小岩体叠加成矿作用在新一轮找矿突破战略行动中的应用:以勉略宁矿集区为例

刘伟栋, 王硕, 魏翔, 郭花利, 刘云华, 张小明, 田育功. 2024. 小岩体叠加成矿作用在新一轮找矿突破战略行动中的应用:以勉略宁矿集区为例. 西北地质, 57(5): 40-52. doi: 10.12401/j.nwg.2024016
引用本文: 刘伟栋, 王硕, 魏翔, 郭花利, 刘云华, 张小明, 田育功. 2024. 小岩体叠加成矿作用在新一轮找矿突破战略行动中的应用:以勉略宁矿集区为例. 西北地质, 57(5): 40-52. doi: 10.12401/j.nwg.2024016
LIU Weidong, WANG Shuo, WEI Xiang, GUO Huali, LIU Yunhua, ZHANG Xiaoming, TIAN Yugong. 2024. Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area. Northwestern Geology, 57(5): 40-52. doi: 10.12401/j.nwg.2024016
Citation: LIU Weidong, WANG Shuo, WEI Xiang, GUO Huali, LIU Yunhua, ZHANG Xiaoming, TIAN Yugong. 2024. Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area. Northwestern Geology, 57(5): 40-52. doi: 10.12401/j.nwg.2024016

小岩体叠加成矿作用在新一轮找矿突破战略行动中的应用:以勉略宁矿集区为例

  • 基金项目: 陕西省自然科学基金项目“俯冲背景下深部碳循环与成矿作用研究:以延边赤卫沟金矿为例”(2023-JC-YB-222),自然资源部东北亚矿产资源评价重点实验室开放基金“陕西太白双王金矿成矿构造和成矿结构面研究”(DBK-KF-19-12),中勘地球物理有限责任公司科研项目“粪东金厂峪熔-流体过渡型金矿成矿作用研究”(220227220347)联合资助。
详细信息
    作者简介: 刘伟栋(1997−),男,硕士研究生,工程师,主要从事地质勘察和区域成矿研究工作。E−mail:even05880299@163.com
    通讯作者: 王硕(1984−),男,博士,副教授,硕士研究生导师,主要从事与岩浆和流体活动有关的内生金属成矿作用及成矿理论工作。E−mail:iamsure1984@163.com
  • 中图分类号: P612

Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area

More Information
  • 小岩体成(大)矿理论是汤中立院士在多年找矿实践工作过程中总结出来的重要成果。该理论以岩浆铜镍硫化物矿床为研究起点,逐渐延伸至与中酸性岩浆活动有关的热液型矿床,发展成为基性–超基性与中酸性两类岩浆并行的完整成矿理论体系。研究发现,以勉–略–宁矿集区为代表的成矿区带分布有众多两类岩浆活动的叠加区,并且两类岩浆活动导致的叠加成矿作用在该区显著。其中,煎茶岭镍钴金多金属矿床形成过程经历了早期初步的超镁铁质岩浆熔离作用使成矿元素预富集,后期花岗斑岩岩浆流体成矿作用叠加之上,最终使钴镍矿和金矿均达到了大型规模。此外,该区在白雀寺基性杂岩体中新发现的何家垭镍钴矿同样具有两类岩浆叠加成矿的特征,这为小岩体成(大)矿理论提供了新的研究方向。目前,中国新一轮找矿突破战略行动已全面开启,以Ni、Co为代表的战略性关键金属矿产仍是本轮找矿工作的重中之重,两类岩浆的小岩体叠加成(大)矿作用是Ni、Co矿形成的重要地质过程。笔者通过介绍小岩体成(大)矿理论的发展过程,并以勉-略-宁矿集区为代表,提出了两类岩浆叠加成(大)矿作用的基本内涵。在此基础上,对其找矿应用和理论研究两方面做了展望,以期助力中国新一轮找矿突破战略行动。

  • 加载中
  • 图 1  基性–超基性岩浆的小岩体成大矿作用模型(据汤中立等,2021修)

    Figure 1. 

    图 2  中酸性岩浆的小岩体成大矿作用模型(据汤中立等,2021修)

    Figure 2. 

    图 3  勉略宁矿集区大地构造位置图(a)及地质简图(b)(据岳素伟等,2013修)

    Figure 3. 

    图 4  煎茶岭镍钴矿床地质平面及剖面图(据李文渊,1996修)

    Figure 4. 

    图 5  煎茶岭镍钴矿石显微镜下照片

    Figure 5. 

    图 6  何家垭镍钴矿地质简图(据张小明等,2022修)

    Figure 6. 

    图 7  何家垭镍钴矿矿相学特征

    Figure 7. 

