Zircon U-Pb ages, geochemical characteristics and their constraints on metallogenic mechanism of ore-bearing porphyry in Qingshuihe Donggou molybdenum deposit, East Kunlun
-
摘要:
研究目的 清水河东沟斑岩型钼矿是东昆仑成矿带表性斑岩型矿床之一,详细厘定矿区斑岩体形成时代、成因和构造环境有助于提升东昆仑斑岩型钼矿床成矿规律认识。
研究方法 对清水河东沟矿床与成矿关系密切的斑岩体开展了锆石U−Pb定年、岩石地球化学和锆石Hf同位素研究。
研究结果 花岗闪长斑岩锆石U−Pb年龄为226.9±1.3 Ma(MSWD=1.03,n=18),闪长玢岩锆石U−Pb年龄为224.3±1.2 Ma(MSWD=0.47,n=15),限定矿床成矿年龄介于226.9~224.3 Ma之间。花岗闪长斑岩、闪长玢岩与花岗斑岩富硅、碱、铝,贫钛、镁,稀土元素含量中等,呈现轻稀土元素富集的右倾配分模式,前两者Eu亏损不明显(δEu=0.79~0.98),后者具有较明显的Eu亏损(δEu=0.22~0.24);均富集大离子亲石元素Rb、K、Ba等,亏损高场强元素Ta、Nb、Ti、P等,属准铝质—弱过铝质高钾钙碱性岩石系列。斑岩体锆石176Hf/177Hf值介于0.282510~0.282652之间,εHf(t)值介于−4.5~0.2之间,二阶段模式年龄介于1541~1240 Ma之间。
结论 结合区域构造演化特征,认为清水河东沟斑岩体是晚三叠世后碰撞伸展环境下中元古界金水口岩群部分熔融的产物,并受到幔源物质的混染。
Abstract:Objective The Qingshuihe Donggou porphyry molybdenum deposit is one of the representative porphyry deposits in the East Kunlun metallogenic belt.
Methods Therefore, a detailed study of the age, genesis and tectonic environment of the porphyry intrusions in the Qingshuihe Donggou deposit is needed to improve the understanding of the metallogenic regularity of this area. In this paper, zircon U−Pb dating, petrogeochemistry and zircon Hf isotope of the porphyries from the Qingshuihe Donggou deposit, which are closely related to the Mo mineralization, have been studied.
Results The zircon U−Pb age of granodiorite porphyry is 226.9 ± 1.3 Ma (MSWD = 1.03, n = 18), and the zircon U−Pb age of diorite porphyry is 224.3 ± 1.2 Ma (MSWD = 0.47, n = 15), These results indicate that this deposit formed at 226.9~224.3 Ma. Granodiorite porphyry, diorite porphyry and granite porphyry are rich in Si, Na, K and Al, poor in Ti and Mg, and show a right−leaning partition pattern characterized by the light rare earth element enrichment. The former two granites have no obvious Eu depletion (δEu: 0.79~0.98), whereas granite porphyry displays noticeable Eu depletion (δEu: 0.22~0.24). All of them are enriched in large ion lithophile elements (e.g., Rb, K, Ba), and depleted in high field strength elements (e.g., Ta, Nb, Ti, P), belonging to the metalluminous to weak peraluminous high K calc−alkaline granites. The 176Hf/177Hf ratio of zircon from these porphyry rocks ranges from 0.282510 to 0.282652, the εHf(t) value ranges from −4.5 to 0.2, and the two−stage model age ranges from 1541 Ma to 1240 Ma.
Conclusions Based on the characteristics of regional tectonic evolution, it is deduced that these porphyries formed by partial melting of the Middle Proterozoic Jinshuikou Group under the Late Triassic post−collisional extension environment, and experienced magma mixing by mantle−derived materials.
-
Key words:
- porphyry molybdenum deposit /
- zircon U−Pb age /
- geochemistry /
- granodiorite porphyry /
- Qingshuihe Donggou /
- East Kunlun
-
-
图 1 青藏高原大地构造单元图(a,据马昌前等,2013修改)、矿区地质简图(b)及不同蚀变带岩石露头照片(c~f)
Figure 1.
图 5 清水河东沟斑岩体岩石TAS(a,底图据Middlemost, 1994)、AFM(b,底图据Irvine and Baragar, 1971)、SiO2−K2O(c,底图据Richter, 1989)和A/CNK−A/NK(d,底图据Richter, 1989)图解
Figure 5.
图 6 清水河东沟斑岩体稀土元素球粒陨石标准化配分曲线(a,标准化值据Taylor and McLennan, 1985)和微量元素原始地幔标准化蛛网图(b,标准化数据据Sun and McDonough, 1989)
Figure 6.
图 8 清水河东沟斑岩体Zr+Nb+Ce+Y−(K2O+Na2O)/CaO(a)、Zr+Nb+Ce+Y−TFeO/MgO(b)、QAP(c)和C/MF−A/MF(d)图解(底图据Whalen et al., 1987; Collins et al., 1982)
Figure 8.
图 9 清水河东沟花岗闪长斑岩与闪长玢岩锆石t−εHf(t)图解(a,底图据吴福元等,2007a)与t−176Hf/177Hf图解(b,底图据张勇等,2023)
Figure 9.
图 10 清水河东沟斑岩体YbN−(La/Yb)N(a, 底图据Defant and Drummond, 1990)、Yb−Sr(b, 底图据张旗和焦守涛,2020),(Y+Nb)−Rb(c, 底图据Pearce et al., 1984)和Y−Nb(d, 底图据Pearce et al., 1984)构造环境判别图解
Figure 10.
图 11 清水河东沟斑岩体Ce−Ce/Sm(a)和La−La/Sm(b, 底图据王秉璋等,2022)图解
Figure 11.
表 1 清水河东沟矿床样品采集信息
Table 1. Samples collection information in the Qingshuihe Donggou deposit
样品编号 样品类型 重量 孔口坐标 孔深/m 岩性 QSHDZK5-3-N2 锆石U−Pb测年、Hf同位素 31 kg 97°11′43″ E, 36°03′26″ N 562 花岗闪长斑岩 QSHDZK5-3-N2-1~2 全岩分析 ~1 kg 562 花岗闪长斑岩 QSHDZK5-2-N1-1~2 全岩分析 ~1 kg 97°11′42″ E, 36°03′15″ N 375 花岗闪长斑岩 QSHDZK9-3-GS1~2 全岩分析 ~1 kg 97°11′51″ E, 36°03′27″ N 655 花岗斑岩 QSHDZK07-N2 锆石U−Pb测年、Hf同位素 28 kg 97°11′51″ E, 36°03′21″ N 170 闪长玢岩 QSHDZK07-N2-1~3 全岩分析 ~1 kg 709 闪长玢岩 QSHDZK5-3-N3-1~2 全岩分析 ~1 kg 97°11′43″ E, 36°03′26″ N 709 闪长玢岩 表 2 清水河东沟斑岩体主量、微量、稀土元素及有关参数
Table 2. Major, trace and rare earth elements and parameter of the porphyry in the Qingshuihe Donggou deposit
元素 ZK5-3-N2-1 ZK5-3-N2-2 ZK5-2-N1-1 ZK5-2-N1-2 ZK9-3-GS1 ZK9-3-GS2 ZK5-3-N3-1 ZK5-3-N3-1 ZK07-N2-1 ZK07-N2-2 ZK07-N2-3 花岗闪长斑岩 花岗斑岩 闪长玢岩 SiO2 69.96 68.32 65.06 64.79 75.54 75.70 59.23 59.17 58.88 59.12 59.41 TiO2 0.38 0.44 0.72 0.73 0.09 0.08 0.83 0.83 0.83 0.84 0.84 Al2O3 14.69 15.32 15.70 15.63 12.36 12.39 16.51 16.52 16.60 16.46 16.58 Fe2O3 0.28 0.40 1.98 2.59 0.54 0.56 2.05 2.70 2.69 2.74 2.40 FeO 2.86 3.21 2.58 2.43 1.08 1.12 4.11 3.50 3.41 3.50 3.60 MnO 0.10 0.11 0.08 0.08 0.10 0.10 0.12 0.13 0.13 0.13 0.12 MgO 0.82 0.99 1.76 1.77 0.15 0.15 3.23 3.59 3.51 3.49 3.50 CaO 2.81 3.09 3.55 3.45 0.72 0.74 5.62 6.14 5.53 5.44 5.45 Na2O 3.06 3.26 3.09 3.23 3.61 3.48 3.42 3.17 3.35 3.36 3.39 K2O 3.89 3.64 3.24 2.64 5.04 4.90 2.47 2.17 2.45 2.56 2.45 P2O5 0.12 0.14 0.19 0.19 0.02 0.01 0.19 0.19 0.19 0.20 0.19 烧失量 0.80 0.98 1.82 2.33 0.49 0.47 1.82 1.47 2.20 2.11 1.84 总计 99.77 99.90 99.77 99.86 99.74 99.70 99.60 99.58 99.77 99.95 99.77 Na2O+K2O 6.95 6.9 6.33 5.87 8.65 8.38 5.89 5.34 5.8 5.92 5.84 K2O/Na2O 1.27 1.12 1.05 0.82 1.40 1.41 0.72 0.68 0.73 0.76 0.72 A/CNK 1.02 1.03 1.04 1.08 0.97 1.00 0.89 0.88 0.91 0.90 0.91 A/NK 1.59 1.65 1.83 1.91 