东昆仑东段青海拉郎麦钨矿成岩成矿年龄及成矿机制

滕飞, 高永宝, 寇少磊, 张江伟, 李金超, 李侃, 荆德龙, 滕宇翔, 吴欢欢. 2025. 东昆仑东段青海拉郎麦钨矿成岩成矿年龄及成矿机制. 地质通报, 44(4): 705-723. doi: 10.12097/gbc.2024.05.026
引用本文: 滕飞, 高永宝, 寇少磊, 张江伟, 李金超, 李侃, 荆德龙, 滕宇翔, 吴欢欢. 2025. 东昆仑东段青海拉郎麦钨矿成岩成矿年龄及成矿机制. 地质通报, 44(4): 705-723. doi: 10.12097/gbc.2024.05.026
TENG Fei, GAO Yongbao, KOU Shaolei, ZHANG Jiangwei, LI Jinchao, LI Kan, JING Delong, TENG Yuxiang, WU Huanhuan. 2025. Petrology, geochronology and metallogenic mechanism of the Lalangmi tungsten deposit in Qinghai, the eastern part of the East Kunlun Orogen. Geological Bulletin of China, 44(4): 705-723. doi: 10.12097/gbc.2024.05.026
Citation: TENG Fei, GAO Yongbao, KOU Shaolei, ZHANG Jiangwei, LI Jinchao, LI Kan, JING Delong, TENG Yuxiang, WU Huanhuan. 2025. Petrology, geochronology and metallogenic mechanism of the Lalangmi tungsten deposit in Qinghai, the eastern part of the East Kunlun Orogen. Geological Bulletin of China, 44(4): 705-723. doi: 10.12097/gbc.2024.05.026

东昆仑东段青海拉郎麦钨矿成岩成矿年龄及成矿机制

  • 基金项目: 第二次青藏高原综合科学考察研究专题(编号:2019QZKK0806)、中国地质调查局项目《西昆仑大红柳滩-甜水海地区大型资源基地综合调查》(编号:DD20190143)、《全国金矿重点调查区调查评价》(编号:DD20230060)、《新疆孔雀沟—梧桐沟金矿重点调查区调查评价》(编号:DD20230377)
详细信息
    作者简介: 滕飞(1988− ),男,硕士,工程师,从事矿物、岩石、矿床学研究。E-mail:xatwenchuan@163.com
    通讯作者: 高永宝(1982− ),男,博士,研究员,从事区域成矿及矿床学研究。E-mail:gaoyongbao2006@126.com
  • 中图分类号: P597+.3;P618.67

Petrology, geochronology and metallogenic mechanism of the Lalangmi tungsten deposit in Qinghai, the eastern part of the East Kunlun Orogen

  • Fund Project: This research is jointly supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, Grant No.2019QZKK0806), the Comprehensive Survey of Large-Scale Resource Bases in the Dahongliutan-Tianshuihai Area of West Kunlun Orogen (DD20190143), the National Key Gold Mine Survey and Evaluation Project (DD20230060), and the Survey and Evaluation of the Key Gold Mine Area in Kongquegou-Wutonggou, Xinjiang (DD20230378).
More Information
    Author Bio: TENG Fei, born in 1988, engineer from Xi’an Center of Mineral Resources Survey with a master degree, specialize in petrology, mineralogy and ore deposits .
    Corresponding author: GAO Yongbao, born in 1982, senior researcher from Xi’an Center of Mineral Resources Survey with a doctor degree, specialize in regional metallogeny and ore deposits.
  • 研究目的

    拉郎麦钨矿是东昆仑东段近年钨矿找矿的唯一重要新发现,其成矿时代与西段志留纪白干湖钨锡矿集区相近,研究其成矿机制对揭示区域钨锡成矿规律及指导找矿勘查具有重要意义。

    研究方法

    通过野外地质调查、岩相学观察、岩石地球化学分析、Sr−Nd同位素测试及Sm-Nd同位素定年等方法,对拉郎麦钨矿的成矿地质特征、成岩成矿时代及成矿机制进行了系统研究。

    研究结果

    拉郎麦矿床钨矿体主要赋存于二长花岗岩与碳酸盐岩接触带的矽卡岩中,矿石矿物以白钨矿为主,脉石矿物包括石榴子石、绿帘石、透辉石、方解石等,属典型的矽卡岩型矿床。与成矿密切相关的二长花岗岩发育原生白云母和石榴子石,并具有高硅、富碱、富铝、贫镁和贫铁特征,富集大离子亲石元素,亏损高场强元素,稀土元素配分曲线呈右倾型并具明显负Eu异常,显示典型S型花岗岩特征。全岩Sr−Nd同位素显示花岗岩具有较高的(87Sr/86Sr)i值(0.7470~0.7659)和较负的εNdt)值(−8.22 ~ −6.05)。矽卡岩矿石中石榴子石及白钨矿的Sm-Nd同位素等时线年龄为408±4 Ma,与二长花岗岩锆石U−Pb年龄(414±3 Ma)在误差范围内一致。

    结论

    研究表明,志留纪东昆仑东段由于岩浆底侵作用导致古老地壳部分熔融,形成了富钨的S型花岗质母岩浆,并在侵位后与碳酸盐岩地层发生接触交代作用,最终形成拉郎麦矽卡岩型钨矿床。

  • 加载中
  • 图 1  区域构造(a)与岩体分布(b)图(据Gao et al, 2023修改)

    Figure 1. 

    图 2  拉郎麦矿区地质图(据四川省冶金地质勘查局,2015修改)

    Figure 2. 

    图 3  拉郎麦0号勘探线剖面图(据四川省冶金地质勘查局,2015修改)

    Figure 3. 

    图 4  拉郎麦钨矿石手标本(a, b)及镜下照片(c, d)

    Figure 4. 

    图 5  矿化阶段及矿物生成顺序

    Figure 5. 

    图 6  二长花岗岩正交镜下(a, c) 和偏光镜下(b, d)显微照片

    Figure 6. 

    图 7  拉郎麦岩体TAS图解(底图据Middlemost, 1994

    Figure 7. 

    图 8  拉郎麦花岗岩体主量和微量元素特征

    Figure 8. 

    图 9  拉郎麦二长花岗岩和花岗闪长岩典型锆石阴极发光(CL)图像与锆石U−Pb年龄

    Figure 9. 

    图 10  花岗闪长岩(a,b)和二长花岗岩(c,d)锆石U−Pb谐和年龄与年龄加权平均值

    Figure 10. 

    图 11  拉郎麦矿床石榴子石(a)和石榴子石与白钨矿(b)Sm-Nd等时线年龄

    Figure 11. 

