Zircon U-Pb Age, Geochemistry and Geological Significance of the Basic-Acidic Rocks in the Ubendian Belt, Tanzania
-
摘要:
乌本迪带位于坦桑尼亚西南缘,具有多阶段的构造演化历史。相比其他演化阶段,有关中元古代的岩浆作用研究相对较少,从而制约了乌本迪带中元古代构造演化历史的研究。基于此,笔者选择坦桑尼亚姆贝亚(Mbeya)地区发现的中元古代辉长岩和正长花岗岩进行岩石学、地质年代学和地球化学研究。结果表明,辉长岩和正长花岗岩的锆石结晶年龄分别为(1433±9)Ma和(1428±11)Ma,为中元古代岩浆活动的产物。辉长岩具有高的TiO2含量(最高可达2.6%)和Ti/Y值(最高可达601),轻稀土元素(LREE)富集,(La/Yb)N值为4.85;Eu具轻微正异常,δEu值为1.02;富集大离子亲石元素(LILEs,如Rb、Ba、Sr、K),亏损高场强元素(HFSEs,如Nb、Ta、Zr),其微量元素组成与大陆溢流玄武岩(CFB)类似,推测为富集大陆岩石圈地幔发生低程度部分熔融的产物。正长花岗岩具高的SiO2含量(71.59%~75.08%)和Ga/Al值(Ga/Al×104值为2.98~3.11),Zr+Nb+Ce+Y远大于350×10−6;LREE富集,(La/Yb)N值为22.86~28.51;Eu具明显负异常,δEu值为0.12~0.34,显示A型花岗岩特征,较低的Mg#值(6~10)和Sr/Y值(0.17~0.65),表明其可能为中–下地壳基性岩石部分熔融的产物。辉长岩和正长花岗岩的构造环境研究显示,两者均形成于板内拉张环境,与全球该时期构造演化体制相吻合,为Columbia超大陆裂解事件的岩浆产物。
Abstract:The Ubendian Belt, which is situated on Tanzania’s southwest border, has undergone a multi-stage tectonic evolution history. Compared with other stages, there has been comparatively little research on the Mesoproterozoic Mag Matism, which restricts the study on the Mesoproterozoic tectonic evolution history of Ubendian Belt. Based on this, the Mesoproterozoic gabbro and syenite are selected for petrological, geochronology and geochemistry studies. The results show that the crystallization ages of the gabbro and syenogranite are (1433±9) Ma and (1428±11) Ma, respectively, indicating they are Mesoproterozoic. The gabbro is characterized by high content of TiO2(2.6%) and Ti/Y ratio (601), enriched in LREE with (La/Yb)N of 4.85, and slightly positive Eu ano Malies (δEu=1.02). The LILEs (Rb, Ba, Sr, K) are enriched and HFSEs (Nb, Ta, Zr) are depleted, the geochemical features of the gabbro are consistent with continental flood basalts (CFB), indicating that it May be the production of a low degree partial melting of the enriched continental lithospheric Mantle. The syenites have high contents of SiO2 (71.59%~75.08%), they are characterized by enrichment in LREE with (La/Yb)N of 22.86~28.51, significant negative Eu ano Malies (δEu=0.12~0.34). Their values of Ga/Al are high (Ga/Al×104=2.98~3.11) and the content of Zr+Nb+Ce+Y is much larger than 350×10−6, indicating that they are A-type granites. The lower Mg# values (6~10) and Sr/Y ratios (0.17~0.65), indicating that they are the production of partial melting of basaltic rocks in the middle-lower crust. Both of the gabbro and syenite originated within an intra-plate rifting enviroment, which is consistent with the global tectonic regime of the Columbia Supercontinent rifting event.
-
Key words:
- zircon U-Pb age /
- Geochemistry /
- gabbro /
- syenogranite /
- Ubendian Belt
-
-
图 1 坦桑尼亚姆贝亚地区地质简图(a)及乌本迪带地质简图(b)(据Boniface et al., 2014)
Figure 1.