1.08 1.12 1.99 2.18 2.03 1.98 2.01 A/MF 2.26 2.02 1.48 1.39 4.75 4.62 0.99 0.94 0.97 0.95 0.97 C/MF 0.79 0.74 0.61 0.56 0.5 0.5 0.61 0.64 0.59 0.57 0.58 Q 33.59 31.55 30.20 31.10 32.86 34.28 22.90 24.52 23.88 23.74 24.54 A 24.20 20.82 19.33 15.82 39.29 36.79 4.62 2.80 3.73 5.14 2.71 P 42.20 47.63 50.47 53.08 27.85 28.93 72.48 72.68 72.39 71.12 72.75 σ 1.78 1.87 1.78 1.55 2.29 2.14 2.07 1.71 2.04 2.10 2.01 La 30.7 28.6 33.6 33.5 20.45 13.34 24.4 27.5 27.7 23.8 24.1 Ce 54.4 52.7 64.6 65.7 46.36 29.19 54.4 57.7 57.8 54.4 53.8 Pr 6.21 6.05 7.38 7.42 5.79 3.73 6.46 6.81 6.76 6.45 6.34 Nd 21.6 21.6 27.2 26.9 22.1 13.9 25.3 26.3 26.2 24.9 24.9 Sm 3.52 3.63 4.84 4.56 5.05 3.14 5.01 5.08 4.98 4.89 4.91 Eu 1.01 1.00 1.18 1.36 0.37 0.24 1.29 1.30 1.29 1.24 1.25 Gd 2.98 3.18 4.31 3.94 5.02 3.09 4.70 4.84 4.70 4.55 4.63 Tb 0.41 0.44 0.58 0.51 0.78 0.50 0.73 0.71 0.68 0.67 0.68 Dy 1.78 1.92 3.09 2.45 4.65 3.11 3.74 3.72 3.61 3.55 3.60 Ho 0.38 0.42 0.62 0.47 0.96 0.66 0.81 0.79 0.75 0.75 0.77 Er 0.90 0.99 1.65 1.18 2.74 1.93 2.08 2.09 1.98 1.97 2.00 Tm 0.18 0.20 0.27 0.19 0.42 0.30 0.35 0.35 0.32 0.32 0.32 Yb 0.84 0.91 1.59 1.01 2.81 2.01 1.94 1.93 1.82 1.83 1.82 Lu 0.18 0.20 0.26 0.17 0.45 0.31 0.35 0.34 0.31 0.32 0.32 Y 8.52 9.29 15.3 11.7 23.6 17.0 19.7 19.4 19.0 18.7 18.6 ΣREE 125.09 121.84 151.17 149.36 117.95 75.45 131.56 139.46 138.90 129.64 129.44 LREE/HREE 15.35 13.75 11.22 14.06 5.62 5.34 7.95 8.44 8.80 8.29 8.15 (La/Yb)N 26.22 22.54 15.16 23.79 5.22 4.76 9.02 10.22 10.92 9.33 9.50 δEu 0.95 0.90 0.79 0.98 0.22 0.24 0.81 0.80 0.82 0.80 0.80 δCe 0.97 0.98 1.01 1.02 1.04 1.01 1.06 1.03 1.04 1.08 1.07 Rb 136 112 98.6 98.7 189 117 28.8 31.8 68.5 28.6 28.9 Ba 841 740 691 692 181 106 474 589 614 411 401 Th 9.91 9.32 8.09 8.11 44.7 29.1 7.65 8.45 7.98 7.28 7.29 U 2.49 2.42 2.74 2.33 14.2 8.93 1.93 2.10 1.91 1.89 1.82 Ta 0.68 0.67 0.70 0.67 1.62 1.00 0.67 0.65 0.60 0.58 0.57 Nb 9.80 10.3 11.5 10.4 17.0 10.1 10.9 10.7 10.1 10.3 10.4 Sr 432 457 469 475 34.5 18.2 460 455 599 510 532 Zr 207 155 200 184 101 53.7 197 199 189 195 192 Hf 6.28 4.81 5.94 5.57 4.25 2.40 5.84 5.84 5.53 5.69 5.65 Li 21.5 28.3 33.3 34.6 8.60 6.40 30.8 30.9 23.2 22.6 22.8 Be 2.10 2.25 2.60 2.38 3.07 1.84 1.78 1.81 1.76 1.79 1.76 B 11.6 10.9 17.8 11.5 19.9 17.3 14.9 13.6 14.3 14.6 14.4 Sc 3.77 4.23 8.14 7.89 2.93 1.43 11.0 14.0 13.4 10.0 10.0 V 42.4 47.6 106 96.2 2.01 0.47 139 137 132 134 135 Cr 36.2 48.5 45.1 35.1 37.5 70.0 64.9 67.7 64.9 52.8 55.2 Co 11.0 10.6 13.4 10.2 2.61 1.71 17.8 17.8 17.5 17.0 17.5 Ni 12.1 13.3 8.79 9.10 19.1 34.7 19.4 20.5 20.1 19.9 20.5 Cu 585 655 301 252 17.6 5.05 26.6 23.5 23.1 26.2 23.2 Zn 44.2 48.8 62.2 68.5 20.9 14.9 66.5 68.5 69.1 67.8 69.4 Ga 20.1 21.1 23.1 23.2 14.7 8.9 20.3 21.4 20.0 18.3 18.7 Ge 2.96 3.19 3.83 3.64 3.28 1.71 3.77 3.81 3.75 3.55 3.73 As 39.3 39.9 43.4 45.1 1.79 0.65 39.8 43.9 46.8 35.7 36.7 Mo 10.7 19.7 6.74 1.93 4.13 2.33 1.78 1.84 1.88 1.49 1.54 Ag 1.56 1.62 0.57 0.55 0.19 0.10 0.24 0.26 0.26 0.26 0.24 Au 1.18 0.99 0.98 0.99 3.42 2.38 1.13 1.09 1.04 0.96 1.07 Tl 1.36 1.34 1.25 0.98 1.20 0.75 0.44 0.31 0.40 0.35 0.35 Pb 22.7 20.0 20.0 16.2 41.0 27.4 10.9 12.0 14.1 12.6 13.1 注:测试单位为吉林大学自然资源部东北亚矿产资源评价重点实验室;比值单位为1;A/NK=n(Al2O3)/n(Na2O+K2O)(mol);A/CNK=n(Al2O3)/n(CaO+Na2O+K2O)(mol);A/MF=nAl2O3/n(TFeO+MgO)(mol);C/MF=nCaO/n(TFeO+MgO)(mol);QAP值计算采用花岗岩类自然矿物岩石化学换算法(朱为方和唐春景,1983);δEu=(2*Eu岩/Eu球)/(Sm岩/Sm球+Gd岩/Gd球) ;δCe=(2*Ce岩/Ce球)/(La岩/La球+Pr岩/Pr球);主量元素含量单位为%,微量和稀土元素含量单位为10−6 表 3 清水河东沟斑岩体LA−ICP−MS锆石U−Th−Pb同位素数据
Table 3. LA−ICP−MS U−Th−Pb isotopic analyses of zircon from the porphyry in the Qingshuihe Donggou deposit
测点 含量/10−6 Th/U 同位素比值 表面年龄/Ma U Th Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 花岗闪长斑岩 1 407 237 18.1 0.58 0.05066 0.00130 0.25359 0.00574 0.03634 0.00062 225.4 59.5 229.5 4.6 230.1 3.9 2 328 211 14.7 0.64 0.05081 0.00134 0.25413 0.00687 0.03621 0.00059 232.4 60.9 229.9 5.6 229.3 3.6 3 356 196 16.0 0.55 0.05025 0.00076 0.24841 0.00363 0.03586 0.00042 206.6 35.0 225.3 3.0 227.1 2.6 4 499 275 22.9 0.55 0.05017 0.00071 0.25640 0.00438 0.03693 0.00045 202.8 33.0 231.8 3.5 233.8 2.8 5 377 194 16.7 0.51 0.05056 0.00093 0.25533 0.00453 0.03670 0.00054 220.6 42.7 230.9 3.7 232.3 3.4 6 375 256 17.1 0.68 0.05042 0.00132 0.24683 0.00548 0.03552 0.00046 214.4 60.4 224.0 4.5 225.0 2.8 7 333 209 15.2 0.63 0.05025 0.00078 0.24881 0.00417 0.03585 0.00042 206.8 35.9 225.6 3.4 227.1 2.6 8 585 466 28.6 0.80 0.05080 0.00062 0.25324 0.00325 0.03613 0.00041 231.5 28.2 229.2 2.6 228.8 2.6 9 431 237 19.1 0.55 0.05012 0.00074 0.24975 0.00442 0.03611 0.00051 200.6 34.5 226.4 3.6 228.7 3.2 10 242 107 10.3 0.44 0.05072 0.00082 0.25033 0.00418 0.03577 0.00045 228.2 37.4 226.8 3.4 226.6 2.8 11 348 195 15.2 0.56 0.05076 0.00100 0.25049 0.00482 0.03586 0.00052 230.1 45.4 227.0 3.9 227.1 3.2 12 457 303 19.9 0.66 0.05110 0.00084 0.24898 0.00570 0.03523 0.00046 245.5 38.0 225.8 4.6 223.2 2.9 13 576 484 26.0 0.84 0.05063 0.00078 0.24035 0.00438 0.03435 0.00043 223.8 35.4 218.7 3.6 217.7 2.7 14 427 235 18.6 0.55 0.05038 0.00085 0.25011 0.00515 0.03589 0.00046 212.5 39.2 226.7 4.2 227.3 2.8 15 560 424 25.6 0.76 0.05421 0.00075 0.26143 0.00353 0.03490 0.00037 379.6 31.1 235.8 2.8 221.1 2.3 16 226 97.6 10.0 0.43 0.05066 0.00092 0.26532 0.00557 0.03778 0.00044 225.4 42.1 238.9 4.5 239.0 2.8 17 487 375 22.9 0.77 0.05080 0.00100 0.24750 0.00373 0.03530 0.00034 231.6 45.6 224.5 3.0 223.6 2.1 18 547 436 25.8 0.80 0.05037 0.00064 0.24739 