/s00126-017-0787-8
[35] Zhong S, Li S, Feng C, et al. 2021a. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai−Tibet Plateau: A zircon perspective[J]. Ore Geology Reviews, 139: 104560.
[36] Zhong S, Li S, Feng C, et al. 2021b. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth−Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524
[37] Zhou J, Jin C, Suo Y, et al. 2022. The Yanshanian (Mesozoic) metallogenesis in China linked to crust−mantle interaction in the western Pacific margin: An overview from the Zhejiang Province[J]. Gondwana Research, 102: 95−132. doi: 10.1016/j.gr.2020.11.003
[38] 奥琮, 孙丰月, 李碧乐, 等. 2014. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U−Pb年代学、地球化学及其地质意义[J]. 西北地质, 47(1): 96−106. doi: 10.3969/j.issn.1009-6248.2014.01.007
[39] 杜玮, 凌锦兰, 周伟, 等. 2014. 东昆仑夏日哈木镍矿床地质特征与成因[J]. 矿床地质, 33(4): 713−726. doi: 10.16111/j.0258-7106.2014.04.023
[40] 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 665−678.
[41] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.
[42] 郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70.
[43] 国显正, 贾群子, 李金超, 等. 2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义[J]. 地质力学学报, 25(2): 286−300.
[44] 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16.
[45] 何书跃, 孙非非, 李云平, 等. 2017. 青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义[J]. 矿物岩石地球化学通报, 36(4): 582−592.
[46] 黄宇, 钟世华, 李三忠, 等. 2025. 副矿物包裹体和信号采集时间对锆石U−Pb年龄和微量元素分析结果的影响[J/OL]. 地学前缘, 32(1): 388−400.
[47] 李洪普, 刘具仓, 张喜全, 等. 2011. 青海省柴南缘四角羊铁多金属矿区岩浆岩特征及其成矿意义[J]. 地质与勘探, 47(6): 1009−1017.
[48] 李华, 蒋少涌, 李世金, 等. 2023. 东昆仑造山带岩浆型镍钴矿床地质特征、成因机制与找矿标志分析[J]. 岩石学报, 39(4): 1041−1060.
[49] 李积清, 王涛, 王秉璋, 等. 2024. 东昆仑大格勒地区富铌橄榄岩矿物学、地球化学及Sr−Nd同位素特征[J]. 大地构造与成矿学, 48(1): 114−124.
[50] 李良, 孙丰月, 李世金, 等. 2022. 东昆仑成矿带岩浆铜镍硫化物矿床成矿地质条件与成矿规律[J]. 吉林大学学报(地球科学版), 52(5): 1461−1496.
[51] 李世金, 孙丰月, 高永旺, 等. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185−191.
[52] 李五福, 王强, 王秉璋, 等. 2024. 东昆仑大格勒地区碱性杂岩体中辉石角闪石岩的年代学、地球化学特征及地质意义[J]. 大地构造与成矿学, 48(1): 144−167.
[53] 刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56.
[54] 刘月高, 张江伟, 冯志兴, 等. 2024. 青藏高原东北缘岩浆型铜镍钴硫化物矿床勘查模型与研究进展[J/OL]. 中国地质: 1−46. http://kns.cnki.net/kcms/detail/11.1167.P.20230511.0845.002.html.
[55] 陆济璞, 李江, 覃小锋, 等. 2005. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, (4): 46-54.
[56] 马忠元, 张爱奎, 李军, 等. 2023. 东昆仑哈日扎矿床V矿带银多金属矿物赋存状态研究[J]. 青海大学学报, 41(6): 78−87.
[57] 孟繁聪, 崔美慧, 贾丽辉, 等. 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据[J]. 岩石学报, 31(12): 3581−3594.
[58] 孟庆鹏. 2019. 青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文.
[59] 毛景文, 周振华, 丰成友, 等. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437−1471.
[60] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, (3): 403−414.
[61] 南卡俄吾. 2021. 青海东昆仑构造带志留纪–泥盆纪侵入岩浆活动及含矿性研究[D]. 长安大学博士学位论文.