    图 12  拉朗麦与白干湖地区成矿及相关岩体年龄对比

    Figure 12. 

    表 1  拉郎麦花岗岩体主量、微量和稀土元素分析结果

    Table 1.  Major, trace and rare earth element analysis results of Lalangmai granites

    元素 二长花岗岩 二长花岗岩 二长花岗岩 二长花岗岩 花岗闪长岩 花岗闪长岩 花岗闪长岩 花岗闪长岩
    LLM15-04 LLM15-05 LLM15-15 LLM15-02 LLM15-10 LLM15-11 LLM15-14 LLM15-24
    SiO2 74.9 76.6 73.6 75.5 69.3 69.6 70.2 69.5
    TiO2 0.07 0.07 0.06 0.06 0.24 0.23 0.14 0.25
    Al2O3 13.5 13.8 14.4 14.0 15.9 16.2 16.5 16.0
    Fe2O3 0.70 0.66 0.70 1.35 2.04 1.82 1.49 1.86
    MnO 0.03 0.03 0.04 0.12 0.05 0.05 0.05 0.04
    MgO 0.16 0.14 0.12 0.14 0.93 0.83 0.76 0.94
    CaO 0.68 0.60 0.67 0.54 3.10 3.43 3.14 3.25
    Na2O 3.27 3.41 3.32 3.58 4.88 4.77 5.31 4.97
    K2O 4.70 4.71 5.79 4.45 1.31 1.41 1.09 1.38
    P2O5 0.09 0.09 0.07 0.06 0.08 0.07 0.07 0.07
    烧失量 0.94 0.74 0.69 0.69 0.99 1.60 0.64 0.93
    Ba 168. 119. 141. 175 176 148 126 147
    V 16.7 12.0 7.60 5.80 28.2 33.2 18.7 30.4
    Cr 14.3 8.30 12.5 5.00 28.0 14.7 15.5 26.6
    Ni 1.20 3.60 3.40 4.90 11.3 5.20 6.70 10.8
    Cu 1.30 0.00 2.20 5.00 2.00 3.70 3.10 8.80
    Sr 74.3 73.5 74.2 31.9 435 418 495 420
    Zr 61.4 60.1 72.3 49.4 104.6 97.6 59.7 111.4
    Cl 22.6 178.3 47.4 175.1 56.3 170.8 161.7 177.6
    H2O 0.00 0.10 0.10 0.00 0.10 0.00 0.10 0.10
    Li 8.60 8.30 5.50 10.60 66.10 62.10 31.60 33.70
    Be 1.90 2.00 3.00 4.60 2.30 1.50 2.90 1.20
    Sc 3.60 3.50 5.90 3.50 3.70 3.40 2.50 3.90
    V 3.00 2.60 2.30 2.70 23.8 22.2 11.0 24.4
    Cr 7.90 9.60 10.9 9.60 24.7 22.5 13.3 23.4
    Co 0.80 0.60 0.90 0.90 4.40 3.90 2.80 4.30
    Ni 2.40 2.00 3.30 2.90 10.6 10.8 6.38 10.5
    Cu 2.40 2.20 3.90 4.60 2.60 2.00 2.10 2.90
    Zn 9.00 7.60 7.80 16.6 34.7 28.6 22.6 25.2
    Ga 21.5 21.8 23.1 21.0 20.1 19.4 18.6 19.7
    Rb 283. 286 290 315 97.4 94.1 61.1 68.3
    Sr 64.6 62.4 58.2 37.1 480 462 537 457
    Y 21.8 23.7 48.0 23.1 6.00 4.80 6.00 11.6
    Zr 80.6 77.2 78.0 57.1 115 115 82.8 132
    Nb 16.4 15.8 20.9 21.9 4.40 2.30 3.00 3.80
    Sn 7.30 7.20 5.80 7.70 3.80 2.80 2.10 1.30
    Cs 5.40 5.40 4.30 5.90 7.50 5.80 5.20 4.10
    La 12.6 12.7 13.7 15.6 9.70 7.90 7.10 9.50
    Ce 28.5 29.5 31.3 34.3 20.1 16.3 15.7 19.8
    Pr 3.40 3.40 3.60 3.80 2.50 2.10 2.10 2.40
    Nd 12.4 12.7 13.1 13.1 9.90 8.30 8.40 9.50
    Sm 3.70 4.10 4.60 3.70 2.00 1.70 2.00 2.30
    Eu 0.20 0.20 0.20 0.20 0.70 0.70 0.60 0.70
    Gd 3.60 3.80 5.48 3.50 1.70 1.40 1.60 2.10
    Tb 0.70 0.80 1.20 0.70 0.20 0.20 0.20 0.40
    Dy 4.20 4.60 8.30 4.30 1.30 1.00 1.30 2.20
    Ho 0.70 0.80 1.50 0.80 0.20 0.20 0.20 0.40
    Er 1.90 2.10 4.40 2.20 0.60 0.50 0.60 1.10
    Tm 0.30 0.30 0.70 0.40 0.10 0.10 0.10 0.20
    Yb 1.90 2.10 4.80 2.5 0.60 0.40 0.60 1.20
    Lu 0.30 0.30 0.70 0.30 0.10 0.10 0.10 0.20
    Hf 3.20 3.30 4.60 2.50 3.20 3.30 2.50 4.00
    Ta 2.20 2.10 2.70 3.40 0.70 0.20 0.50 0.40
    Tl 2.10 2.10 2.00 2.40 0.90 0.80 0.50 0.60
    Pb 33.7 33.5 41.3 33.7 11.3 10.3 17.3 10.4
    Th 13.3 14.4 15.8 15.1 2.70 1.80 2.50 4.30
    U 3.70 4.00 4.50 3.80 0.60 0.60 1.00 1.40
      注:主量元素含量单位为%,微量和稀土元素含量单位为10−6
    下载: 导出CSV

    表 2  拉郎麦花岗岩和花岗闪长岩全岩Sr−Nd同位素测试结果

    Table 2.  Sr−Nd isotopic analysis results of the Lalangmai granite and granodiorite