0.00284 0.03550 0.00038 212.3 29.6 224.5 2.3 224.9 2.4 19 156 60.6 6.59 0.39 0.04974 0.00119 0.24761 0.00586 0.03601 0.00044 182.8 55.6 224.6 4.8 228.1 2.8 20 420 324 19.6 0.77 0.05584 0.00118 0.27002 0.00427 0.03504 0.00040 445.8 47.0 242.7 3.4 222.0 2.5 21 427 249 19.0 0.58 0.05423 0.00098 0.26932 0.00420 0.03600 0.00040 380.8 40.4 242.2 3.4 228.0 2.5 22 392 255 17.1 0.65 0.05059 0.00085 0.24812 0.00465 0.03544 0.00044 222.1 39.0 225.0 3.8 224.5 2.7 23 353 261 15.9 0.74 0.05267 0.00097 0.25069 0.00436 0.03443 0.00032 314.7 41.9 227.1 3.5 218.2 2.0 24 325 164 13.9 0.50 0.05455 0.00107 0.26436 0.00520 0.03507 0.00042 393.6 43.8 238.2 4.2 222.2 2.6 25 323 200 14.0 0.62 0.05014 0.00098 0.24572 0.00465 0.03552 0.00037 201.3 45.2 223.1 3.8 225.0 2.3 闪长玢岩 1 424 476 21 1.12 0.05037 0.00068 0.24640 0.00385 0.03544 0.00033 212.1 31.2 223.7 3.1 224.5 2.0 2 276 139 12 0.50 0.05077 0.00104 0.26293 0.00614 0.03749 0.00054 230.5 47.3 237.0 4.9 237.2 3.3 3 406 206 20 0.51 0.05116 0.00079 0.30002 0.00537 0.04244 0.00039 248.1 35.5 266.4 4.2 267.9 2.4 4 383 273 16 0.71 0.05075 0.00082 0.23670 0.00429 0.03380 0.00041 229.4 37.4 215.7 3.5 214.3 2.6 5 282 160 22 0.57 0.05480 0.00070 0.48696 0.00787 0.06436 0.00069 404.2 28.8 402.8 5.4 402.1 4.2 6 458 255 18 0.56 0.05264 0.00122 0.24707 0.00613 0.03402 0.00044 313.4 52.8 224.2 5.0 215.6 2.8 7 352 179 16 0.51 0.05136 0.00067 0.27087 0.00404 0.03826 0.00042 257.1 29.9 243.4 3.2 242.1 2.6 8 556 312 23 0.56 0.05168 0.00099 0.24346 0.00602 0.03405 0.00046 271.4 44.0 221.3 4.9 215.8 2.9 9 289 161 13 0.56 0.05095 0.00077 0.24878 0.00443 0.03543 0.00038 238.4 34.8 225.6 3.6 224.4 2.4 10 537 360 23 0.67 0.05137 0.00091 0.24735 0.00545 0.03492 0.00046 257.6 40.8 224.4 4.4 221.3 2.9 11 296 190 14 0.64 0.05119 0.00088 0.26352 0.00434 0.03729 0.00035 249.6 39.8 237.5 3.5 236.0 2.2 12 255 132 11 0.52 0.05016 0.00157 0.25412 0.00778 0.03679 0.00063 202.5 72.4 229.9 6.3 232.9 3.9 13 284 162 12 0.57 0.05019 0.00072 0.24317 0.00349 0.03513 0.00030 204.0 33.3 221.0 2.8 222.6 1.9 14 279 119 12 0.43 0.05177 0.00120 0.25469 0.00639 0.03559 0.00048 275.2 53.2 230.4 5.2 225.4 3.0 15 536 317 24 0.59 0.05060 0.00070 0.25108 0.00390 0.03591 0.00046 222.6 31.9 227.5 3.2 227.4 2.8 16 446 295 20 0.66 0.04997 0.00062 0.24359 0.00353 0.03530 0.00039 193.8 28.8 221.4 2.9 223.7 2.4 17 161 72 7 0.45 0.05011 0.00170 0.26187 0.00913 0.03768 0.00052 200.0 78.9 236.2 7.3 238.4 3.2 18 1360 554 57 0.41 0.05094 0.00048 0.24970 0.00256 0.03544 0.00033 238.0 21.8 226.3 2.1 224.5 2.1 19 185 117 8 0.63 0.05104 0.00093 0.25120 0.00478 0.03566 0.00039 242.6 42.0 227.6 3.9 225.9 2.4 20 437 265 19 0.61 0.05137 0.00122 0.25489 0.00746 0.03589 0.00045 257.4 54.6 230.5 6.0 227.3 2.8 21 156 126 8 0.81 0.05787 0.00128 0.29700 0.00581 0.03730 0.00033 524.9 48.5 264.1 4.6 236.1 2.1 22 113 73 5 0.65 0.05120 0.00163 0.25134 0.00860 0.03552 0.00043 249.7 73.3 227.7 7.0 225.0 2.7 23 190 166 16 0.87 0.05914 0.00105 0.50276 0.00794 0.06183 0.00076 572.1 38.4 413.6 5.4 386.7 4.6 24 397 247 17 0.62 0.05056 0.00138 0.24875 0.00720 0.03563 0.00054 220.6 63.0 225.6 5.9 225.7 3.3 25 385 74 28 0.19 0.05437 0.00060 0.47886 0.00573 0.06375 0.00061 386.4 24.7 397.3 3.9 398.4 3.7 26 432 255 20 0.59 0.05392 0.00074 0.27897 0.00418 0.03749 0.00041 367.6 30.7 249.8 3.3 237.2 2.6 27 475 499 23 1.05 0.05113 0.00075 0.24841 0.00391 0.03524 0.00035 246.6 33.9 225.3 3.2 223.2 2.2 28 346 325 10 0.94 0.05555 0.00113 0.16338 0.00288 0.02137 0.00024 434.6 45.2 153.7 2.5 136.3 1.5 29 93 105 5 1.13 0.05133 0.00190 0.24818 0.00966 0.03493 0.00043 255.5 85.1 225.1 7.9 221.4 2.7 30 180 120 8 0.67 0.05161 0.00112 0.25196 0.00560 0.03537 0.00042 268.4 49.9 228.2 4.5 224.0 2.6 表 4 清水河东花岗闪长斑岩与闪长玢岩锆石Hf同位素测试数据
Table 4. Hf isotope analytical data for zircon of the granodiorite porphyry and diorite porphyrite in the Qingshuihe Donggou deposit
样品号 年龄/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(t) 2σ TDM1/Ma TDM2/Ma fLu/Hf 花岗闪长斑岩 1 230 0.029781 0.000636 0.001121 0.000027 0.282577 0.000017 −2.0 0.6 958 1389 −0.97 2 229 0.035369 0.002284 0.001233 0.000088 0.282562 0.000019 −2.6 0.7 982 1424 −0.96 3 227 0.028692 0.000588 0.000985 0.000010 0.282580 0.000018 −2.0 0.6 951 1382 −0.97 4 234 0.044705 0.001447 0.001601 0.000024 0.282617 0.000021 −0.6 0.7 914 1301 −0.95 5 232 0.050239 0.000837 0.001715 0.000021 0.282565 0.000019 −2.5 0.7 991 1420 −0.95 6 225 0.022472 0.000441 0.000750 0.000015 0.282557 0.000017 −2.8 0.6 977 1433 −0.98 7 227 0.023007 0.000369 0.000807 0.000008 0.282536 0.000017 −3.5 0.6 1008 1479 −0.98 8 229 0.032114 0.000786 0.001082 0.000030 0.282538 0.000020 −3.4 0.7 1012 1476 −0.97 9 229 0.021759 0.000603 0.000789 0.000008 0.282565 0.000017 −2.4 0.6 967 1413 −0.98 10 227 0.036564 0.001510 0.001179 0.000052 0.282642 0.000019 0.2 0.7 868 1245 −0.96 11 227 0.020522 0.000849 0.000627 0.000016 0.282604 0.000020 −1.0 0.7 908 1325 −0.98 12 223 0.036308 0.000680 0.001241 0.000011 0.282589 0.000018 −1.8 0.6 944 1367 −0.96 14 227 0.024115 0.001047 0.000770 0.000024 0.282582 0.000017 −1.8 0.6 942 1376 −0.98 17 224 0.030954 0.001263 0.000994 0.000023 0.282593 0.000018 −1.6 0.6 933 1355 −0.97 18 225 0.028153 0.000611 0.000974 0.000023 0.282540 0.000019 −3.4 0.7 1007 1473 −0.97 闪长玢岩 1 225 0.045000 0.000704 0.001676 0.000037 0.282612 0.000027 −1.0 1.0 923 1318 −0.95 9 224 0.015400 0.000491 0.000603 0.000015 0.282576 0.000017 −2.1 0.6 947 1390 −0.98 10 221 0.021671 0.000436 