图 4 乌本迪带内不同岩体的TAS图解(据Wilson, 1989)
Figure 4.
图 6 乌本迪带内基性岩Nb/Yb-Th/Yb (a)和Zr/Y-(La/Sm)N (b)图解(据Pearce, 2014)
Figure 6.
图 7 乌本迪带辉长岩和正长花岗岩的Ti/100-Zr-3Y(a)、2Nb-Zr/4-Y(b)、Yb/Ta-Y/Nb(c)和Sc/Nb-Y/Nb(d)构造判别图解(据Eby, 1992; Chusi et al., 2015)
Figure 7.
表 1 乌本迪带地质体特征(据Daly, 1988; Boniface et al., 2017)
Table 1. Geological characteristics of the Ubendian terranes
地体
名称地质年龄(Ma) 岩性 线理
走向岩浆作用 变质作用 Ubende 1890~1860 Ma(榴辉岩U-Pb锆石) 角闪岩、榴辉岩、片麻岩和变质基性岩 ENE—WSW 1170 Ma (变质泥岩U-Th-Pb独居石) 600 Ma (变质泥岩U-Th-Pb独居石) Wakole 1170~1000 Ma (变质泥岩U-Pb 锆石) 富铝硅酸岩质片岩 NW—SE Katuma 2650 Ma (变质基性岩U-Pb锆石) 1960 Ma (变质泥岩U-Th-Pb独居石) 变质基性岩 NW—SE 1940 Ma (变质泥岩U-Th-Pb独居石) Ufipa (1847 ± 37) Ma(花岗岩U-Pb 锆石) 590~520 Ma (榴辉岩U-Pb锆石) 花岗质片麻岩 NW—SE (1864 ± 32) Ma (花岗岩U-Pb 锆石) Mbozi (2084 ± 8) Ma (片麻岩U-Pb锆石) 片麻岩、混合岩、石英岩±麻粒岩±变质基性岩 NW—SE Lupa 2760 Ma (花岗岩U-Pb金红石) 变质火山岩、花岗岩和花岗质片麻岩 NW—-SE (1943 ± 32) Ma
(玄武质安山岩U-Pb锆石)(1878 ± 15) Ma (花岗岩U-Pb 锆石) Upangwa (2084 ± 86) Ma (花岗岩U-Pb 锆石) (1045 ± 25) Ma (片麻岩U-Pb锆石) 变质斜长岩 NW—SE 1880~1850 Ma
(石英闪长岩U-Pb 锆石)(724 ± 6) Ma (花岗岩U-Pb 锆石) Nyika 1990~1930 Ma (花岗岩U-Pb 锆石) (1813 ± 13) Ma; (947 ± 7) Ma; (560 ± 6) Ma(变质泥岩U-Th-Pb独居石) 堇青石麻粒岩 E—W (1010 ± 22) Ma (榴辉岩U-Pb锆石) 1930~1969 Ma(变质泥岩Pb-Pb锆石) 表 2 乌本迪带内不同岩体的LA-MC-ICP-MS锆石U-Pb测年数据
Table 2. LA-MC-ICP-MS Zircons U-Pb isotopic data from different rocks in the Ubendian Belt
样品
编号元素含量(10−6) Th/U 同位素比值 年龄(Ma) Pb U Th 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 变质辉长岩(D6214) 1 81 256 311 1.21 0.2449 0.0028 3.1028 0.0439 0.0919 0.0010 1412 16 1433 20 1465 21 2 33 98 146 1.49 0.2452 0.0026 3.1168 0.0436 0.0922 0.0011 1414 15 1437 20 1471 23 3 27 85 95 1.11 0.2471 0.0028 3.0677 0.0451 0.0900 0.0011 1423 16 1425 21 1426 23 4 51 155 237 1.53 0.2434 0.0026 3.0831 0.0433 0.0919 0.0011 1404 15 1429 20 1465 22 5 60 191 225 1.18 0.2459 0.0026 3.0710 0.0419 0.0906 0.0010 1417 15 1425 19 1438 22 6 55 190 163 0.86 0.2446 0.0026 3.0973 0.0433 0.0919 0.0011 1410 15 1432 20 1464 22 7 66 212 250 1.18 0.2462 0.0026 3.0653 0.0412 0.0903 0.0010 1419 15 1424 19 1432 22 8 28 92 117 1.27 0.2444 0.0024 3.0474 0.0489 0.0904 0.0014 1409 14 1420 23 1435 29 9 81 262 337 1.29 0.2445 0.0024 3.0482 0.0394 0.0904 0.0010 1410 14 1420 18 1434 21 10 45 158 136 0.86 0.2439 0.0025 3.0336 0.0413 0.0902 0.0011 