    表 1  两类岩浆的小岩体叠加成矿作用矿床地质特征

    Table 1.  Geological characteristics of superimposed mineralization by two types small intrusion

    地质特征 矿 床
    Bou Azzer钴矿 蕴都卡拉钴矿 煎茶岭镍钴矿床 何家垭镍钴矿床
    赋矿围岩 蛇纹岩 镁铁-超镁铁岩 蛇纹石化超镁铁岩 镁铁-超镁铁岩
    矿体产出位置 蛇纹岩和闪长岩/石英闪长岩接触带 闪长岩与玄武岩接触带 叶蛇纹岩与花岗斑岩外接触带 辉长岩与闪长岩接触带
    矿体形态 脉状、透镜状 脉状、透镜状 脉状、透镜状 脉状、透镜状
    围岩蚀变 硅化、黄铁矿化、砷黄铁矿化、磁黄铁矿化、绿泥石化、蛇纹石化、绿帘石化、碳酸盐化等 硅化、绢云母化、黄铁矿化、孔雀石化、绿帘石化、碳酸盐化等 硅化、黄铁矿化、磁黄
    铁矿化、绿泥石化、
    绢云母化、蛇纹石化、
    绿帘石化、碳酸盐化等
    硅化、黄铁矿化、磁黄
    铁矿化、绢云母化
    矿化类型 细脉状、网脉状、块状、稠密浸染状等 细脉状、网脉状、浸染状、薄膜状、块状等 脉状、细脉浸染状、
    稠密浸染状、块状等
    脉状、网脉状、浸
    染状、块状等
    成矿物质来源 蛇纹岩 镁铁-超镁铁岩 蛇纹石化超镁铁岩 镁铁-超镁铁岩
    成矿元素组合 Co、Ni、As、
    Cu、Cr、Au
    Co、Ni、Cu、
    Mo、Cr、Au
    Co、Ni、As、
    Cu、Cr、Ag、Au
    Co、Ni、Cu、
    As、Cr
      注:表中资料引自文献(Slack et al.,2017张华添等,2019Tourneur et al.,2021Hajjar et al.,20212022张小明等,2022Williams-Jones et al.,2022张照伟等,2023
    下载: 导出CSV
  • [1]

    陈衍景. 为什么中酸性小岩体成大矿?[J]. 西北地质, 2012, 454): 128133. doi: 10.3969/j.issn.1009-6248.2012.04.011

    CHEN Yanjing. Why Small Granitic Stocks Associate with Giant Mineral System?[J]. Northwestern Geology, 2012, 454): 128133. doi: 10.3969/j.issn.1009-6248.2012.04.011

    [2]

    代军治, 陈荔湘, 石小峰, 等. 陕西略阳煎茶岭镍矿床酸性侵入岩形成时代及成矿意义[J]. 地质学报, 2014, 8810): 18611873.

    DAI Junzhi, CHEN Lixiang, SHI Xiaofeng, et al. Geocheronology of Acid Intrusice Rocksof the Jianchaling Nickel Deposit in Lueyang, Shaanxi and Its Metallogenic Implications[J]. Acta Geologica Sinica, 2014, 8810): 18611873.

    [3]

    胡建明, 董广法. 略阳县煎茶岭金矿矿体的空间展布规律及找矿方向[J]. 大地构造与成矿学, 2002, 261): 7580.

    HU Jianming, DONG Guangfa. Rule of Spatial Extention and Direction in Prospecting of the Jianchaling Gold Deposit in Lueyang County[J]. Geotectonic et Metallogenia, 2002, 261): 7580.

    [4]

    黄婉康, 甘先平, 陈荔湘, 等. 陕西煎茶岭金矿区的岩石及成矿时代研究[J]. 地球化学, 1996, 252): 150156. doi: 10.3321/j.issn:0379-1726.1996.02.006

    HUANG Wankang, GAN Xianping, CHEN Lixiang, et al. A Study of Petrology and Met-allogenetic Epoch of Gold in Jianchaling Deposit, Shaanxi Province[J]. Geochimica, 1996, 252): 150156. doi: 10.3321/j.issn:0379-1726.1996.02.006

    [5]

    姜修道, 魏钢锋, 聂江涛. 煎茶岭镍矿—是岩浆还是热液成因[J]. 矿床地质, 2010, 296): 11121124. doi: 10.3969/j.issn.0258-7106.2010.06.013

    JIANG Xiudao, WEI Gangfeng, NIE Jiangtao. Jianchaling nickel deposit: Magmatic or hy-drothermal origin[J]. Mineral Deposits, 2010, 296): 11121124. doi: 10.3969/j.issn.0258-7106.2010.06.013

    [6]

    罗明伟, 张晨曦, 杜春阳, 等. 洛南—豫西中酸性小岩体宏观特征及与钼矿床成矿的关系[J]. 中国钼业, 2018, 423): 2227.

    LUO Mingwei, ZHANG Chenxi, DU Chunyang, et al. The Relationship Between Macroscopic Characteristics of the Medium Acidic Rock Mass and the Molybdenum Deposit-Mine Ralization in Luonan-West of Hennan Province[J]. China Molybdenum Industry, 2018, 423): 2227.

    [7]

    罗照华. 小岩体成大矿学说的内涵和意义[J]. 西北地质, 2012, 454): 204215. doi: 10.3969/j.issn.1009-6248.2012.04.019

    LUO Zhaohua. The Theoury of Metallogeny by the Small Magmatic Intrusion: Meaning –and Implications[J]. Northwestern Geology, 2012, 454): 204215. doi: 10.3969/j.issn.1009-6248.2012.04.019

    [8]

    罗照华, 苏尚国, 刘翠. 岩浆成矿系统的尺度效应[J]. 地球科学与环境学报, 2014, 361): 19.