0.000736 0.000004 0.282630 0.000019 −0.3 0.7 875 1271 −0.98 13 223 0.021473 0.000425 0.000730 0.000018 0.282558 0.000018 −2.8 0.6 975 1432 −0.98 14 225 0.024962 0.000381 0.001005 0.000020 0.282510 0.000020 −4.5 0.7 1050 1541 −0.97 15 227 0.045307 0.000673 0.001482 0.000044 0.282523 0.000024 −4.0 0.8 1045 1515 −0.96 16 224 0.021242 0.000215 0.000789 0.000017 0.282540 0.000019 −3.4 0.7 1002 1472 −0.98 18 225 0.045031 0.000435 0.001707 0.000020 0.282562 0.000022 −2.7 0.8 995 1431 −0.95 19 226 0.009370 0.000090 0.000336 0.000002 0.282577 0.000021 −2.0 0.7 939 1384 −0.99 20 227 0.028430 0.000576 0.000883 0.000004 0.282593 0.000020 −1.5 0.7 930 1352 −0.97 22 225 0.022263 0.000305 0.000769 0.000006 0.282550 0.000020 −3.0 0.7 987 1449 −0.98 24 226 0.034401 0.000423 0.001111 0.000010 0.282552 0.000019 −3.0 0.7 993 1447 −0.97 27 223 0.097136 0.002597 0.002854 0.000100 0.282652 0.000026 0.2 0.9 894 1240 −0.91 29 221 0.036023 0.000559 0.001034 0.000007 0.282617 0.000025 −0.8 0.9 900 1303 −0.97 30 224 0.024968 0.000337 0.000784 0.000019 0.282597 0.000022 −1.4 0.8 922 1344 −0.98 -
[1] Amelin Y, Lee D C, Halliday A. 2000. Early−middle Archaean crustal evolution deduced from Lu−Hf and U−Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 64(24): 4205−4225. doi: 10.1016/S0016-7037(00)00493-2
[2] Bian Q T, Luo X Q, Li D H, et al. 2001. Geochemistry and formation environment of the Buqingshan ophiolite complex, Qinghai Province, China[J]. Acta Geologica Sinica, 75(1): 45−55 (in Chinese with English abstract).
[3] Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173−174.
[4] Chen G C, Pei X Z, Li R B, et al. 2020. Late Palaeozoic−Early Mesozoic tectonic−magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt[J]. Earth Science Frontiers, 27(4): 33−48 (in Chinese with English abstract).
[5] Chen J, Xie Z Y, Li B, et al. 2013. Geological and geochemical characteristics of the ore−bearing intrusions from the Lalingzaohuo Mo polymetallic deposit and its metallogenic significance[J]. Geology and Exploration, 49(5): 813−824 (in Chinese with English abstract).
[6] Chen M, Wang Y H, Gu Q, et al. 2024. Identification and petrogenesis of Wuhema highly fractionated I−type granitoids in Qinghai Province from Songpan−Ganzi Terrane[J]. Geological Bulletin of China, 43(5): 789−801 (in Chinese with English abstract).
[7] Chen X Y, Zhang Y L, Song Z B, et al. 2013. Geological and geochemical characteristics of the Qingshuihe Donggou porphyry Cu−Mo deposit in the East Kunlun[C]//Abstracts of the 14th Annual Meeting of the Chinese Society for Mineralogy, Petrology and Geochemistry. Chinese Society for Mineralogy, Petrology and Geochemistry (in Chinese with English abstract).
[8] Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895
[9] Cooke D R, Holling S P, Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5): 801−818. doi: 10.2113/gsecongeo.100.5.801
[10] Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347: 662−665. doi: 10.1038/347662a0
[11] Deng J F, Mo X X, Zhao H L, et al. 2004. A new model for the dynamic evolution of Chinese lithosphere: Continental roots−plume tectonics[J]. Earth Science Reviews, 65: 223−275. doi: 10.1016/j.earscirev.2003.08.001
[12] Deng J F, Xiao Q H, Su S G, et al. 2007. Igneous petrotectonic assemblages and tectonic settings: A discussion[J]. Geological Journal of China Universities, 13(3): 392−402 (in Chinese with English abstract).
[13] Fan X Z, Sun F Y, Xu C H, et al. 2021. Genesis of Harizha Ag−Pb−Zn deposit in the eastern Kunlun Orogen, NW China: Evidence from fluid inclusions and C−H−O−S−Pb isotopes[J]. Resource Geology, 71: 177−201. doi: 10.1111/rge.12256
[14] Guo G H, Zhong S H, Li S Z, et al. 2023. Constructing discrimination diagrams for granite mineralization potential by using machine learning and zircon trace elements: Example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).
[15] Guo X Z, Jia Q Z, Zheng Y Y, et al. 2016. Re−Os isotopic dating of molybdenite from Reshui molybdenum polymetallic deposit in the East Kunlun and its geological significance[J]. Acta Geologica Sinica, 90(10): 2818−2829 (in Chinese with English abstract).
[16] Guo Z F, Deng J F, Xu Z Q, et al. 1998. Late Palaeozoic−Mesozoic intracontinental orogenic process and intermedate−acidic igneous rocks from the Eastern Kunlunmountains of Northwestern China[J]. Geoscience, 12(3): 51−59 (in Chinese with English abstract).
[17] Han B F. 2007. Diversity of post − collisional granitoids and complexity of discrimination of their tectonic settings[J]. Earth Science Frontiers, 14(3): 64−72 (in Chinese with English abstract).
[18] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision−zone magmatism[J]. Geological Society of London Special Publications, 19(5): 67−81.
[19] He S Y, Li D S, Li L L, et al. 2009. Re−Os age of molybdenite from the Yazigou copper (Molybdenum) mineralized area in Eastern Kunlun of Qinghai Province and its geological significance[J]. Geotectonica et Metallogenia, 33(2): 236−242 (in Chinese with English abstract).
[20] He S Y, Lin G, Zhong S H, et al. 2023. Geological characteristics and related mineralization of “Qinghai Gold Belt” formed by orogeny[J]. Northwestern Geology, 56(6): 1−16 (in Chinese with English abstract).
[21] Hou K J, Li Y H, Tian Y R. 2009. In situ U−Pb zircon dating using laser ablation−multi ion couting−ICP−MS[J]. Mineral Deposits, 28(4): 481−492 (in Chinese with English abstract).