1407 14 1416 19 1430 22 11 57 193 204 1.06 0.2483 0.0025 3.0826 0.0406 0.0900 0.0010 1430 14 1428 19 1426 22 12 38 116 167 1.44 0.2470 0.0026 3.0634 0.0418 0.0900 0.0010 1423 15 1424 19 1424 22 13 41 120 205 1.71 0.2475 0.0024 3.0561 0.0408 0.0895 0.0010 1426 14 1422 19 1416 22 14 33 119 84 0.71 0.2478 0.0025 3.0698 0.0417 0.0898 0.0010 1427 15 1425 19 1422 22 15 19 76 88 1.15 0.1984 0.0021 2.4408 0.0416 0.0892 0.0014 1167 12 1255 21 1409 31 16 8 31 30 0.97 0.2078 0.0021 2.5473 0.0514 0.0889 0.0017 1217 12 1286 26 1402 36 17 37 113 178 1.57 0.2478 0.0026 3.0450 0.0417 0.0891 0.0010 1427 15 1419 19 1407 22 18 49 154 238 1.54 0.2461 0.0024 3.0114 0.0395 0.0888 0.0010 1418 14 1411 18 1399 22 19 62 196 280 1.43 0.2452 0.0026 3.0551 0.0415 0.0904 0.0010 1414 15 1422 19 1433 22 20 32 178 82 0.46 0.1688 0.0017 2.0587 0.0277 0.0885 0.0010 1005 10 1135 15 1392 23 21 42 145 208 1.44 0.2175 0.0023 2.7131 0.0363 0.0905 0.0010 1269 13 1332 18 1435 22 22 170 518 792 1.53 0.2464 0.0027 3.0674 0.0420 0.0903 0.0010 1420 16 1425 20 1432 21 23 54 199 123 0.62 0.2448 0.0024 3.0399 0.0397 0.0901 0.0010 1411 14 1418 19 1427 21 24 43 146 155 1.06 0.2447 0.0025 3.0466 0.0415 0.0903 0.0010 1411 14 1419 19 1432 22 25 30 100 123 1.23 0.2451 0.0026 3.0616 0.0424 0.0906 0.0011 1413 15 1423 20 1438 22 26 30 92 144 1.56 0.2439 0.0025 3.0525 0.0426 0.0908 0.0011 1407 14 1421 20 1442 23 27 28 84 136 1.63 0.2449 0.0025 3.0651 0.0425 0.0908 0.0011 1412 15 1424 20 1442 23 28 55 164 282 1.72 0.2426 0.0026 3.0312 0.0409 0.0906 0.0010 1400 15 1416 19 1438 22 29 50 156 238 1.53 0.2445 0.0024 3.0347 0.0399 0.0900 0.0010 1410 14 1416 19 1426 22 30 32 102 143 1.4 0.2450 0.0026 3.0167 0.0442 0.0893 0.0011 1413 15 1412 21 1411 24 31 41 150 149 1 0.2293 0.0023 2.8626 0.0382 0.0906 0.0010 1331 13 1372 18 1437 22 正长花岗岩(D6218) 1 21 70 80 1.14 0.2447 0.0024 3.0566 0.0440 0.0906 0.0012 1411 14 1422 20 1438 25 2 48 171 138 0.8 0.2455 0.0025 3.0741 0.0403 0.0908 0.0010 1415 14 1426 19 1443 22 3 48 181 152 0.84 0.2469 0.0025 3.0251 0.0403 0.0889 0.0010 1422 14 1414 19 1401 22 4 16 56 50 0.89 0.2369 0.0023 3.7693 0.0582 0.1154 0.0016 1371 14 1586 24 1886 24 5 19 71 97 1.36 0.2093 0.0022 2.5915 0.0502 0.0898 0.0016 1225 13 1298 25 1421 34 6 11 47 