基于测井参数的延川南气田煤层含气量预测模型

刘晓, 陈贞龙, 杨松, 李松, 常闯. 2025. 基于测井参数的延川南气田煤层含气量预测模型. 地质通报, 44(5): 792-800. doi: 10.12097/gbc.2024.03.037
引用本文: 刘晓, 陈贞龙, 杨松, 李松, 常闯. 2025. 基于测井参数的延川南气田煤层含气量预测模型. 地质通报, 44(5): 792-800. doi: 10.12097/gbc.2024.03.037
LIU Xiao, CHEN Zhenlong, YANG Song, LI Song, CHANG Chuang. 2025. Logging prediction model of coal seam gas content in Southern Yanchuan gas field. Geological Bulletin of China, 44(5): 792-800. doi: 10.12097/gbc.2024.03.037
Citation: LIU Xiao, CHEN Zhenlong, YANG Song, LI Song, CHANG Chuang. 2025. Logging prediction model of coal seam gas content in Southern Yanchuan gas field. Geological Bulletin of China, 44(5): 792-800. doi: 10.12097/gbc.2024.03.037

基于测井参数的延川南气田煤层含气量预测模型

  • 基金项目: 国家自然科学基金面上项目《深部煤层气赋存态调整分配及释放产出机制》(批准号:42272195),中国石油化工股份有限公司科技项目《华东探区深部煤层气富集规律与有效开发技术》(编号:P23205)、《深层煤炭地下气化关键技术研究》(编号:P22186)
详细信息
    作者简介: 刘晓(1982− ),男,硕士,高级工程师,从事非常规煤层气勘探开发工作。E−mail:47186025@qq.com
  • 中图分类号: P618.13

Logging prediction model of coal seam gas content in Southern Yanchuan gas field

  • 研究目的

    煤层含气量是煤层气资源评价与开发的核心参数,但当前含气量预测模型普遍存在精度不足、泛化能力弱等问题,制约着煤层气的勘探开发。

    研究方法

    基于延川南气田煤层含气量的测井响应特征,利用MIV (Mean Impact Value)方法优选测井参数,引入BP神经网络与随机森林思想,建立高精度煤层含气量预测模型。

    研究结果

    相比传统的多元线性回归模型,BP神经网络模型与随机森林模型的预测精度有明显提升,其中随机森林模型预测精度更高。

    结论

    随机森林模型更适用于研究区煤层含气量的预测,基于模型预测结果,研究区煤层含气量的分布范围为4.84~21.83 m3/t,平均为11.63 m3/t;平面上,煤层含气量由东南向西北逐渐升高,变化规律与煤层埋深规律大体一致;纵向上,随着埋深的增大,煤层含气量逐渐升高,但含气量分布的离散程度增大。

  • 加载中
  • 图 1  延川南区块构造纲要图(据常闯,2023

    Figure 1. 

    图 2  2号煤层测井参数及含气量分布范围

    Figure 2. 

    图 3  2号煤层实测含气量与常规测井参数相关性热图

    Figure 3. 

    图 4  各测井参数对含气量模型的影响

    Figure 4. 

    图 5  基于多元线性回归的煤层预测含气量与实测含气量交会图

    Figure 5. 

    图 6  基于BP神经网络的煤层预测含气量与实测含气量交汇图

    Figure 6. 

    图 7  基于随机森林算法的煤层预测含气量与实测含气量交汇图

    Figure 7. 

    图 8  研究区2号煤层含气量平面等值线图

    Figure 8. 

    图 9  研究区2号煤层含气量随埋深的变化

    Figure 9. 