[22] Hou Z Q, Ma H W, Zaw K, et al. 2003. The Himalayan Yulong porphyry copper belt: Product of large−scale strike−slip faulting in eastern Tibet[J]. Economic Geology, 98(1): 125−145.
[23] Hou Z Q, Yang Z M. 2009. Porphyry deposits in continental settings of China: Geological characteristies, magmatic−hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 83(12): 1779−1817 (in Chinese with English abstract).
[24] Hou Z Q, Zhang H R, Pan X F, et al. 2011. Porphyry Cu (−Mo−Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 39(1/2): 21−45.
[25] Hou Z Q, Zheng Y C, Yang Z M, et al. 2012. Metallogenesis of continental collision setting : Part I Gangdese Cenozoic porphyry Cu−Mo systems in Tibet[J]. Mineral Deposits, 31(4): 647−670 (in Chinese with English abstract).
[26] Hou Z Q, Duan L F, Lu Y J, et al. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan−Tibetan orogen[J]. Economic Geology, 110(6): 1541−1575. doi: 10.2113/econgeo.110.6.1541
[27] Hou Z Q, Yang Z M, Wang R, et al. 2020. Further discussion on porphyry Cu−Mo−Au deposit formation in Chinese mainland[J]. Earth Science Frontiers, 27(2): 20−44 (in Chinese with English abstract).
[28] Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5): 523−548. doi: 10.1139/e71-055
[29] Jiang C F, Wang Z Q, Li J Y. 2000. Opening−closing structure in the Central Orogen[M]. Beijing: Geological Publishing House, 1−154 (in Chinese with English abstract).
[30] Kan J, Qin K Z, Wang L, et al. 2023. Paleozoic and Mesozoic magmatism in the Gaodi porphyry Mo−Cu deposit: Implications for the evolution of the Mongol−Okhotsk Ocean in the northern Great Xing'an Range, NE China[J]. Gondwana Research, 124: 77−99. doi: 10.1016/j.gr.2023.07.002
[31] Li Q, Cui B, Wang L. 2019. Zircon U−Pb chronology, geochemistry and Lu−Hf isotope constraints on the genesis of the monzonitic granite in the Harizha area in the eastern section of the east Kunlun region[J]. Global Geology, 22(1): 36−49.
[32] Li R B, Pei X Z, Li Z C, et al. 2012. Geological characteristics of Late Palaeozoic−Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers, 19(5): 244−254 (in Chinese with English abstract).
[33] Li S J, Sun F Y, Feng C Y, et al. 2008. Geochronological study on Yazigou polymetallic deposit in Eastern Kunlun, Qinghai Province[J]. Acta Geologica Sinica, 82(7): 949−955 (in Chinese with English abstract).
[34] Li Z M, Xue C J, Wang X H, et al. 2007. Features of regional mineralization and analysis of the exploration development in the Eastern Kunlun Mountains[J]. Geological Review, 53(5): 708−718 (in Chinese with English abstract).
[35] Li Z Z, Qin K Z, Li G M, et al. 2014. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing'an Range, NE China: Partial melting of the juvenile lower crust in intra−plate extensional environment[J]. Lithos, 202: 138−156.
[36] Lin Y H, Li J Q, Wang M, et al. 2021. LA−ICP−MS U−Pb zircon dating and geological significance of ore−bearing granodiorite porphyry in Zamaxiuma area, East Kunlun[J]. Journal of Mineralogy and Petrology, 41(3): 29−39 (in Chinese with English abstract).
[37] Liu G L, Wang Z X, Zhang D M, et al. 2024. Age, geochemistry and formation environment of diorite porphyrite in Kudeerte gold−polymetallic deposit, East Kunlun[J]. Geological Bulletin of China, 43(7): 1133−1148 (in Chinese with English abstract).
[38] Liu J D, Zhang K, Wang B Z, et al. 2023. U−Pb age, geochemical and Hf isotopic characteristics of Late Triassic granodiorite porphyry in Gounao area of Lalinggaoli River, Eastern Kunlun Mountain[J]. Geological Review, 69(4): 1525−1542 (in Chinese with English abstract).
[39] Liu J N, Feng C Y, Qi F, et al. 2012. SIMS zircon U−Pb dating and fluid inclusion studies of Xiadeboli Cu−Mo ore district in Dulan County, Qinghai Province, China[J]. Acta Petrologica Sinica, 28(2): 679−690 (in Chinese with English abstract).
[40] Liu J Q, Zhong S H, Li S Z, et al. 2023. Identification of mineralized and barren magmatic rocks for the pophryry−skarn deposits from the Qimantagh, East Kunlun: Based on machine learning and whole−rock compositions[J]. Northwestern Geology, 56(6): 41−56 (in Chinese with English abstract).
[41] Loiselle M C, Wones D R. 1979. Characteristics of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 11: 468.
[42] Lu C Z, Yan T Z, Dong C W, et al. 2006. Magmatic consanguinity analysis of the Muchen intrusion and Xishantou Formation volcanic rocks in Zhejiang[J]. Geology in China, 33(1): 146−152 (in Chinese with English abstract).
[43] Lu H F, Yang Y Q, He J, et al. 2017. Zircon U−Pb age dating for granodiorite porphyry and molybdenite Re−Os isotope dating of Halongxiuma molybdenum (tungsten) deposit in the East Kunlun area and its geological significance[J]. Journal of Mineralogy and Petrology, 37(2): 33−39 (in Chinese with English abstract).
[44] Luo Z H, Huang Z M, Ke S. 2007. An overview of granitoid[J]. Geological Review, 53(S1): 180−226 (in Chinese with English abstract).
[45] Ma C Q, Xiong F H, Zhang J Y, et al. 2013. Influence of subducted slab on magmatism from subduction to post − orogenic stage: Evidence from Early Permian−Late Triassic mafic dyke swarms in the East Kunlun[J]. Acta Geologica Sinica, 87(S1): 79−81 (in Chinese with English abstract).
[46] Ma H W. 1992. Discrimination of genetic types of granitoid rocks[J]. Acta Petrologica Sinica, 8(4): 341−350 (in Chinese with English abstract).
[47] Mao J W, Luo M C, Xie G Q, et al. 2014. Basic characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geologica Sinica, 88(12): 2153−2175 (in Chinese with English abstract).
[48] McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3−4): 223−253. doi: 10.1016/0009-2541(94)00140-4
[49] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215−224.
[50] Mo X X, Luo Z H, Deng J F, et al. 2007. Granitoids and crustal Growth in the East−Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403−414 (in Chinese with English abstract).
[51] Pan T, Wang B Z, Zhang A K. 2019. Metallogenic series and prospecting prediction in the northern and southern margins of the Qaidam Basin [M]. Wuhan: China University of Geosciences Press: 11−174 (in Chinese with English abstract).
[52] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956
[53] Ren Z, Zhou T F, Hollings P, et al. 2018. Magmatism in the Shapinggou district of the Dabie orogen, China: Implications for the formation of porphyry Mo deposits in a collisional orogenic belt[J]. Lithos, 308/309: 346−363. doi: 10.1016/j.lithos.2018.03.013
[54] Richards J P. 2003. Tectono−magmatic precursors for porphyry Cu−(Mo−Au) deposit formation[J]. Economic Geology, 98(8): 1515−1533. doi: 10.2113/gsecongeo.98.8.1515
[55] Richards J P. 2009. Postsubduction porphyry Cu−Au and epithermal Au deposits: Products of remelting of subduction−modified lithosphere[J]. Geology, 37(3): 247−250. doi: 10.1130/G25451A.1
[56] Richards J P. 2013. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 6(11): 911−916. doi: 10.1038/ngeo1920
[57] Richter F M. 1989. Simple models for trace element fractionation during melt segregation[J]. Earth and Planetary Science Letters, 77(3/4): 333−344.
[58] Robb L. 2005. Introduction to ore−forming processes[M]. Oxford: Blackwell Publishing: 735−736.
[59] Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Heinrich D H, Turekian K K. Treatise on Geochemistry, Volume 3. Oxford: Pergamon: 1−64.
[60] She H Q, Zhang D Q, Jing X Y, et al. 2007. Geological characteristics and genesis of the Ulan Uzhurporphyry copper deposit in Qinghai[J]. Geology in China, 34(2): 306−314 (in Chinese with English abstract).
[61] Shu Q, Chiaradia M. 2021. Mesozoic Mo mineralization in northeastern China did not require regional−scale pre−enrichment[J]. Economic Geology, 116(5): 1227−1237. doi: 10.5382/econgeo.4823
[62] Shu X F, Ma Z Y, Zhou Q L, et al. 2014. General investigation report on the Qingshuihedonggou porphyry Cu − Mo deposit in Dulan County, Qinghai Province[R]. The Third Geological Exploration Institute of Qinghai Province (in Chinese with English abstract).