47 1 0.1944 0.0024 2.3910 0.0522 0.0892 0.0019 1145 14 1240 27 1408 42 7 13 41 66 1.61 0.2443 0.0026 3.0670 0.0549 0.0911 0.0015 1409 15 1424 26 1448 31 8 38 141 104 0.74 0.2453 0.0024 3.0311 0.0414 0.0896 0.0011 1414 14 1415 19 1417 23 9 46 154 164 1.06 0.2465 0.0026 3.0549 0.0419 0.0899 0.0010 1420 15 1421 19 1423 22 10 18 58 57 0.98 0.2466 0.0026 3.6642 0.0586 0.1078 0.0015 1421 15 1564 25 1762 25 11 40 133 154 1.16 0.2451 0.0025 3.0328 0.0407 0.0898 0.0010 1413 15 1416 19 1420 22 12 52 185 152 0.82 0.2449 0.0026 3.0415 0.0413 0.0901 0.0010 1412 15 1418 19 1427 22 13 46 140 224 1.6 0.2453 0.0026 3.0277 0.0397 0.0895 0.0010 1414 15 1415 19 1416 22 14 69 256 148 0.58 0.2453 0.0025 3.0404 0.0395 0.0899 0.0010 1414 14 1418 18 1424 21 15 44 135 231 1.71 0.2437 0.0025 3.0466 0.0456 0.0907 0.0012 1406 15 1419 21 1440 25 16 104 392 206 0.52 0.2461 0.0026 3.0597 0.0409 0.0902 0.0010 1418 15 1423 19 1429 21 17 48 176 163 0.93 0.2216 0.0023 2.7455 0.0402 0.0899 0.0011 1290 14 1341 20 1422 24 18 14 45 53 1.17 0.2445 0.0025 3.0407 0.0560 0.0902 0.0015 1410 14 1418 26 1430 32 19 24 80 96 1.2 0.2284 0.0023 3.3401 0.0513 0.1061 0.0014 1326 14 1490 23 1733 25 20 29 89 133 1.5 0.2432 0.0024 3.0648 0.0434 0.0914 0.0011 1404 14 1424 20 1455 23 21 18 55 88 1.61 0.2460 0.0028 3.0551 0.0505 0.0901 0.0013 1418 16 1422 24 1427 28 22 30 124 53 0.42 0.2305 0.0022 2.9343 0.0382 0.0923 0.0011 1337 13 1391 18 1474 22 23 33 116 102 0.87 0.2447 0.0024 3.0376 0.0412 0.0900 0.0011 1411 14 1417 19 1426 22 表 3 乌本迪带不同岩体的主量元素(%)和微量元素(10−6)分析结果
Table 3. Major element (%) and trace element compositions (10−6) for different rocks in the Ubendian Belt
样品号 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 灼失 Cu D6205 75.08 12.33 1.01 1.37 0.46 0.14 5.28 3.28 0.25 0.019 0.03 0.61 2.16 D6218 71.59 13.13 2.22 1.4 0.78 0.13 5.79 3.75 0.38 0.034 0.09 0.54 4.14 D6214 47.27 15.78 4.32 8.73 9.22 4.41 1.67 3.05 2.6 0.23 0.19 1.55 109 样品号 Pb Zn Cr Ni Co Rb Sr Ba V Sc Nb Ta Zr D6205 9.74 38.7 32.9 21.4 0.84 212 11.5 289 0.94 1.54 71.3 4.22 463 D6218 31.1 133 4.05 2.26 0.64 147 49 1030 1.29 2.51 50.5 2.4 864 D6214 3.53 121 69.2 35.8 42.2 54.7 500 595 462 42.5 9.54 0.65 143 样品号 Hf Be Ga U Th La Ce Pr Nd Sm Eu Gd Tb D6205 15.4 4.4 20.3 3.35 