    同位素 花岗闪长岩 花岗闪长岩 花岗闪长岩 花岗闪长岩 二长花岗岩 二长花岗岩 二长花岗岩 二长花岗岩
    LLM15-10 LLM15-11 LLM15-14 LLM15-24 LLM15-02 LLM15-04 LLM15-05 LLM15-15
    Rb/10−6 97.4 94.1 61.1 68.3 315 283 286 290
    Sr/10−6 480 462 537 457 37.1 64.6 62.4 58.2
    (87Sr/86Sr) 0.708481 0.708672 0.707964 0.707770 0.847434 0.788791 0.792540 0.797954
    ±2σ 0.000006 0.000007 0.000008 0.000006 0.000008 0.000010 0.000012 0.000007
    Sm/10−6 2.00 1.68 1.99 2.28 3.66 3.74 4.09 4.58
    Nd/10−6 9.94 8.26 8.36 9.46 13.1 12.4 12.7 13.1
    147Sm/144Nd 0.121833 0.122663 0.143937 0.145354 0.169066 0.183057 0.194960 0.211288
    143Nd/144Nd 0.512443 0.512446 0.512419 0.512449 0.512286 0.512220 0.512214 0.512338
    ±2σ 0.000005 0.000005 0.000006 0.000005 0.000005 0.000006 0.000005 0.000005
    εNd(t) −1.61 −1.57 −2.72 −2.18 −6.05 −7.75 −8.22 −6.28
    下载: 导出CSV

    表 3  二长花岗岩 LA-ICP-MS 锆石 U−Th−Pb 分析结果

    Table 3.  Zircon U−Th−Pb dating results of monzogranite by LA-ICP-MS

    测点号 元素含量/10−6 Th/U 同位素比值 年龄/Ma
    Pb 232Th 238U 207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    1 151 124 429 0.29 0.0550 0.0021 0.5157 0.0186 0.0680 0.0009 0.0195 0.0030 413 87.0 422 12.5 424 5.4 390 59.6
    2 80 48.9 380 0.13 0.0558 0.0017 0.5242 0.0163 0.0680 0.0008 0.0238 0.0042 456 73.1 428 10.8 424 4.8 475 83.8
    3 87 60.3 312 0.19 0.0546 0.0017 0.5111 0.0174 0.0677 0.0009 0.0225 0.0037 398 76.8 419 11.7 422 5.6 449 72.4
    4 139 109 321 0.34 0.0560 0.0014 0.5330 0.0153 0.0690 0.0010 0.0219 0.0037 450 55.6 434 10.1 430 6.3 437 72.7
    5 201 146 504 0.29 0.0554 0.0014 0.5132 0.0123 0.0672 0.0006 0.0222 0.0026 428 55.6 421 8.3 419 3.7 443 51.2
    6 72 63.8 289 0.22 0.0550 0.0017 0.5020 0.0159 0.0663 0.0010 0.0174 0.0028 409 70.4 413 10.8 414 5.8 348 55.3
    7 153 121 504 0.24 0.0552 0.0013 0.5166 0.0127 0.0679 0.0008 0.0203 0.0028 420 53.7 423 8.5 423 4.9 407 55.3
    8 111 86.6 349 0.25 0.0556 0.0014 0.5207 0.0123 0.0681 0.0008 0.0207 0.0031 435 55.6 426 8.2 424 4.8 415 60.4
    9 210 168 509 0.33 0.0548 0.0010 0.5113 0.0105 0.0677 0.0008 0.0212 0.0030 406 47.2 419 7.1 422 4.8 423 59.9
    10 464 423 529 0.80 0.0554 0.0011 0.5204 0.0146 0.0681 0.0013 0.0187 0.0026 428 41.7 425 9.7 425 7.7 374 52.6
    11 70 54.9 188 0.29 0.0556 0.0015 0.5205 0.0141 0.0681 0.0008 0.0195 0.0028 435 61.1 425 9.5 424 4.7 390 55.7
    12 178 148 496 0.30 0.0549 0.0010 0.5152 0.0102 0.0680 0.0007 0.0185 0.0024 409 43.5 422 6.9 424 4.1 370 47.5
    13 147 116 404 0.29 0.0552 0.0012 0.5155 0.0109 0.0679 0.0007 0.0185 0.0023 420 54.6 422 7.3 424 4.2 371 45.9
    14 190 161 488 0.33 0.0556 0.0016 0.5196 0.0131 0.0679 0.0008 0.0165 0.0025 439 63.0 425 8.8 424 5.0 331 49.8
    15 177 140 475 0.29 0.0568 0.0011 0.5318 0.0105 0.0681 0.0007 0.0164 0.0020 483 44.4 433 6.9 425 4.4 330 40.0
    16 173 140 438 0.32 0.0560 0.0011 0.5242 0.0108 0.0681 0.0008 0.0160 0.0020 450 44.4 428 7.2 424 4.7 320 39.8
    17 222 173 567 0.31 0.0561 0.0010 0.5262 0.0100 0.0681 0.0006 0.0166 0.0022 454 40.7 429 6.7 425 3.6 334 44.1
    18 188 154 474 0.32 0.0572 0.0016 0.5336 0.0159 0.0677 0.0010 0.0156 0.0022 502 63.9 434 10.5 422 5.8 312 43.8
    19 94 65.7 318 0.21 0.0562 0.0016 0.5278 0.0195 0.0678 0.0012 0.0136 0.0024 461 63.0 430 12.9 423 7.5 273 48.4
    20 40.7 18.4 505 0.04 0.0581 0.0016 0.5474 0.0208 0.0684 0.0020 0.0165 0.0043 600 61.1 443 13.7 426 12.1 330 85.2
    下载: 导出CSV