[63] Sillitoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105(1): 3−41. doi: 10.2113/gsecongeo.105.1.3
[64] Stein H J, Crock J. 1990. Late Cretaceous−Tertiary magmatism in the Colorado mineral belt: Rare Earth element and Samarium−Neodymium isotopic studies[M]. Geological Society of America Memoir, 174: 195−223.
[65] Štemprok M. 1990. Solubility of tin, tungsten and molybdenum oxides in felsic magmas[J]. Mineralium Deposita, 25: 205−212. doi: 10.1007/BF00190382
[66] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics ofoceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[67] Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution[M]. Carlton: Blackwell Scientific Publication: 1–312.
[68] Wang B Z, Fu C L, Pan T, et al. 2022. Early Paleozoic magmatism in the Saishiteng area, North Qaidam and their constraint on tectonic evolution[J]. Acta Petrologica Sinica, 38(9): 2723−2742 (in Chinese with English abstract).
[69] Wang C Y, Ma Z Y, Zhou Q L, et al. 2017. Rock geochemical characteristics and tectonic environment analysis of Cu − Mo polymetallic mining area of Qingshui River Ore District, Eastern Kunlun, Qinghai Province[J]. Journal of Qinghai University, 35(5): 69−77 (in Chinese with English abstract).
[70] Wang F C, Chen J, Xie Z Y, et al. 2013. Geological features and Re−Os isotopic dating of the Lalingzaohuo molybdenum polymetallic deposit in East Kunlun[J]. Geology in China, 40(4): 1209−1217 (in Chinese with English abstract).
[71] Wang S, Feng C Y, Li S J, et al. 2009. Zircon SHRIMP U−Pb dating of granodiorite in the Kaerqueka polymetallic ore deposit, Qimantage Mountain, Qinghai Province, and its geological implications[J]. Geology in China, 36(1): 74−84 (in Chinese with English abstract).
[72] Wang X L, Yuan W M, Feng X, et al. 2017. LA−ICP−MS zircon U−Pb age and geological significance of granite porphyry and diorite in the Harizha polymetallic ore district, East Kunlun Mountains[J]. Geological Bulletin of China, 36(7): 1158−1168 (in Chinese with English abstract).
[73] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202
[74] White A J R, Chappell B W. 1977. Ultrametamorphism and granitoid genesis[J]. Tectonophysics, 43: 7−22. doi: 10.1016/0040-1951(77)90003-8
[75] Wu F Y, Li X H, Zheng Y F, et al. 2007a. Lu−Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185−220 (in Chinese with English abstract).
[76] Wu F Y, Li X H, Yang J H, et al. 2007b. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217−1238 (in Chinese with English abstract).
[77] Wu F Y, Liu X C, Ji W Q, et al. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745−765 (in Chinese with English abstract).
[78] Wu F Y, Wan B, Zhao L, et al. 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627−1674 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01
[79] Xi R G, Xiao P X, Wu Y Z, et al. 2010. The geological significances, composition and age of the Monzonitic granite in Kendekeke iron mine[J]. Northwestern Geology, 43(4): 195−202 (in Chinese with English abstract).
[80] Xiang P, Yao S Z, Zhou Z G. 2013. Geochemistry and genesis of igneous rocks in Jiadanggen porphyry Cu(Mo) deposit, Qinghai Province, China[J]. Northwestern Geology, 46(1): 139−153 (in Chinese with English abstract).
[81] Xu Q L, Sun F Y, Li B L, et al. 2014. Geochronological dating, geochemical characteristics and tectonic setting of the granite−porphyry in the Mohexiala silver polymetallic deposit, Eastern Kunlun Orogenic Belt[J]. Geotectonica et Metallogenia, 38(2): 421−433 (in Chinese with English abstract).
[82] Xu W Y, Zhang D Q, Yan S H, et al. 2001. Progress and prospect of the major mineral resources survey in the East Kunlun area[J]. Geology in China, 28(1): 25−29 (in Chinese with English abstract).
[83] Xu Z Q, Yang J S, Li H B, et al. 2006. The Qinghai−Tibet plateau and continental dynamics: A review on terrane tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 33(2): 221−238 (in Chinese with English abstract).
[84] Yang H, Qin K Z, Wu P, et al. 2023. Tectonic setting, mineralization and ore−controlling factors of porphyry Cu−Mo−Au deposits[J]. Mineral Deposits, 42(1): 128−156 (in Chinese with English abstract).
[85] Yang J S, Wang X B, Shi R D, et al. 2004. The Dur'ngoi ophiolite in East Kunlun, northern Qinghai−Tibet Plateau: A fragment of paleo−Tethyan oceanic crust[J]. Geology in China, 31(3): 225−239 (in Chinese with English abstract).
[86] Yang Z M, Cooke D R. 2019. Porphyry copper deposits in China[C]//Mineral deposits of China. McLean: Society of Economic Geologists, 22: 133−187.
[87] Yin H F, Zhang K X. 1997. Characteristics of the Eastern Kunlun Orogenic Belt[J]. Earth Science--Journal of China University of Geosciences, 22(4): 339-342 (in Chinese with English abstract).
[88] Yu Z D, Tan R, Cao H Q, et al. 2023. Petrogenesis of fine-grained muscovite granite in the Lianhuashan tungsten tin ore cluster area of northern Jiangxi Province--Constraints from zircon U-Pb isotopes and elemental geochemistry[J]. Geological Bulletin of China, 42(12): 2084-2095 (in Chinese with English abstract).
[89] Yuan W M, Mo X X, Yu X H, et al. 2000. The record of Indosinian tectonie setting from the granotoidof Eastern Kunlun Mountains[J]. Geological Review, 46(2): 203−211 (in Chinese with English abstract).
[90] Yuan W M, Mo X X, Zhang A K, et al. 2017. Discovery of new porphyry belts in Eastern Kunlun Mountains, Qinghai Tibet Plateau[J]. Earth Science Frontiers, 24(6): 1−9 (in Chinese with English abstract).
[91] Zhang A K, Mo X X, Yuan W M, et al. 2016. Petrogensis and tectonic setting of Yemaquan Triassic granite fromthe west of the Eastern Kunlun Mountain Range, China[J]. Acta Mineralogica Sinica, 36(2): 157−173 (in Chinese with English abstract).
[92] Zhang D X, Zeng X P, Wei X L, et al. 2017. Geochemistry and tectonic cetting of late Triassic volcanics in Elashan formation in south of Nalingelehe river, East Kunlun[J]. Contributions to Geology and Mineral Resources Research, 32(2): 245−253 (in Chinese with English abstract).
[93] Zhang H, Sun W D, Yang X Y, et al. 2011. Geochronology and metallogenesis of the Shapinggou giant porphyry molybdenum deposit in the Dabie Orogenic Belt[J]. Acta Geologica Sinica, 85(12): 2039−2059.
[94] Zhang J, Tang H W, Hou M C, et al. 2018. Geochemistry and zircon U−Pb ages of the volcanic rocks in southern Galinge, Qinghai Province[J]. Geological Bulletin of China, 37(5): 819−829(in Chinese with English abstract).
[95] Zhang Q Y, Li L, Yang H, et al. 2013. Geological characteristics and genetic type analysis of the Qing Shui Hedonggou copper−molybdenum deposit[J]. Journal of Qinghai University (Natural Science Edition), 31(4): 65−69.
[96] Zhang Q, Wang Y, Liu W, et al. 2002. Adakite: Its characteristics and implications[J]. Geological Bulletin of China, (7): 431−435 (in Chinese with English abstract).
[97] Zhang Q, Wang Y, Wang Y L. 2003. On the relationship between Adakiteand its tectonic setting[J]. Geotectonica et Metallogenia, (2): 101−108 (in Chinese with English abstract).
[98] Zhang Q, Pan G Q, Li C D, et al. 2007. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3)[J]. Acta Petrologica Sinica, 23(11): 2683−2698 (in Chinese with English abstract).
[99] Zhang Q, Ran H, Li C D. 2012. A−type granite: what is the essence?[J]. Journal of Petrology and Mineralogy, 31(4): 621−626 (in Chinese with English abstract).
[100] Zhang Q. 2013. The criteria and diserimination for A−type granites: A reply to the questionput forward by Wang Yang and some other persons for “A−type granite: what is the essence?”[J]. Journal of Petrology and Mineralogy, 32(2): 267−274 (in Chinese with English abstract).