46.8 255 386 45.1 159 24.9 0.96 21.4 3.05 D6218 23.4 2.21 20.7 2.2 29.7 259 370 45.4 161 25.1 2.7 22.3 3.25 D6214 4.11 0.82 23.7 0.29 1.82 18.4 31.8 5.61 25 5.71 1.94 5.85 0.94 样品号 Dy Ho Er Tm Yb Lu Y ∑REE (La/Yb)N δEu MF指数 D6205 15 2.71 7.05 0.96 6.03 0.89 67.3 928.05 28.51 0.12 94.44 D6218 16.9 3.2 8.53 1.17 7.63 1.24 75.9 927.42 22.89 0.34 96.53 D6214 5.39 1.02 2.72 0.39 2.56 0.38 25.9 107.71 4.85 1.02 74.74 注:MF=100*(FeO+Fe2O3)/(FeO+ Fe2O3+MgO) -
[1] 陈雪峰, 刘希军, 许继峰, 等. 桂西那坡基性岩地球化学: 峨眉山地幔柱与古特提斯俯冲相互作用的证据[J]. 大地构造与成矿学, 2016, 40(3): 545-562
CHEN Xuefeng, LIU Xijun, XU Jifeng, et al. Geochemistry of Mafic Rocks in the Napo Area, Western Guangxi, South China: Evidence for Interaction Between the Emeishan Mantle Plume and Paleotethyan Subduction[J]. Geotectonica et Metallogenia, 2016, 40(3): 545-562.
[2] 孙凯, 刘晓阳, 何胜飞, 等.坦桑尼亚水系沉积物地球化学特征及金资源前景[J]. 地质通报, 2023, 42(8): 1258−1275.
SUN Kai, LIU Xiaoyang, HE Shengfei, et al. Geochemical characteristics of stream sediment in Tanzania and prospective analysis of gold resources[J]. Geological Bulletin of China, 2023, 42(8): 1258−1275.
[3] 王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. 华北地质, 2022, 45(1): 101-110
WANG Jie, LIU Xiaoyang, REN Junping, et al. Precambrian mineralization in Tanzania[J]. North China Geology, 2022, 45(1): 101-110.
[4] 吴元保, 郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002
WU Yuanbao, ZHENG Yongfei. Genetic mineralogy of zircons and its constraints to the age of U-Pb geochronology[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[5] 徐义刚, 王焰, 位荀, 等. 与地幔柱有关的成矿作用及其主控因素[J]. 岩石学报, 2013, 29(10): 3307-3322
XU Yigang, WANG Yan, WEI Xun, et al. Mantle plume-related mineralization and their principal controlling factors[J]. Acta Petrologica Sinica, 2013, 29(10): 3307-3322.
[6] 张健, 李怀坤, 张传林, 等. 塔里木克拉通东北缘 Columbia 超大陆裂解事件: 库鲁克塔格地区辉绿岩床的地球化学, 锆石 U-Pb 年代学和 Hf-O 同位素证据[J]. 地学前缘, 2018, 25(6): 106-123
ZHANG Jian, LI Huaikun, ZHANG Chuanlin, et al. New evidence for the breakup of the Columbia supercontinent from the northeastern margin of Tarim Craton: rock geochemistry, zircon U-Pb geochronology and Hf-O isotopic compositions of the ca. 1.55 Ga diabase sills in the Kuruktag area[J]. Earth Science Frontier, 2018, 25(6): 106-123.