    表 1  2号煤层含气量与测井参数之间的相关系数

    Table 1.  The correlation coefficient between gas content and logging parameters of No.2 coal seam

    参数含气量深度DENGRRDRSDTCALCNL
    含气量1.00
    深度0.481.00
    DEN0.520.121.00
    GR0.030.110.301.00
    RD−0.58−0.21−0.31−0.111.00
    RS−0.58−0.20−0.29−0.020.931.00
    DT−0.53−0.24−0.67−0.370.340.331.00
    CAL−0.06−0.09−0.24−0.150.09−0.030.321.00
    CNL−0.12−0.17−0.20−0.450.240.130.420.691.00
    下载: 导出CSV

    表 2  煤层含气量预测模型的预测精度评价指标

    Table 2.  Evaluation index of prediction accuracy for the coal seam gas content prediction model

    模型指标 BP神经网络 随机森林 多元线性回归
    训练集 测试集 训练集 测试集 训练集 测试集
    R2 0.781 0.710 0.949 0.811 0.636 0.559
    RMSE 1.718 2.213 1.071 1.584 2.238 2.383
    下载: 导出CSV
  • [1]

    Bharadwaj P K B, Kanagachidam−baresan G R. 2021. Pattern recognition and machine learning.

    [2]

    Breiman. 2001. Random Forests[J]. Mach−Learn, 45(1): 5−32. doi: 10.1023/A:1010933404324

    [3]

    Chang C, Li S, Tang D Z, et al. 2023. In−situ stress calculation for coal reservoirs based on log parameters: A case study of the southern Yanchuan block[J]. Coal Geology & Exploration, 51(5): 23−32 (in Chinese with English abstract).

    [4]

    Chen S D, Hou W, Tang D Z, et al. 2024. Effects of depth on gas−bearing properties of coal reservoirs and their coup−ling relationships with coalbed methane accumulation[J]. Coal Geology & Exploration, 52(2): 52−59 (in Chinese with English abstract).

    [5]

    Chen T, Zhang Z S, Zhou X Q, et al. 2021. Prediction model of coalbed methane content based on well logging parameter optimization[J]. Coal Geology & Exploration, 49(3): 227−235 (in Chinese with English abstract).

    [6]

    Dietterich T G. 2000. Ensemble methods in machine learning[C]//Proc International Work Shop on Multiple Classifier Systems.

    [7]

    Feng P, Li S, Tang D Z, et al. 2022. Application of support vector machine in prediction of coal seam stress[J]. Geoscience, 6(5): 1333−1340 (in Chinese with English abstract).

    [8]

    Fu X, Qin Y, Wang G, et al. 2009. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology[J]. Fuel, 88: 2269−2277. doi: 10.1016/j.fuel.2009.06.003

    [9]

    Ge X, Liu D, Cai Y, et al. 2018. Gas content evaluation of coalbed methane reservoir in the Fukang area of Southern Junggar Basin, Northwest China by multiple geophysical logging methods[J]. Energies, 11: 1867. doi: 10.3390/en11071867

    [10]

    Ghosh S, Chatterjee R, Paul S, et al. 2014. Designing of plug−in for estimation of coal proximate parameters using statistical analysis and coal seam correlation[J]. Fuel, 134: 63−73. doi: 10.1016/j.fuel.2014.05.023

    [11]

    Hawkins J M, Schraufnagel R A, Olszewski A J. 1992. Estimating coalbed gas content and sorption isotherm using well log data[C]//SPE Annual Technical Conference and Exhibition. SPE: SPE−24905−MS.

    [12]

    Hou X, Liu S, Zhu Y, et al. 2020. Evaluation of gas contents for a multi−seam deep coalbed methane reservoir and their geological controls: In situ direct method versus indirect method[J]. Fuel, 265: 116917. doi: 10.1016/j.fuel.2019.116917

    [13]

    Kim A G. 1977. Estimating methane content of bituminous coalbeds from adsorption data[M]. Department of the Interior, Bureau of Mines.

    [14]

    Li D D, Wang Z G, Jiang W P, et al. 2022. Approach study on coal gas content quantitative assessment based on well logging parameters—a case study of coal No. 15 in Shouyang block[J]. Coal Geology of China, 34(8): 34−40 (in Chinese with English abstract).

    [15]

    Lin H, Sun X Y, Song X X, et al. 2023. A model for shale gas well production prediction based on improved artificial neural network[J]. Petroleum Reservoir Evaluation and Development, 13(3): 467−473 (in Chinese with English abstract).