[101] Zhang Q, Jiao S T. 2020. Adakite comes from a high−pressure background: A scientific, reliable, predictable scientificdiscovery[J]. Acta Petrologica Sinica, 36(6): 1675−1683 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.02
[102] Zhang X Y, Li W F, Ou Yang G W, et al. 2020. The discovery of Early Triassic volcanic rocks in Zhanhongshan area of Oinghai Province in the eastern section of East Kunlun Mountain and its geological significance[J]. Geological Bulletin of China, 39(5): 631−641 (in Chinese with English abstract).
[103] Zhang Y, Su S S, Bai S L, et al. 2015. Geochemistry, LA−ICP−MS zircon U−Pb dating and geological significance of quartz diorite in the Bielisaibei iron ore deposit, East Kunlun Mountains, Qinghai Province[J]. Geology in China, 42(3): 663−676 (in Chinese with English abstract).
[104] Zhang Y, Zhang D M, Liu G Y, et al. 2017. Zircon U−Pb dating of porphyroid monzonitic granitein the Kaerqueka copper polymetallic deposit of East Kunlun Mountains and its geological significance[J]. Geological Bulletin of China, 36(2/3): 270−274 (in Chinese with English abstract).
[105] Zhang Y, Pan T, Zhang A K, et al. 2023. Spatial relationship between eclogite and copper−nickel mineralization in East Kunlun, China[J]. Minerals, 13: 330.
[106] Zhang Y, Zhang A K, He S Y, et al. 2023. Age, petrogenesis and tectonic significance of granodiorite in Kudeerte gold deposit, Qimantage area, East Kumlun[J]. Gold Science and Technology, 31(1): 1−14 (in Chinese with English abstract).
[107] Zhang Y, Li Z F, Liu G Y, et al. 2024. Discussion prospecting prospect of the eclogite type rutile deposit in east Kunlun[J]. Mineral Exploration, 15(3): 364−372 (in Chinese with English abstract).
[108] Zhang Z Y, Yin H F, Wang B Z, et al. 2004. Presence and evidence of Kuhai−Saishitang branching ocean in copulae between Kunlun−Qinling Mountains[J]. Earth Science, (6): 691−696 (in Chinese with English abstract).
[109] Zhu D Q, Zhu H B, Li B L, et al. 2018. Re−Os geochronology of molybdenite from Reshui Cu−Mo deposit in Dulan, Qinghai and its geological significance[J]. Global Geology, 37(4): 1004−1017 (in Chinese with English abstract).
[110] Zhu W F, Tang C J. 1983. Geochemical conversion method of natural minerals in granitoids and its application [M]. Guiyang: Guizhou People's Publishing House (in Chinese).
[111] 边千韬, 罗小全, 李涤徽, 等. 2001. 青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境[J]. 地质学报, 75(1): 45−55. doi: 10.3321/j.issn:0001-5717.2001.01.005
[112] 陈国超, 裴先治, 李瑞保, 等. 2020. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 27(4): 33−48.
[113] 陈静, 谢智勇, 李彬, 等. 2013. 东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义[J]. 地质与勘探, 49(5): 813−824.
[114] 陈敏, 王雁鹤, 谷强, 等. 2024. 松潘−甘孜地体青海吾和玛高分异I型花岗岩的识别与岩石成因[J]. 地质通报, 43(5): 789−801.
[115] 陈向阳, 张雨莲, 宋忠宝, 等. 2013. 东昆仑清水河东沟斑岩铜钼矿地质地球化学特征[C]// 中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 中国矿物岩石地球化学学会.
[116] 邓晋福, 肖庆辉, 苏尚国, 等. 2007. 火成岩组合与构造环境: 讨论[J]. 高校地质学报, 13(3): 392−402. doi: 10.3969/j.issn.1006-7493.2007.03.009
[117] 郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70. doi: 10.12401/j.nwg.2023158
[118] 郭正府, 邓晋福, 许志琴, 等. 1998. 青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 12(3): 51−59.
[119] 国显正, 贾群子, 郑有业, 等. 2016. 东昆仑热水钼多金属矿床辉钼矿Re−Os同位素年龄及地质意义[J]. 地质学报, 90(10): 2818−2829. doi: 10.3969/j.issn.0001-5717.2016.10.019
[120] 韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 14(3): 64−72. doi: 10.3321/j.issn:1005-2321.2007.03.006
[121] 何书跃, 李东生, 李良林, 等. 2009. 青海东昆仑鸭子沟斑岩型铜(钼) 矿区辉钼矿铼-锇同位素年龄及地质意义[J]. 大地构造与成矿学, 33(2): 236−242. doi: 10.3969/j.issn.1001-1552.2009.02.007
[122] 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16. doi: 10.12401/j.nwg.2023157
[123] 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS 锆石微区原位U−Pb定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010
[124] 侯增谦, 杨志明. 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 83(12): 1779−1817. doi: 10.3321/j.issn:0001-5717.2009.12.002
[125] 侯增谦, 郑远川, 杨志明, 等. 2012. 大陆碰撞成矿作用: Ⅰ. 冈底斯新生代斑岩成矿系统[J]. 矿床地质, 31(4): 647−670. doi: 10.3969/j.issn.0258-7106.2012.04.002
[126] 侯增谦, 杨志明, 王瑞, 等. 2020. 再论中国大陆斑岩 Cu−Mo−Au 矿床成矿作用[J]. 地学前缘, 27(2): 20−44.
[127] 姜春发, 王宗起, 李锦轶. 2000. 中央造山带开合构造[M]. 北京: 地质出版社: 1−154.
[128] 李瑞保, 裴先治, 李佐臣, 等. 2012. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 19(5): 244−254.
[129] 李世金, 孙丰月, 丰成友, 等. 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, 82(7): 949−955. doi: 10.3321/j.issn:0001-5717.2008.07.013
[130] 李智明, 薛春纪, 王晓虎, 等. 2007. 东昆仑区域成矿特征及有关找矿突破问题分析[J]. 地质论评, 53(5): 708−718. doi: 10.3321/j.issn:0371-5736.2007.05.017
[131] 林艳海, 李积清, 王明, 等. 2021. 东昆仑扎玛休玛地区含矿花岗闪长斑岩LA−ICP−MS锆石定年及地质意义[J]. 矿物岩石, 41(3): 29−39.
[132] 刘光莲, 汪周鑫, 张大明, 等. 2024: 东昆仑库德尔特金多金属矿床闪长玢岩年龄、地球化学特征及形成环境[J]. 地质通报, 43(7): 1133−1148.
[133] 刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩-矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56. doi: 10.12401/j.nwg.2023155
[134] 刘建栋, 张焜, 王秉璋, 等. 2023. 东昆仑拉陵高里河沟脑地区晚三叠世花岗闪长斑岩年代学、岩石地球化学及 Hf 同位素特征[J]. 地质论评, 69(4): 1525−1542.
[135] 刘建楠, 丰成友, 亓锋, 等. 2012. 青海都兰县下得波利铜钼矿区锆石U−Pb测年及流体包裹体研究[J]. 岩石学报, 28(2): 679−690.
[136] 卢成忠, 颜铁增, 董传万, 等. 2006. 浙江沐尘岩体与西山头组火山岩的岩浆同源性分析[J]. 中国地质, 33(1): 146−152. doi: 10.3969/j.issn.1000-3657.2006.01.016
[137] 鲁海峰, 杨延乾, 何皎, 等. 2017. 东昆仑哈陇休玛钼(钨) 矿床花岗闪长斑岩锆石U−Pb及辉钼矿Re−Os同位素定年及其地质意义[J]. 矿物岩石, 37(2): 33−39.
[138] 罗照华, 黄忠敏, 柯珊. 2007. 花岗质岩石的基本问题[J]. 地质论评, 53(S1): 180−226.
[139] 马昌前, 熊富浩, 张金阳, 等. 2013. 从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响: 东昆仑早二叠世—晚三叠世镁铁质岩墙群的证据[J]. 地质学报, 87(S1): 79−81.
[140] 马鸿文. 1992. 花岗岩成因类型的判别分析[J]. 岩石学报, 8(4): 341−350. doi: 10.3321/j.issn:1000-0569.1992.04.005
[141] 毛景文, 罗茂澄, 谢桂青, 等. 2014. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 88(12): 2153−2175.
[142] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010
[143] 潘彤, 王秉璋, 张爱奎. 2019. 柴达木盆地南北缘成矿系列及找矿预测[M]. 武汉: 中国地质大学出版社:11−174.
[144] 佘宏全, 张德全, 景向阳, 等. 2007. 青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J]. 中国地质, 34(2): 306−314. doi: 10.3969/j.issn.1000-3657.2007.02.013
[145] 舒晓峰, 马忠元, 周青禄, 等. 2014. 青海省都兰县清水河东沟斑岩型铜钼矿普查报告[R]. 青海省第三地质勘查院.