    表 4  花岗闪长岩LA-ICP-MS锆石U−Th−Pb分析结果

    Table 4.  Zircon U−Th−Pb dating of granodiorite by LA-ICP-MS

    测点号 元素含量/10−6 Th/U 同位素比值 年龄/Ma
    Pb 232Th 238U 207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    1 5981 3871 7346 0.53 0.0582 0.0009 0.5731 0.0123 0.0713 0.0008 0.0250 0.0038 600 33.3 460 7.97 444 4.53 499 74.0
    2 4576 3984 6000 0.66 0.0560 0.0008 0.5422 0.0118 0.0701 0.0012 0.0196 0.0028 454 31.5 440 7.80 437 7.20 393 56.5
    3 22763 12762 10188 1.25 0.0583 0.0010 0.5625 0.0180 0.0700 0.0019 0.0319 0.0052 543 35.2 453 11.7 436 11.6 634 101
    4 8555 5627 6840 0.82 0.0568 0.0010 0.5516 0.0112 0.0704 0.0010 0.0234 0.0034 483 32.4 446 7.32 439 6.21 467 67.7
    5 10660 9975 7559 1.32 0.0573 0.0011 0.5564 0.0221 0.0702 0.0023 0.0223 0.0042 506 42.6 449 14.4 437 13.6 446 83.2
    6 6461 3487 7513 0.46 0.0576 0.0013 0.5563 0.0121 0.0700 0.0008 0.0263 0.0042 517 50.0 449 7.90 436 5.05 525 82.2
    7 1557 855 3004 0.28 0.0569 0.0013 0.5541 0.0148 0.0705 0.0010 0.0254 0.0039 500 50.0 448 9.71 439 5.87 508 77.5
    8 7348 5274 7541 0.70 0.0591 0.0009 0.5739 0.0108 0.0704 0.0007 0.0230 0.0033 569 5.6 461 6.97 439 4.43 460 65.7
    9 9267 8624 8045 1.07 0.0557 0.0008 0.5369 0.0087 0.0701 0.0010 0.0185 0.0029 439 33.3 436 5.75 437 5.81 370 57.1
    10 17795 13436 8000 1.68 0.0552 0.0009 0.5357 0.0232 0.0705 0.0030 0.0218 0.0035 420 37.0 436 15.4 439 18.2 435 69.6
    11 8442 5593 8616 0.65 0.0561 0.0007 0.5457 0.0093 0.0705 0.0008 0.0238 0.0033 457 27.8 442 6.13 439 4.99 475 65.6
    12 8360 6186 6972 0.89 0.0580 0.0007 0.5628 0.0125 0.0705 0.0014 0.0202 0.0029 528 32.4 453 8.12 439 8.63 405 58.3
    13 5648 3532 6427 0.55 0.0552 0.0008 0.5363 0.0088 0.0705 0.0010 0.0227 0.0034 420 31.5 436 5.82 439 5.95 453 66.9
    14 4139 2596 6042 0.43 0.0584 0.0009 0.5648 0.0094 0.0701 0.0005 0.0212 0.0033 543 33.3 455 6.10 437 3.32 424 66.3
    15 4615 2859 6269 0.46 0.0582 0.0010 0.5641 0.0093 0.0703 0.0006 0.0216 0.0036 600 38.9 454 6.02 438 3.66 432 71.9
    16 4604 2532 7110 0.36 0.0588 0.0009 0.5716 0.0120 0.0703 0.0009 0.0241 0.0041 561 31.5 459 7.75 438 5.66 481 80.3
    17 22553 16383 11468 1.43 0.0578 0.0015 0.5611 0.0167 0.0703 0.0010 0.0244 0.0046 524 62.0 452 10.9 438 6.32 487 90.4
    18 1437 1105 3933 0.28 0.0583 0.0009 0.5631 0.0149 0.0702 0.0018 0.0243 0.0044 539 33.3 454 9.69 437 10.6 486 87.8
    19 4337 2685 5161 0.52 0.0562 0.0012 0.5479 0.0098 0.0708 0.0011 0.0204 0.0028 457 46.3 444 6.47 441 6.79 408 56.3
    20 14765 10869 9442 1.15 0.0564 0.0011 0.5498 0.0216 0.0703 0.0018 0.0202 0.0027 478 40.7 445 14.1 438 10.9 404 53.9
    下载: 导出CSV

    表 5  拉郎麦矿床石榴子石和白钨矿Sm-Nd同位素数据

    Table 5.  Sm-Nd isotopic analysis data of garnets and scheelites from the Lalangmai deposit

    编号 测试编号 矿物 147Sm/144Nd 143Nd/144Nd
    9016254 LLMD1 白钨矿 0.1449 0.5 0.512140
    9016254 LLMD2 白钨矿 0.1084 0.5 0.512026
    9016254 LLMD3 白钨矿 0.1074 0.5 0.512060
    9016254 LLMD4 白钨矿 0.0924 0.5 0.512018
    9016254 LLMD5 白钨矿 0.0929 0.5 0.512022
    9016254 LLMD6 白钨矿 0.1058 0.5 0.512045
    9016254 LLMD7 白钨矿 0.0976 0.5 0.512023
    9016255 LLMD8 石榴子石 0.3013 0.5 0.512569
    9016255 LLMD9 石榴子石 0.2786 0.5 0.512507
    9016255 LLMD10 石榴子石 0.3589 0.5 0.512720
    9016255 LLMD11 石榴子石 0.3641 0.5 0.512739
    9016255 LLMD12 石榴子石 0.3330 0.5 0.512652
    9016255 LLMD13 石榴子石 0.3335 0.5 0.512651
    下载: 导出CSV

    表 6  白干湖与拉郎麦地区成矿及相关岩体年龄

    Table 6.  Timing of W-Sn mineralizations and genetically associated rocks between Baiganhu and Lalangmai deposits

    样品地区 定年样品 技术方法 年龄/Ma 来源
    白干湖与成矿有关岩体 二长花岗岩 锆石U−Pb,SIMS 421.0±3.7 李国臣等,2012
    钾长花岗岩 锆石U−Pb,SIMS 422.0±3.0 李国臣等,2012
    正长花岗岩 锆石U−Pb,LA−ICP−MS 428.2±4.2 王增振等,2014
    正长花岗岩 锆石U−Pb,LA−ICP−MS 422.5±2.3 王增振等,2014
    与钨锡矿化有关的正长花岗岩 锆石U−Pb,SHRIMP 416.9±2.9 孙丰月等
    与钨锡矿化有关的正长花岗岩 锆石U−Pb,LA−ICP−MS 413.6±2.4 Zhou et al., 2016
    与白干湖、巴什尔希等钨锡矿有关的二长花岗岩、花岗闪长岩 锆石U−Pb,LA−ICP−MS 427.0±13 高永宝,2013
    白干湖地区矿床 强云英岩化钨锡矿化花岗岩脉中白云母 Ar−Ar定年 411.8±4.7 丰成友等,2013
    黑钨矿-石英脉中片状白云母 414.6±3.9
    蚀变期热液白云母 Ar−Ar定年 408.0~414.0 Zhou et al., 2016
    锡石 U−Pb定年 426.0±13 Deng et al., 2018
    含矿石英脉中白云母 Ar−Ar定年 422.7±4.5
    421.8±2.7
    郑震等,2016
    锡石 U−Pb定年 427.0±13 Gao et al., 2014
    拉郎麦矿床 与成矿有关的二长花岗岩 锆石U−Pb,LA−ICP−MS 414.2 ±2.6 本文
    石榴子石、白钨矿 Sm−Nd定年 408±4 本文
    下载: 导出CSV

    表 7  白干湖和拉朗麦地区矿床主要特征对比

    Table 7.  Comparison between main characteristics of deposits in Baiganhu and Lalangmai districts