[7] 张招崇, 王福生, 范蔚茗, 等. 峨眉山玄武岩研究中的一些问题的讨论[J]. 岩石矿物学杂志, 2001, 20(3): 239-246 doi: 10.3969/j.issn.1000-6524.2001.03.005
ZHANG Zhaochong, WANG Fusheng, FAN Weiming, et al. A Discussion on Some Problems Concerning the Study of the Emeishan Basalts[J]. Acta Petrologica ET Mineralogica, 2001, 20(3): 239-246. doi: 10.3969/j.issn.1000-6524.2001.03.005
[8] 周佐民, 李勇, 刘晓阳, 等. 苏丹红海州新元古代A型花岗岩的地球化学特征及构造意义[J]. 华北地质, 2023, 46(1): 71-86
ZHOU Zuomin, LI Yong, LIU Xiaoyang, et al. Geochemical characteristics and tectonic implications of the Neoproterozoic A-type granites in Red Sea State, Sudan[J]. North China Geology, 2023, 46(1): 71-86.
[9] Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53(3-4): 303-323. doi: 10.1016/0009-2541(85)90076-2
[10] Belousova E, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to mineralogy and petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
[11] Biyashev M, Pentelkov V, Emelyanov S, et al. Sitalike: Geological Map Quarter Degree Sheet 170[M]. Geological Survey of Tanzania, Dodoma, 1977.
[12] Boniface N, Schenk V, Appel P. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry[J]. Precambrian Research, 2012, 192: 16-33.
[13] Boniface N, Schenk V. Neoproterozoic eclogites in the PaleoproterozoicUbendian Belt of Tanzania: evidence for a Pan-African suture between the Bang-weulu Block and the Tanzania Craton[J]. Precambrian Research, 2012, 208: 72-89.
[14] Boniface N, Schenk V, Appel P. Mesoproterozoic high-grade metamorphism in pelitic rocks of the northwestern Ubendian Belt: Implication for the extension of the Kibaran intra-continental basins to Tanzania[J]. Precambrian Research, 2014, 249: 215-228. doi: 10.1016/j.precamres.2014.05.010
[15] Boniface N, Appel P. Stenian-Tonian and Ediacaran metamorphic imprints in the southern Paleoproterozoic Ubendian Belt, Tanzania: Constraints from in situ monazite ages[J]. Journal of African Earth Sciences, 2017, 133: 25-35. doi: 10.1016/j.jafrearsci.2017.05.005
[16] Boven A, Theunissen K, Skylarov E, et al. Timing of exhumation of a high-pressure mafic granulite terrane of the Paleoproterozoic Ubende belt (West Tanzania)[J]. Precambrian Research, 1999, 93: 119-137. doi: 10.1016/S0301-9268(98)00101-6
[17] Cai Y, Wang Y, Cawood P A, et al. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone[J]. Precambrian Research, 2015, 266: 137-149. doi: 10.1016/j.precamres.2015.05.008
[18] Chusi L, Nicholas T A, Tang Q Y, et al. Trace element indiscrimination diagrams[J]. Lithos, 2015, 232: 76-83. doi: 10.1016/j.lithos.2015.06.022
[19] Daly M C, Klerkx J, Nanyaro J T. Early Proterozoic terranes and strike-slip accretion in the Ubendian Belt of southwest Tanzania[J]. Terra Cognita, 1985, 5: 257.
[20] Daly M C. Crustal shear zones in Central Africa: a kinematic approach toProterozoic Tectonics[J]. Episodes, 1988, 11(1): 5-11. doi: 10.18814/epiiugs/1988/v11i1/003
[21] DePaolo D J, Daley E E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J]. Chemical Geology, 2000, 169(1-2): 157-185. doi: 10.1016/S0009-2541(00)00261-8
[22] Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Bulletin, 2011, 123(3-4): 387-411.