    [16]

    Li Q, Liu Y S, Huang Z Q, et al. 2016. Exploring mechanism and numerical simulation of rock breaking process using PDC bit[J]. Mechanical Science and Technology, 35(2): 203−209 (in Chinese with English abstract).

    [17]

    Li S, Qin Y, Tang D Z, et al. 2023. A comprehensive review of deep coalbed methane and recent developments in China[J]. International Journal of Coal Geology, 279: 104369. doi: 10.1016/j.coal.2023.104369

    [18]

    Liu X. 2024. Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field[J]. Petroleum Reservoir Evaluation and Development, 14(3): 510−518 (in Chinese with English abstract).

    [19]

    Li Z C, Du W F, Hu J K, et al. 2018. Interpretation method of gas content in logging of Linxing block in Ordos Basin[J]. Coal Journal, 43(S2): 490−498 (in Chinese with English abstract).

    [20]

    Meng Z P, Tian Y D, Li G F. 2020. Geology theory and method of coalbed methane development[M]. Beijing: Science Press (in Chinese with English abstract).

    [21]

    Meng Z P, Tian Y D, Lei Y. 2008. Prediction models of coal bed gas content based on BP neural networks and its applications[J]. Journal of China University & Mining and Technology, (4): 456−461. (in Chinese with English abstract).

    [22]

    Mullen M J. 1989. Coalbed Methane Resource evaluation from wireline logs in the northeastern San Juan Basin: A case study[C]//SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. SPE: SPE-18946-MS.

    [23]

    Qin R B, Ye J P, Li L, et al. 2023. Artificial−intelligence and machine−learning models of coalbed methane content based on geophysical logging data: A case study in Shizhuang South Block of Qinshui Basin, China[J]. Geophysical Prospecting for Petroleum, 62(1): 68−79 (in Chinese with English abstract).

    [24]

    Rumelhart, D E, Hinton, G E, Williams R J. 1986. Learning representations by back propagating errors[J]. Nature, 323(6088): 533−536. doi: 10.1038/323533a0

    [25]

    Roslin A, Esterle J S. 2015. Electro facies analysis using high−resolution wireline geophysical data as a proxy for inertinite−rich coal distribution in Late Permian Coal Seams, Bowen Basin[J]. International Journal of Coal Geology, 152: 10–18.

    [26]

    Shao X, Sun Y, Sun J, et al. 2013. Log interpretation for coal petrologic parameters: A case study of Hancheng mining area, Central China[J]. Petroleum Exploration and Development, 40: 599–605.

    [27]

    Shen L, Wang C Z, Ning C Q, et al. 2023. Well−log lithofacies classification based on machine learning for Chang−7 member in Longdong area of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 13(4): 525−536 (in Chinese with English abstract).

    [28]

    Song J, Su X, Wang Q, et al. 2017. A new method for calculating gas content of coal reservoirs with consideration of a micro−pore overpressure environment[J]. Natural Gas Industry B, 4: 182−188. doi: 10.1016/j.ngib.2017.08.003

    [29]

    Wang X, Han J Q, Zan L, et al. 2024. Logging evaluation of shale oil in the second member of Funing Formation of Qintong Sag, Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 14(3): 364−372 (in Chinese with English abstract).

    [30]

    Wei L, Zhang Y, Li W. 2000. Research on the method of electric character logging in the third series coal of Baoqing area[J]. Coal Technology, 19: 36–50.

    [31]

    Wu D P, Yue X Y, Wu C P. 2000. Application of neural network technology in coalbed gas logging evaluation[J]. Fault Block Oil and Gas Fields, 7(5): 48−49 (in Chinese with English abstract).

    [32]

    Xu H, Tang D Z, Tao S, et al. 2024. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms[J]. Coal Geology & Exploration, 52(2): 33−39 (in Chinese with English abstract).

    [33]

    Yang, Y, Shao B, Wang, et al. 2015. Dynamic crushing mechanism of well−wall in engraving stage of sidetracking based on Lagrange explicit algorithm[J]. Journal of Coal Society, 40(7): 1491−1497 (in Chinese with English abstract).