    要素 白干湖地区 拉郎麦地区
    矿床规模 超大型 小型
    矿床类型 矽卡岩型、云英岩型、石英脉型 矽卡岩型
    矿产种类 钨锡矿 钨矿
    矿石矿物 锡石、白钨矿、黑钨矿、电气石、少量黄铜矿、黄铁矿等 白钨矿
    主要蚀变 硅化、云英岩化、矽卡岩化、电气石化、钠长石化等 矽卡岩化、绿泥石化、绿帘石化、碳酸岩化、硅化、大理岩化
    成矿地质体 晚志留世A型二长花岗岩、S型正长花岗岩 晚志留世S型二长花岗岩
    岩体主要特征 高硅、富碱(钾和钠)、富铝、贫铁和镁,相对较为富集的
    Sr−Nd同位素和锆石Hf同位素特征
    高硅、富碱(钾和钠)、富铝、贫铁和镁,
    相对较富集的Sr−Nd同位素
    成矿年龄 420~410 Ma 408 Ma
    主要来源 高永宝等,2010Gao et al, 2014, 2015; Zheng et al, 2016;
    Zhou et al, 2016; Gao et al, 2023
    本文
    下载: 导出CSV
  • [1]

    Aideloje S O, Onyeji C O, Ugwu N C. 1998. Altered pharmacokinetics of halofantrine by an antacid, magnesium carbonate[J]. European Journal of Pharmaceutics and Biopharmaceutics, 46(3): 299−303. doi: 10.1016/S0939-6411(98)00029-0

    [2]

    Chappell, B W, White, A J R. 1974. I− and S−type granites in the Lachlan fold belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83: 1−26.

    [3]

    Clemens J D. 2003. S−type granitic magmas−petrogenetic issues, models and evidence[J]. Earth Science Reviews, 61(1): 1−18.

    [4]

    Černý P, Blevin P L, Cuney M, et al. 2005. Granite−related ore deposits[J]. Economic Geology, 100: 337−370.

    [5]

    Chen H W, Luo Z H, Mo X X, et al. 2006. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications[J]. Acta Petrologica et Mineralogica, 25(1): 25−32 (in Chinese with English abstract).

    [6]

    Collins W J, Richards S W. 2008. Geodynamic significance of S−type granites in Circum−Pacific orogens[J]. Geology, 36(7): 559−562. doi: 10.1130/G24658A.1

    [7]

    Chen J J, Fu L B, Wei J H, et al. 2020. Proto−tethys magmatic evolution along northern from Late Silurian–Middle Devonian A−type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China[J]. Lithos, 356/357: 105304. doi: 10.1016/j.lithos.2019.105304

    [8]

    Chen X D, Li B, Tang L, et al. 2022. Silver enrichment and trace element deportment in hydrothermal replacement reactions: Perspective from the Nageng Ag−polymetallic deposit, East Kunlun Orogen, NW China[J]. Ore Geology Reviews, 142: 104691. doi: 10.1016/j.oregeorev.2021.104691

    [9]

    Che J J, Leng C B, Fu L B, et al. 2024. Genesis of Delong granite in East Kunlun Orogen and its implication on the evolution of Paleo−Tethys Ocean[J]. Earth Science, 49(2): 560−576 (in Chinese with English abstract).

    [10]

    Ding Q F, Yan W, Zhang B L, et al. 2016. Sulfur− and lead−isotope geochemistry of the Balugou Cu−Pb−Zn skarn deposit in the Wulonggou area in the eastern Kunlun Orogen, NW China[J]. Journal of Earth Science, 27(5): 740−750. doi: 10.1007/s12583-015-0574-3

    [11]

    Deng X H, Chen Y J, Leon B. 2018. Cassiterite U−Pb geochronology of the Kekekaerde W−Sn deposit in the Baiganhu ore field, East Kunlun Orogen, NW China: Timing and tectonic setting of mineralization[J]. Ore Geology Reviews, 100: 534−544. doi: 10.1016/j.oregeorev.2017.02.018

    [12]

    Dong Y P, He D F, Sun S S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth Science Reviews, 186: 231−261.

    [13]

    Du Y, Xia C L, Han Z H, et al. 2023. Source analysis of metallogenic material of Shiduolong Pb−Zn deposit in the eastern part of East Kunlun: In−situ S isotope evidence from the ore[J]. Chinese Journal of Geology, 58(4): 1468−1485 (in Chinese with English abstract).

    [14]

    Fan X Z. 2022. Research on metallogenesis of Ag polymetallic deposits in the east segment of the East Kunlun Orogenic Belt, Qinghai Province[D]. PhD Thesis of Jilin University (in Chinese with English abstract).

    [15]

    Feng C Y, Li D S, Wu Z S, et al. 2010. Major types, time−space distribution and metallogeneses of polymetallic deposits in the Qimantage Metallogenic Belt, Eastern Kunlun area[J]. Northwestern Geology, 43(4): 10−17 (in Chinese with English abstract).

    [16]

    Feng C Y, Zeng Z L, Zhang D Q, 2011. SHRIMP zircon U−Pb and molybdenite Re−Os isotopic dating of the tungsten deposits in the Tianmenshan−Hongtaoling W−Sn orefield, southern Jiangxi Province, China, and geological implications[J]. Ore Geology Reviews, 43(1): 8−25.

    [17]

    Gao Y B, Li W Y, Zhang Z W, 2010. Zircon U−Pb geochronology of magmatic rocks and discussion on metallogenic epoch of the Baigan Lake−Galesai tungsten−tin ore belt in Qimantage[J]. Mineral Deposit, 29(S1): 435−436 (in Chinese).

    [18]

    Gao Y B, Li W Y, Li K, et al. 2012. Genesis and Chronology of Baiganhu−Jialesai W−Sn Mineralization Belt, Qimantage, East Kunlun Mountain, NW China[J]. Northwestern Geology, 45(4): 229−241 (in Chinese with English abstract).

    [19]

    Gao Y B. 2013. The intermediate−acid intrusive magmatism and mineralization in Qimantag, East Kunlun Mountains[D]. PhD thesis of Chang’an University (in Chinese with English abstract).

    [20]

    Gao Y B, Li W Y, Li Z M, et al. 2014. Geology, geochemistry, and genesis of tungsten−tin deposits in the Baiganhu District, northern Kunlun Belt, Northwestern China[J]. Economic Geology, 109(6): 1787−1799. doi: 10.2113/econgeo.109.6.1787

    [21]

    Gao Y B, Keiko H, Leon B, et al. 2023. Origin of Silurian granite in the Baiganhu field, Eastern Kulun Terrane, NW China: Implications for the tectonic setting of Sn−W mineralization[J]. Ore Geology Reviews, 163: 105749. doi: 10.1016/j.oregeorev.2023.105749

    [22]

    Guo X Z, Jia Q Z, Lv X B, et al. 2020. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr−Nd−Hf isotopes of the Xiaowolong skarn Sn deposit[J]. Ore Geology Reviews, 118: 103370. doi: 10.1016/j.oregeorev.2020.103370

    [23]

    Jiang S Y, Zhao K D, Jiang H, et al. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview[J]. Chinese Science Bulletin 65(33): 3730 − 3745 (in Chinese with English abstract).