[23] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20, 641–644.
[24] Elburg M, Goldberg A. Age and geochemistry of Karoo dolerite dykes from northeast Botswana[J]. Journal of African Earth Sciences, 2000, 31(3-4): 539-554. doi: 10.1016/S0899-5362(00)80006-8
[25] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033
[26] Griffiths R W, Campbell I H. Stirring and structure in mantle starting plumes[J]. Earth and Planetary Science Letters, 1990, 99(1-2): 66-78. doi: 10.1016/0012-821X(90)90071-5
[27] Hoffman P F. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 1988, 16(1): 543-603.
[28] Huppert H E, Sparks R S J. The generation of granitic magmas by intrusion of basalt into continental crust[J]. Jour Petrol, 1988, 29(3): 599-624. doi: 10.1093/petrology/29.3.599
[29] Kampunzu A B, Tombale A R, Zhai M, et al. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton[J]. Lithos, 2003, 71(2-4): 431-460. doi: 10.1016/S0024-4937(03)00125-7
[30] Kazimoto E O, Schenk V, Berndt J. Neoarchean and Paleoproterozoic crust formation in the Ubendian Belt of Tanzania: Insights from zircon geochronology and geochemistry[J]. Precambrian Research, 2014, 252: 119-144. doi: 10.1016/j.precamres.2014.06.020
[31] King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology. 1997, 38, 371–391.
[32] Klerkx J, Liégeois J P, Lavreau J, et al. Crustal evolution of the northern Kibaran Belt, eastern and central Africa. Proterozic Lithospheric Evolution, 1987, 17: 217-233.
[33] Kokonyangi J, Kampunzu, A B, Poujol M, et al. Petrology and geochronology of Mesoproterozoic mafic-intermediate plutonic rocks from Mitwaba (DR Congo): implications for the evolution of the Kibaran Belt in central Africa[J]. Geological Magazine, 2005, 142(1): 109~130. doi: 10.1017/S0016756804009951
[34] Lawley C J M, Selby D, Condon D J, et al. Lithogeochemistry, geochronology and geodynamic setting of the Lupa Terrane, Tanzania: implications for the extent of the Archean Tanzanian Craton[J]. Precambrian Research, 2013, 231: 174-193. doi: 10.1016/j.precamres.2013.02.012
[35] Lenoir J L, Liégeois J P, Theunissen K, et al. The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure[J]. Journal of African Earth Sciences, 1994, 19(3): 169-184. doi: 10.1016/0899-5362(94)90059-0
[36] Liu S, Hu R Z, Gao S, et al. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China[J]. Lithos, 2008, 106, 365-379. doi: 10.1016/j.lithos.2008.09.004
[37] Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 1979, 11(7): 468.
[38] Ludwig K R. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel[M]. Geochronological Center, Special Publication No. 4, Berkeley, 2003, 25-32.
[39] Manya S, Kobayashi K, Maboko M A H, et al. Ion microprobe zircon U–Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: Implications for the geological evolution of the Tanzania Craton[J]. Journal of African Earth Sciences, 2006, 45(3): 355-366. doi: 10.1016/j.jafrearsci.2006.03.004
[40] Mcconnell R B. Outline of the geology of Ufipa and Ubende[M]. Tanganyika Geological Survey, Dodoma, 1950, 1-62.
[41] Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42-43. doi: 10.1038/230042a0
[42] Niu Y, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research, 2003, 108(B4): 1-18.
[43] Niu Y L. The origin of alkaline lavas[J]. Science, 2008, 320(5878): 883-884. doi: 10.1126/science.1158378
[44] Patiño Douce A E, Beard J S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 1995, 36, 707-738.