    [34]

    Zhang R, Liu S. 2017. Experimental and theoretical characterization of methane and CO2 sorption hysteresis in coals based on Langmuir desorption[J]. International Journal of Coal Geology, 171: 49−60. doi: 10.1016/j.coal.2016.12.007

    [35]

    常闯, 李松, 汤达祯, 等. 2023. 基于测井参数的煤储层地应力计算方法研究——以延川南区块为例[J]. 煤田地质与勘探, 51(5): 23−32.

    [36]

    陈世达, 侯伟, 汤达祯, 等. 2024. 煤储层含气性深度效应与成藏过程耦合关系[J]. 煤田地质与勘探, 52(2): 52−59.

    [37]

    陈涛, 张占松, 周雪晴, 等. 2021. 基于测井参数优选的煤层含气量预测模型[J]. 煤田地质与勘探, 49(3): 227−235. doi: 10.3969/j.issn.1001-1986.2021.03.029

    [38]

    冯鹏, 李松, 汤达祯, 等. 2022. 支持向量机在煤层地应力预测中的应用[J]. 现代地质, 36(5): 1333−1340.

    [39]

    李丹丹, 王振国, 降文萍, 等. 2022. 基于测井参数的煤层含气量定量评价方法研究——以寿阳区块15煤为例[J]. 中国煤炭地质, 34(8): 34−40. doi: 10.3969/j.issn.1674-1803.2022.08.06

    [40]

    林魂, 孙新毅, 宋西翔, 等. 2023. 基于改进人工神经网络的页岩气井产量预测模型研究[J]. 油气藏评价与开发, 13(4): 467−473.

    [41]

    李琴, 刘永升, 黄志强, 等. 2016. PDC钻头切削破岩机理及数值模拟研究[J]. 机械科学与技术, 35(2): 203−209.

    [42]

    刘晓. 2024. 不同压裂规模下煤储层缝网形态对比研究——以延川南煤层气田为例[J]. 油气藏评价与开发, 14(3): 510−518.

    [43]

    李泽辰, 杜文凤, 胡进奎, 等. 2018. 鄂尔多斯盆地临兴区块测井含气量解释方法[J]. 煤炭学报, 43(S2): 490−498.

    [44]

    孟召平, 田永东, 李国富. 2020. 煤层气开发地质学理论与方法[M]. 北京: 科学出版社.

    [45]

    孟召平, 田永东, 雷旸. 2008. 煤层含气量预测的BP神经网络模型与应用[J]. 中国矿业大学学报, (4): 456−461. doi: 10.3321/j.issn:1000-1964.2008.04.005

    [46]

    秦瑞宝, 叶建平, 李利, 等. 2023. 基于机器学习的煤层含气量测井评价方法——以沁水盆地柿庄南区块为例[J]. 石油物探, 62(1): 68−79. doi: 10.3969/j.issn.1000-1441.2023.01.005

    [47]

    谌丽, 王才志, 宁从前, 等. 2023. 基于机器学习的鄂尔多斯盆地陇东地区长7段岩相测井识别方法[J]. 油气藏评价与开发, 13(4): 525−536.

    [48]

    王欣, 韩建强, 昝灵, 等. 2024. 苏北盆地溱潼凹陷阜宁组二段页岩油测井评价研究[J]. 油气藏评价与开发, 14(3): 364−372.

    [49]

    吴东平, 岳晓燕, 吴春萍. 2000. 神经网络技术在煤层气测井评价中的应用[J]. 断块油气田, 7(5): 48−49.

    [50]

    许浩, 汤达祯, 陶树, 等. 2024. 深、浅部煤层气地质条件差异性及其形成机制[J]. 煤田地质与勘探, 52(2): 33−39. doi: 10.12363/issn.1001-1986.23.10.0693

    [51]

    杨勇, 邵兵, 王风锐, 等. 2015. 基于Lagrange显式算法的井壁侧钻过程动态破碎规律[J]. 煤炭学报, 40(7): 1491−1497.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  19
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-03-22
修回日期:  2024-08-12
刊出日期:  2025-05-15

目录