    [24]

    Kong H L, Li J C, Jia Q Z, et al. 2019. Zircon U−Pb dating and geochemistry of the tonalite from Lalangmai tungsten−polymetallic ore district in East Kunlun, Qinghai Province, with implications for prospecting[J]. Chinese Journal of Geolog, 54(2): 590−607 (in Chinese with English abstract).

    [25]

    Li H Q, Xie C F, Chang H L, et al. 1998. Geochronology of metallogenesis of nonferrous and precious metal deposits in Northern Xinjiang [M]. Beijing: Geological Publishing House, 10−25. (in Chinese).

    [26]

    Li G C, Feng C Y, Wang R J, et al. 2012. SIMS zircon U−Pb age, petrochemistry and tectonic implications of granitoids in Northeastern Baiganhue W−Sn orefield, Xinjiang[J]. Acta Geoscientica Sinica, (2): 216−226 (in Chinese with English abstract).

    [27]

    Li D X, Feng C Y, Zhou A S, et al. 2013. Geological characteristics and mineralization−metasomatite classification of superlarge Baiganhu tungsten−tin orefield in western Qimantage, East Kunlun Mountains[J]. Mineral Deposits, 32(1): 37−54 (in Chinese with English abstract).

    [28]

    Li R B, Pei X Z, Li Z C, et al. 2013. Regional tectonic transformation in East Kunlun orogenic belt in early Paleozoic: Constraints from the geochronology and geochemistry of Helegangnaren alkali−feldspar granite[J]. Acta Geologica Sinica (English Edition), 87(2): 333−345. doi: 10.1111/1755-6724.12054

    [29]

    Li Y G, Wang S S, Liu M W, et al. 2015. U−Pb dating study of baddeleyite by LA−ICP−MS: Technique and application[J]. Acta Geologica Sinica, 89(12): 2400−2418 (in Chinese with English abstract).

    [30]

    Li J D, Li X F. 2020. Research progress in metallogenesis of skarn−type tungsten deposits[J]. Mineral Deposits, 39(2): 256−272 (in Chinese with English abstract).

    [31]

    Li C H, Zhang H F, Chen An P. 2022. Early Paleozoic metamorphic evolution of the East Kunlun Orogen recorded in Langmuri garnet−amphibolite. Acta Petrologica Sinica, 38(3): 639−654 (in Chinese with English abstract).

    [32]

    Li W S, Ni P, Pan J Y, et al. 2023. The genetic association between vein and skarn type tungsten mineralization in the Yaogangxian tungsten deposit, South China: Constraints from LA−ICP−MS analysis of individual fluid inclusion[J]. Ore Geology Reviews, 159: 105544. doi: 10.1016/j.oregeorev.2023.105544

    [33]

    Liu B, Ma C Q, Zhang J Y, et al. 2012. Petrogenesis of Early Devonianintrusive rocks in the east part of Eastern Kunlun Orogen andimplication for Early Palaeozoic orogenic processes. Acta PetrologicaSinica, 28(6): 1785−1807 (in Chinese with English abstract).

    [34]

    Lu L, Wu Z, Hu D G. 2010. Zircon U−Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the East Kunlun Mountains[J]. Acta Petrologica Sinica, 26(4): 1150−1158 (in Chinese with English abstract).

    [35]

    Ludwig K R. 2003. A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Berkeley:70.

    [36]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643.

    [37]

    Mao J W, Qu Y H, Song S, et al. 2019. Geology and metallogeny of tungsten and tin deposits in China[J]. Society of Economic Geologists Special Publications, 22: 411−482.

    [38]

    Mao J W, Song S W, Liu P, et al. 2023. Current progress and development trend of the research on tin deposits. Acta Petrologica Sinica, 39(5): 1233−1240 (in Chinese with English abstract).

    [39]

    Mao Z H, Liu J J, Mao J W, et al. 2015. Geochronology andgeochemistry of granitoids related to the giant Dahutang tungstendeposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization[J]. GondwanaResearch, 28(2): 816−836.

    [40]

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3/4): 215−224.

    [41]

    Miranda A C R, Beaudoin G, Rottier B. 2022. Scheelite chemistry from skarn systems: implications for ore−forming processes and mineral exploration[J]. Mineralium Deposita, 57: 1469−1497.

    [42]

    Namkha N. 2021. Silurian−Devonian intrusive magmatic rock and ore−bearing potential in the East Kunlun orogenic belt, Qinghai Province, China[D]. PhD Thesis of Chang’an University (in Chinese with English abstract).

    [43]

    Pu W, Zhao K D, Ling H F, et al. 2004. High precision Nd Isotope measurement by triton TI mass spectrometry[J]. Acta Geoscientica Sinica, (2): 271−274 (in Chinese with English abstract).

    [44]

    Pu W, Gao J F, Zhao K D, et al. 2005. Separation method of Rb−Sr, Sm−Nd using DCTA and HIBA[J]. Journal of Nanjing University (Natural Sciences), 41(4): 445−450 (in Chinese with English abstract).

    [45]

    Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. Essex: Longman Scientific & Technical.

    [46]

    Sheng J F, Liu L J, Wang D H, et al. 2015. A preliminary review ofmetallogenicregularity of tungsten deposits in China[J]. ActaGeologica Sinica (English Edition), 89(4): 1359−1374.

    [47]

    Sichuan Metallurgical Geological Exploration Bureau. 2015. Preliminary exploration report on the Lalangmai gold and polymetallic deposits, Dulan County, Qinghai Province (2013–2014) [R].

    [48]

    Song Z B, Zhang Y L, Jia Q Z, et al. 2014. U–Pb age of Yemaquan deep Variscan granodiorite in the Qimantage area, East Kunlun, and its geological significance[J]. Geoscience, 28(6): 1161-1169 (in Chinese with English abstract).

    [49]

    Sun F Y, Li B L, Ding Q F, et al. 2009. Study on the major prospecting problem in East Kunlun Metallogeny Belt[R]. Geological Survey Research Institute of Jilin University.

    [50]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[M]. Geological Society, London, Special Publications, 42: 313–345.

    [51]

    Wang B Z, Wang Q, Wang C T, et al. 2024. Petrogenesis and geologicalsignificance of Devonian syenites in the Dagela Area, East Kunlun[J]. Geotectonica et Metallogenia, 48(1): 61−81.