[45] Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10(2): 101-108. doi: 10.2113/gselements.10.2.101
[46] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
[47] Ring U, Kröner A, Toulkeridis T. Palaeoproterozoic granulite-facies metamorphism and granitoid intrusions in the Ubendian-Usagaran Orogen of northern Malawi, east-central Africa[J]. Precambrian Research, 1997, 85(1-2): 27-51. doi: 10.1016/S0301-9268(97)00028-4
[48] Rogers J J W, Santosh M, Yoshida A M. Mesoproterozoic Supercontinent (Call f or papers)[J]. Gondwana Research, 2000, (4): 590~591.
[49] Smirnov V, Pentelkov V, Tolochko V, et al. Geology and Minerals of the Central Part of the Wstern Resource Division, Dodoma, Tanzania[R]. Unpublished report of the geological mapping, 1973, 1-333.
[50] Stendal H, Frei R, Muhongo S, et al. Gold potential of the Mpanda Mineral Field, SW Tanzania: evaluation based on geological, lead isotopic and aeromagnetic data[J]. Journal of African Earth Sciences, 2004, 38(5): 437-447. doi: 10.1016/j.jafrearsci.2004.04.005
[51] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[52] Sutton J, Watson J, James T C. A study of the metamorphic rocks of Karema and Kungwe Bay, Western Tanganyika[M]. Tanganyika Geological Survey , Bulletin, 1954, 22.
[53] Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97, 261-280. doi: 10.1086/629302
[54] Tack L, Wingate M T D, De Waele B, et al. The 1375Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 2010, 180(1-2): 63-84.
[55] Theunissen K, Lenoir J L, Liégois J P, et al. Major Pan-African imprint in the Ubendian Belt of SW Tanzania: U-Pb zircon geochronology and structural context[J]. Comptes-rendus del Académie des Sciences de Paris, 1992, 314, 1355-1362.
[56] Thomas R, Jacobs J, Aelburg M, et al. New U-Pb-Hf zircon isotope data for the Paleoproterozoic Ubendian belt in the Chimala area, SW Tanzania[J]. Geoscience Frontiers, 2019, 10(6), 1993-2006. doi: 10.1016/j.gsf.2018.05.010
[57] Tulibonywa T, Manya S, Torssander P, et al. Geochemistry of the Palaeoproterozoic volcanic and associated potassic granitic rocks of the Ngualla area of the Ubendian Belt, SW Tanzania[J]. Journal of African Earth Sciences, 2017, 129: 291-306. doi: 10.1016/j.jafrearsci.2017.01.022
[58] Wang X, Lv X, Cao X, et al. Palaeo-Mesoproterozoic magmatic and metamorphic events from the Kuluketage block, northeast Tarim Craton: geochronology, geochemistry and implications for evolution of Columbia[J]. Geological Journal, 2018, 53(1): 120-138. doi: 10.1002/gj.2881
[59] Wang Y J, Zhang A M, Fan W M, et al. Origin of paleosubduction-modifified mantle for Silurian gabbro in the Cathaysia block: geochronological and geochemical evidence[J]. Lithos, 2013, 160, 37-54.
[60] Watkins J, Clemens J, Treloar P. Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology, 2007, 154, 91-110.
[61] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to mineralogy and petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
[62] Wilson M. Igneous Petrogenesis[M]. Springer Netherlands, London, 1989, 22.
[63] Wu C Z, Santosh M, Chen Y J, et al. Geochronology and geochemistry of Early Mesoproterozoic meta-diabase sills from Quruqtagh in the northeastern Tarim Craton: implications for breakup of the Columbia supercontinent[J]. Precambrian Research, 2014, 241: 29-43. doi: 10.1016/j.precamres.2013.11.007
[64] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187, 143–173. doi: 10.1016/S0009-2541(02)00018-9
[65] Xu Y, Chung S L, Jahn B, M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58(3-4): 145-168.
[66] Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr–Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 1-19. doi: 10.1007/s00410-005-0030-y
-