[62] 潘彤, 王福德, 薛万文, 等. 2025. 青海省成矿规律与百年勘查成果及新一轮找矿突破行动建议——《中国矿产地质志·青海卷》研编[J]. 地球学报, (1): 159−171.
[63] 祁生胜, 宋述光, 史连昌, 等. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 30(11): 3345−3356.
[64] 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉深部的华力西期花岗闪长岩U−Pb年龄及其意义[J]. 现代地质, 28(6): 1161−1169.
[65] 王秉璋, 李积清, 付长垒, 等. 2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探[J]. 地球科学, 47(4): 1253−1270. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204007
[66] 王秉璋, 李五福, 金婷婷, 等. 2024. 东昆仑大格勒稀有金属矿化碳酸岩和橄榄岩斜锆石U−Pb年代学研究和找矿意义[J]. 地球科学, 49(4): 1245−1260.
[67] 王春涛, 李五福, 王秉璋, 等. 2024. 东昆仑大格勒地区碱性杂岩体中辉石岩的年代学、地球化学、Sr−Nd同位素特征及其地质意义[J]. 大地构造与成矿学, 48(1): 125−147.
[68] 王冠, 孙丰月, 李碧乐, 等. 2014. 东昆仑夏日哈木铜镍矿镁铁质—超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21(6): 381−401.
[69] 王强, 李五福, 王秉璋, 等. 2024. 与碱性岩-碳酸岩杂岩共生的铌-稀土成矿作用——兼论东昆仑大格勒铌-稀土矿床中的碱性岩-碳酸岩杂岩成因[J]. 大地构造与成矿学, 48(1): 1−37.
[70] 王泰山, 李五福, 王秉璋, 等. 2024. 东昆仑大格勒富铌碳酸岩地球化学特征及成因初探[J]. 大地构造与成矿学, 48(1): 97−113.
[71] 王涛, 王秉璋, 袁博武, 等. 2024. 东昆仑大格勒地区碱性岩-碳酸岩型铌矿勘查进展及找矿前景[J]. 大地构造与成矿学, 48(1): 50−60.
[72] 王新雨, 王书来, 吴锦荣, 等. 2023. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 56(6): 71−81.
[73] 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674.
[74] 许志琴, 杨经绥, 李文昌, 等. 2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 29(6): 1847−1860.
[75] 姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169. doi: 10.3969/j.issn.1671-2552.2016.07.011
[76] 闫佳铭. 2017. 青海东昆仑阿克楚克塞铜镍矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文.
[77] 张勇, 刘国燕, 喻忠鸿, 等. 2016. 东昆仑喀雅克登锌多金属矿床成因探讨[J]. 矿产勘查, 7(2): 267−274. doi: 10.3969/j.issn.1674-7801.2016.02.004
[78] 张勇, 李泽峰, 刘国燕, 等. 2015. 东昆仑喀雅克登中泥盆世二辉橄榄岩的发现及找矿意义[J]. 矿产勘查, 6(4): 405−412.
[79] 张照伟, 王亚磊, 钱兵, 等. 2017. 东昆仑冰沟南铜镍矿锆石SHRIMP U−Pb 年龄及构造意义[J]. 地质学报, 91(4): 724−735.
[80] 钟世华. 2018. 新疆维宝铜铅锌矿床成因研究[D]. 中国地质科学院博士学位论文.
[81] 钟世华, 丰成友, 李大新, 等. 2017a. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 91(5): 1066−1082.
[82] 钟世华, 丰成友, 任雅琼, 等. 2017b. 新疆维宝矽卡岩铜铅锌矿床维西矿段成矿流体性质和来源[J]. 矿床地质, 36(2): 483−500.
[83] 钟世华, 丰成友, 李大新, 等. 2017c. 新疆维宝多金属矿区辉绿岩脉SIMS年代学和地球化学[J]. 地质学报, 91(4): 762−775.
[84] 周建厚, 丰成友, 李大新, 等. 2015. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 31(8): 2277−2293.
-