    [52]

    Wang F L. 2023. Metallogenic mechanism and prognosis based oncomprehensive information for gold deposits in the Asiha−Walegaarea, eastern segment of the East Kunlun Orogen[D]. PhD thesis ofChina University of Geosciences (Wuhan) (in Chinese with Englishabstract).

    [53]

    Wang G, Sun F Y, Li B L, et al. 2014. Petrography, zircon U−Pb geochronology and geochemistry of the mafic−ultramafic intrusion in Xiarihamu Cu−Ni deposit from East Kunlun, with implication for geodynamic setting. Earth Science Frontiers, 21(6): 381−401 (in Chinese with English abstract).

    [54]

    Wang X S, Jones A E W, Hu R Z, et al. 2021. The role of fluorine ingranite−related hydrothermal tungsten ore genesis: Results ofexperiments and modeling[J]. Geochimica et Cosmochimica Acta, 292(1): 170−187.

    [55]

    Wang Z Z, Han B F, Feng C Y, et al. 2014. Geochronology, geochemistry and tectonic significance of granites in Baiganhu area, Xinjiang[J]. Acta Petrologica Mineralogica, 33(4): 597−616 (in Chinese with English abstract).

    [56]

    Wu K Y, Liu B, Wu Q H, et al. 2023. Trace element geochemistry, oxygen isotope and U−Pb geochronology of multistage scheelite: Implications for W−mineralization and fluid evolution of Shizhuyuan W−Sn deposit, South China[J]. Journal of geochemical exploration, 248: 107192. doi: 10.1016/j.gexplo.2023.107192

    [57]

    Xu Q L. 2014. Study on metallogenesis of porphyry deposits in Eastern Kunlun Orogenic belt, Qinghai Province[D]. PhD thesis of Jilin University (in Chinese with English abstract).

    [58]

    Xu L X, Xu H, Xu J, et al. 2017. Research status and progress of skarn deposits[J]. China Mining Magazine, 26(5): 154−161 (in Chinese with English abstract).

    [59]

    Yao L, LÜ Z C, Zhao C S. 2016. Geochronological study of granit−oids from the Niukutou and B section of the Kaerqueka deposits, Qimantag area, Qinghai Province: Implications for Devonian magmatism and mineralization[J]. Geological Bulletin of China, 35(7): 1158−1169 (in Chinese with English abstract).

    [60]

    Yuan S D, Anthony W J, Rolf L R, et al. 2019. Protolith−related thermal controls on the decoupling of Sn and W in Sn−W metallogenic provinces: Insights from the Nanling region, China[J]. Economic Geology, 114: 1005−1012. doi: 10.5382/econgeo.4669

    [61]

    Yuan S D, Zhao P L, Liu M, 2020. Some problems involving in petrogenesis and metallogenesis of granite−related tin deposits[J]. Mineral Deposit, 39(4): 607−618 (in Chinese with English abstract).

    [62]

    Zhang J Y, Ma C Q, Xiong F H, et al. 2014. Early Paleozoic high Mg diorite−granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break−off[J]. Lithos, 210/211: 129−146. doi: 10.1016/j.lithos.2014.10.003

    [63]

    Zhang J Y, Lei H L, Ma C Q. 2021. Silurian−Devonian granites and associated intermediate−mafic rocks along the eastern Kunlun Orogen, western China: Evidence for a prolonged post−collisional lithospheric extension[J]. Gondwana Research, 89: 131−146.

    [64]

    Zhang W Z, Xia C L, Song Q, et al. 2022. Genesis of the ZhamashanCu−Pb−Zn Polymetallic Deposit in the Eastern Section of East Kunlun: Indications from Fluid Inclusions and Stable Isotopes[J]. XinjiangGeology, 40(2): 211−217.

    [65]

    Zhao H B, Zhang Y, Liu L, et al. 2021. Hydrothermal alteration processesin the giant Dahutang tungsten deposit, South China: Implicationsfromlitho−geochemistry and mass balance calculation[J]. ChinaGeology, 4(2): 230−244.

    [66]

    Zhao Z Z, Liu C, Guo N X, et al. 2018. Temporal and spatial relationships of granitic magmatism and W mineralization: Insights from the Xingguo orefield, South China[J]. Ore Geology Reviews, 95: 945−973.

    [67]

    Zheng Z, Deng X H, Chen H J, et al. 2016. Fluid sources and metallogenesis in the Baiganhu W−Sn deposit, East Kunlun, NW China: Insights from chemical and boron isotopic compositions of tourmaline[J]. Ore Geology Reviews, 72(1): 1129−1142.

    [68]

    Zheng Z, Chen Y J, Deng X H, et al. 2016. Muscovite 40Ar/39Ar dating ofthe BaiganhuW−Sn orefield, Qimantag, East Kunlun Mountains, andits geological implications[J]. Geology in China, (4): 1341−1352 (inChinese with English abstract).

    [69]

    Zhong S H, Li S Z, Feng C Y, et al. 2021. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524

    [70]

    Zhou J H, Feng C Y, Li D X, et al. 2015. Petrology, geochronology andgeochemistry of metallogenetic granite in Baiganhu W−Sn deposit, East Kunlun[J]. Acta Petrologica Sinica, 31(8): 2277−2293.

    [71]

    Zhou J H, Feng C Y, Li D X, et al. 2016. Geological, geochemical, and geochronological characteristics of Caledonian W−Sn mineralization in the Baiganhu orefield, southeastern Xinjiang, China[J]. Ore Geology Reviews, 75: 125−149. doi: 10.1016/j.oregeorev.2015.12.009

    [72]

    Zhou J H, Feng C Y, Li D X. 2017. Geochemistry of the garnets in the Baiganhu W–Sn orefield, NW China[J]. Ore Geology Reviews, 82: 70−92.

    [73]

    Zhu J, Tan S C, Yang J Y, et al. 2024. What controls Sn−W mineralization in granite batholith: A case study from the world−class Dulong Sn−Zn polymetallic ore deposit of SW China[J]. Ore Geology Reviews, 166: 105968. doi: 10.1016/j.oregeorev.2024.105968

    [74]

    Zhu Y X, Wang L X, Ma C Q, et al. 2022. Petrogenesis and tectonic implication of the Late Triassic A1−type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China)[J]. Lithos, 412: 106595.

    [75]

    陈加杰, 冷成彪, 付乐兵, 等. 2024. 东昆仑德龙花岗岩成因及对古特提斯洋演化的制约[J]. 地球科学, 49(2): 560−571.

    [76]

    谌宏伟, 罗照华, 莫宣学, 等. 2006. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J]. 岩石矿物学, 25(1): 25−32.