[146] 王秉璋, 付长垒, 潘彤, 等. 2022. 柴北缘赛什腾地区早古生代岩浆活动与构造演化[J]. 岩石学报, 38(9): 2723−2742. doi: 10.18654/1000.0569/2022.09.13
[147] 王昌勇, 马忠元, 周青禄, 等. 2017. 东昆仑清水河东沟铜钼多金属矿区赋矿岩石地球化学特征及构造环境分析[J]. 青海大学学报, 35(5): 69−77.
[148] 王富春, 陈静, 谢志勇, 等. 2013. 东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re−Os同位素定年[J]. 中国地质, 40(4): 1209−1217. doi: 10.3969/j.issn.1000-3657.2013.04.019
[149] 王松, 丰成友, 李世金, 等. 2009. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U−Pb测年及其地质意义[J]. 中国地质, 36(1): 74−84. doi: 10.3969/j.issn.1000-3657.2009.01.005
[150] 王小龙, 袁万明, 冯星, 等. 2017. 东昆仑哈日扎多金属矿区花岗斑岩与闪长岩LA−ICP−MS锆石U−Pb年龄及其地质意义[J]. 地质通报, 36(7): 1158−1168. doi: 10.3969/j.issn.1671-2552.2017.07.006
[151] 吴芳, 张绪教, 张永清, 等. 2010. 东昆仑闹仓坚沟组流纹质凝灰岩锆石 U−Pb 年龄及其地质意义[J]. 地质力学学报, 16(1): 44−50. doi: 10.3969/j.issn.1006-6616.2010.01.006
[152] 吴福元, 李献华, 郑永飞, 等. 2007a. Lu−Hf 同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185−220.
[153] 吴福元, 李献华, 杨进辉, 等. 2007b. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238.
[154] 吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.
[155] 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. doi: 10.18654/1000-0569/2020.06.01
[156] 奚仁刚, 校培喜, 伍跃中, 等. 2010. 东昆仑肯德可克铁矿区二长花岗岩组成、年龄及地质意义[J]. 西北地质, 43(4): 195−202. doi: 10.3969/j.issn.1009-6248.2010.04.023
[157] 向鹏, 姚书振, 周宗桂. 2013. 青海加当根斑岩型铜(钼) 矿床岩石地球化学特征及其成因认识[J]. 西北地质, 46(1): 139−153. doi: 10.3969/j.issn.1009-6248.2013.01.014
[158] 徐文艺, 张德全, 阎升好, 等. 2001. 东昆仑地区矿产资源大调查进展与前景展望[J]. 中国地质, 28(1): 25−29. doi: 10.3969/j.issn.1000-3657.2001.01.007
[159] 许庆林, 孙丰月, 李碧乐, 等. 2014. 东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景[J]. 大地构造与成矿学, 38(2): 421−433.
[160] 许志琴, 杨经绥, 李海兵, 等. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 33(2): 221−238. doi: 10.3969/j.issn.1000-3657.2006.02.001
[161] 杨航, 秦克章, 吴鹏, 等. 2023. 斑岩铜-钼-金矿床: 构造环境、成矿作用与控制因素[J]. 矿床地质, 42(1): 128−156.
[162] 杨经绥, 王希斌, 史仁灯, 等. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳[J]. 中国地质, 31(3): 225−239. doi: 10.3969/j.issn.1000-3657.2004.03.001
[163] 殷鸿福, 张克信. 1997. 东昆仑造山带的一些特点[J]. 地球科学——中国地质大学学报, 22(4): 339−342.
[164] 余振东, 谭荣, 曹慧青, 等. 2023. 赣北莲花山钨锡矿集区中细粒白云母花岗岩成因——来自锆石U−Pb同位素和元素地球化学的约束[J]. 地质通报, 42(12): 2084−2095. doi: 10.12097/j.issn.1671-2552.2023.12.005
[165] 袁万明, 莫宣学, 喻学惠, 等. 2000. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 46(2): 203−211. doi: 10.3321/j.issn:0371-5736.2000.02.012
[166] 袁万明, 莫宣学, 张爱奎, 等. 2017. 青海省东昆仑斑岩带新发现[J]. 地学前缘, 24(6): 1−9.
[167] 张爱奎, 莫宣学, 袁万明, 等. 2016. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 36(2): 157−173.
[168] 张得鑫, 曾小平, 魏小林, 等. 2017. 东昆仑那陵格勒河南上三叠统鄂拉山组火山岩地球化学特征及构造环境[J]. 地质找矿论丛, 32(2): 245−253. doi: 10.6053/j.issn.1001-1412.2017.02.011
[169] 张红, 孙卫东, 杨晓勇, 等. 2011. 大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究[J]. 地质学报, 85(12): 2039−2059.
[170] 张杰, 汤鸿伟, 侯明才, 等. 2018. 青海尕林格南地区火山岩地球化学特征及锆石U−Pb年龄[J]. 地质通报, 37(5): 819−829. doi: 10.12097/gbc.dztb-37-5-819
[171] 张旗, 王焰, 刘伟, 等. 2002. 埃达克岩的特征及其意义[J]. 地质通报, (7): 431−435. doi: 10.3969/j.issn.1671-2552.2002.07.012
[172] 张旗, 王焰, 王元龙. 2003. 埃达克岩与构造环境[J]. 大地构造与成矿学, (2): 101−108. doi: 10.3969/j.issn.1001-1552.2003.02.001
[173] 张旗, 潘国强, 李承东, 等. 2007. 花岗岩构造环境问题: 关于花岗岩研究的思考之三[J]. 岩石学报, 23(11): 2683−2698. doi: 10.3969/j.issn.1000-0569.2007.11.002
[174] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621−626. doi: 10.3969/j.issn.1000-6524.2012.04.014
[175] 张旗. 2013. A 型花岗岩的标志和判别——兼答汪洋等对 “A 型花岗岩的实质是什么” 的质疑[J]. 岩石矿物学杂志, 32(2): 267−274. doi: 10.3969/j.issn.1000-6524.2013.02.014
[176] 张旗, 焦守涛. 2020. 埃达克岩来自高压背景——一个科学的、可靠的、有预见性的科学发现[J]. 岩石学报, 36(6): 1675−1683. doi: 10.18654/1000-0569/2020.06.02
[177] 张庆元, 李磊, 杨泓, 等. 2013. 清水河东沟铜钼矿床地质特征及成因类型分析[J]. 青海大学学报(自然科学版), 31(4): 65−69.
[178] 张新远, 李五福, 欧阳光文, 等. 2020. 东昆仑东段青海战红山地区早三叠世火山岩的发现及其地质意义[J]. 地质通报, 39(5): 631−641. doi: 10.12097/j.issn.1671-2552.2020.05.004
[179] 张勇, 苏生顺, 白生龙, 等. 2015. 东昆仑别里赛北铁矿床石英闪长岩LA-ICP-MS锆石U-Pb测年、地球化学及其地质意义[J]. 中国地质, 42(3): 663−676. doi: 10.3969/j.issn.1000-3657.2015.03.019
[180] 张勇, 张大明, 刘国燕, 等. 2017. 东昆仑卡而却卡铜多金属矿床似斑状二长花岗岩锆石U−Pb年龄及其地质意义[J]. 地质通报, 36(2/3): 270−274.
[181] 张勇, 何书跃, 刘智刚, 等. 2018. 青海祁漫塔格乌兰拜兴铁矿床形成时代: 来自石英闪长岩锆石U−Pb定年证据[J]. 中国地质, 45(6): 1308−1309. doi: 10.12029/gc20180621
[182] 张勇, 张爱奎, 何书跃, 等. 2023. 东昆仑祁漫塔格地区库德尔特金矿区花岗闪长岩的时代、成因及其构造意义[J]. 黄金科学技术, 31(1): 1−14.
[183] 张勇, 李泽峰, 刘国燕, 等. 2024. 东昆仑榴辉岩型金红石矿找矿前景探讨[J]. 矿产勘查, 15(3): 364−372.
[184] 张智勇, 殷鸿福, 王秉璋, 等. 2004. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据[J]. 地球科学, (6): 691−696. doi: 10.3321/j.issn:1000-2383.2004.06.008
[185] 朱德全, 朱海波, 李宝龙, 等. 2018. 青海省都兰县热水铜钼矿床辉钼矿Re−Os测年及成矿意义[J]. 世界地质, 37(4): 1004−1017. doi: 10.3969/j.issn.1004-5589.2018.04.002
[186] 朱为方, 唐春景. 1983. 花岗岩类自然矿物岩石化学换算法及其应用[M]. 贵州: 贵州人民出版社.
-