    [77]

    范兴竹. 2022. 青海省东昆仑东段银多金属矿床成矿作用研究[D]. 吉林大学博士学位论文.

    [78]

    杜瑜, 夏楚林, 韩芝弘, 等. 2023. 东昆仑东段什多龙铅锌矿成矿物质来源分析: 来自矿石原位S同位素证据[J]. 地质科学, 58(4): 1468−1485. doi: 10.12017/dzkx.2023.080

    [79]

    丰成友, 李国臣, 李大新, 等. 2013. 新疆祁漫塔格柯可卡尔德钨锡矿床控矿构造及40Ar/39Ar年代学研究[J]. 矿床地质, 32(1): 207−216. doi: 10.3969/j.issn.0258-7106.2013.01.016

    [80]

    高永宝, 李文渊, 张照伟. 2010. 祁漫塔格白干湖−戛勒赛钨锡矿带岩浆岩锆石U−Pb定年及成矿时代探讨[J]. 矿床地质, 29(S1): 435−436.

    [81]

    高永宝. 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 长安大学博士学位论文.

    [82]

    高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.

    [83]

    蒋少涌, 赵葵东, 姜海, 等. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 65(33): 3730−3745.

    [84]

    孔会磊, 李金超, 贾群子, 等. 2019. 青海东昆仑拉浪麦钨多金属矿区英云闪长岩锆石U−Pb测年、岩石地球化学及找矿意义[J]. 地质科学, 54(2): 590−607. doi: 10.12017/dzkx.2019.036

    [85]

    李华芹, 谢才富, 常海亮, 等. 1998. 新疆北部有色贵金属矿床成矿作用年代学[M]. 北京: 地质出版社: 10−25.

    [86]

    李国臣, 丰成友, 王瑞江, 等. 2012. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U−Pb年龄、地球化学特征及构造意义[J]. 地球学报, 33(2): 216−226.

    [87]

    李大新, 丰成友, 周安顺, 等. 2013. 东昆仑祁漫塔格西段白干湖超大型钨锡矿田地质特征及其矿化交代岩分类[J]. 矿床地质, 32(1): 37−54. doi: 10.3969/j.issn.0258-7106.2013.01.003

    [88]

    李艳广, 汪双双, 刘民武, 等. 2015. 斜锆石LA−ICP−MS U−Pb定年方法及应用[J]. 地质学报, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    [89]

    李佳黛, 李晓峰. 2020. 矽卡岩型钨矿床成矿作用研究进展[J]. 现代地质, 39(2): 256−272.

    [90]

    李诚浩, 张宏福, 陈安平. 2022. 东昆仑早古生代变质演化: 来自浪木日石榴斜长角闪岩的记录[J]. 岩石学报, 38(3): 1242−1255.

    [91]

    刘彬, 马昌前, 张金阳, 等. 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J]. 岩石学报, 28(6): 1785−1807.

    [92]

    陆露, 吴珍汉, 胡道功, 等. 2010. 东昆仑牦牛山组流纹岩锆石U−Pb年龄及构造意义[J]. 岩石学报, 26(4): 1150−1158.

    [93]

    毛景文, 宋世伟, 刘鹏, 等. 2023. 锡矿床研究现状及发展趋势[J]. 岩石学报, 39(5): 1233−1240. doi: 10.18654/1000-0569/2023.05.01

    [94]

    南卡俄吾. 2021. 青海东昆仑构造带志留纪–泥盆纪侵入岩浆活动及含矿性研究[D]. 长安大学博士学位论文.

    [95]

    濮巍, 赵葵东, 凌洪飞, 等. 2004. 新一代高精度高灵敏度的表面热电离质谱仪(Triton TI)的Nd同位素测定[J]. 地球学报, 25(2): 271−274. doi: 10.3321/j.issn:1006-3021.2004.02.033

    [96]

    濮巍, 高剑峰, 赵葵东, 等. 2005. 利用 DCTA 和 HIBA 快速有效分离 Rb−Sr、Sm−Nd 的方法[J]. 南京大学学报(自然科学), 41(4): 445−450.

    [97]

    四川省冶金地质勘查局. 2015. 青海省都兰县拉浪麦金多金属矿预查2013-2014年工作报告[R].

    [98]

    宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉深部的华力西期花岗闪长岩U−Pb年龄及其意义[J].现代地质, 28(6): 1161−1169.

    [99]

    孙丰月, 李碧乐, 丁清峰, 等. 2009. 东昆仑成矿带重大找矿疑难问题研究[R]. 吉林大学地质调查研究院.

    [100]

    王增振, 韩宝福, 丰成友, 等. 2014. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 33(4): 597−616. doi: 10.3969/j.issn.1000-6524.2014.04.001

    [101]

    王冠, 孙丰月, 李碧乐, 等. 2014. 东昆仑夏日哈木铜镍矿镁铁质−超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21(6): 381−401.

    [102]

    王凤林. 2023. 东昆仑东段阿斯哈—瓦勒尕地区金成矿机制研究及综合信息成矿预测[D]. 中国地质大学(武汉)博士学位论文.

    [103]

    王秉璋, 王强, 王春涛, 等. 2024. 东昆仑大格勒泥盆纪正长岩岩石成因和地质意义[J]. 大地构造与成矿学, 48(1): 61−81.

    [104]

    许庆林. 2014. 青海东昆仑造山带斑岩型矿床成矿作用研究[D]. 吉林大学博士学位论文.

    [105]

    许凌霄, 许虹, 徐净, 等. 2017. 矽卡岩矿床研究现状与进展[J]. 中国矿业, 26(5): 154−161. doi: 10.3969/j.issn.1004-4051.2017.05.029

    [106]

    姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS 锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169. doi: 10.3969/j.issn.1671-2552.2016.07.011

    [107]

    袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论[J]. 矿床地质, 39(4): 607−618.

    [108]

    张文昭, 夏楚林, 宋芊, 等. 2022. 东昆仑东段扎麻山铜铅锌多金属矿床成因研究——来自流体包裹体及稳定同位素的指示[J]. 新疆地质, 40(2): 211−217.

    [109]

    郑震, 陈衍景, 邓小华, 等. 2016. 东昆仑祁漫塔格地区白干湖钨锡矿田白云母40Ar/39Ar定年及地质意义[J]. 中国地质, 43(4): 1341−1352. doi: 10.12029/gc20160419

    [110]

    周建厚, 丰成友, 李大新, 等. 2015. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 31(8): 2277−2293.

  • 加载中

(12)

(7)

计量
  • 文章访问数:  44
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-05-14
修回日期:  2024-07-15
刊出日期:  2025-04-15

目录