    LUO Zhaohua, SU Shangguo, LIU Cui. Scale Effects of the Magma-related Metallogenic Systems[J]. Journal of Earth Sciences and Environment, 2014, 361): 19.

    [9]

    李世金, 孙丰月, 高永旺, 等. 小岩体成大矿理论指导与实践—青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 2012, 454): 185191. doi: 10.3969/j.issn.1009-6248.2012.04.017

    LI Shijin, SUN Fengyue, GAO Yongwang, et al. The Theoretical Guidance and the Practi-ce of Small Intrusions Forming Large Deposits—The Enlightenment and Significance -for Searching Breakthrough of Cu-Ni Sulfide Deposit in Xiarihamu, East Kunlun, Qin-ghai[J]. Northwestern Geology, 2012, 454): 185191. doi: 10.3969/j.issn.1009-6248.2012.04.017

    [10]

    李文渊, 张照伟, 陈博. 小岩体成大矿的理论与找矿实践意义—以西北地区岩浆铜镍硫化物矿床为例[J]. 中国工程科学, 2015, 172): 2934. doi: 10.3969/j.issn.1009-1742.2015.02.004

    LI Wenyuan, ZHANG Zhaowei, CHEN Bo. The theory on small intrusions forming large deposits and its exploration significance—Taking for magmatic Ni-Cu sulfide deposits example in the northwestern of China[J]. Strategic Study of CAE, 2015, 172): 2934. doi: 10.3969/j.issn.1009-1742.2015.02.004

    [11]

    李文渊. 中国铜镍硫化物矿床成矿系列与地球化学[M]. 西安: 西安地图出版社, 1996.

    [12]

    聂江涛. 陕西省煎茶岭金镍矿田构造特征及其控岩控矿作用[D]. 西安: 长安大学, 2010.

    NIE Jiangtao. Struture Characteristics of Jianchaling Gold and Nickel Orefeild and Functi-on of Rock-controlling and Ore-controlling, in Shaanxi Province[D]. Xi’an: Chang’an -University, 2010.

    [13]

    庞春勇, 陈民扬. 煎茶岭地区同位素地质年龄数据及其地质意义[J]. 矿产与地质, 1993, 75): 354360.

    PANG Chunyong, CHEN Minyang. Isotopic Geochronological Data and Their Geological-Significance in Jianchaling Region, Shaanxi Province[J]. Mineral Resources and Geology, 1993, 75): 354360.

    [14]

    平先权, 郑建平, 熊庆, 等. 扬子西北缘碧口块体花岗质岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 吉林大学学报 (地球科学版), 2014, 444): 12001218.

    PING Xianquan, ZHENG Jianping, XIONG Qing, et al. Zircon U-Pb Ages and Hf Isotope Characteristics of the Granitic Plutons in Bikou Terrane, Northwestern Yangtze Block, and Their Geological Significance.[J]. Journal of Jilin University (Earth Science Edition), 2014, 444): 12001218.

    [15]

    宋谢炎, 陈列锰. “小岩体成大矿”的核心—岩浆通道系统成矿原理、 特征及找矿标志[J]. 西北地质, 2012, 454): 117127. doi: 10.3969/j.issn.1009-6248.2012.04.010

    SONG Xieyan, CHEN Liemeng. The Core Issue of the Large-scale Mineralization in Sma-ll Intrusion: Mineralization in Magmatic Plumbing System Principles, Key Features and Exploration Marks[J]. Northwestern Geology, 2012, 454): 117127. doi: 10.3969/j.issn.1009-6248.2012.04.010

    [16]

    汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 44): 5464.

    TANG Zhongli. Minerogenetic Model of the Jinchuan Copper and Nickel Sulfide Deposit[J]. Geoscience, 1990, 44): 5464.

    [17]

    汤中立. 金川含铂硫化铜镍矿床成矿模式[J]. 甘肃地质, 19912): 104124.

    TANG Zhongli. Minerogenetic Model of the Jinchuan Copper and Nickel Sulfide Deposit[J]. Gansu Geology, 19912): 104124.

    [18]

    汤中立, 李小虎. 两类岩浆的小岩体成大矿[J]. 矿床地质, 2006, 25S1): 538.

    TANG Zhongli, LI Xiaohu. Small Intrusions Forming Large Deposits in Two Types of M-agma[J]. Mineral Deposits, 2006, 25S1): 538.

    [19]

    汤中立, 徐刚, 王亚磊, 等. 岩浆成矿新探索—小岩体成矿与地质找矿突破[J]. 西北地质, 2012, 454): 116. doi: 10.3969/j.issn.1009-6248.2012.04.002

    TANG Zhongli, XU Gang, WANG Yalei, et al. The New Exploration of Magmatic Mineraliz-ation: Small Intrusion Mineralization and Geological Prospecting Breakthrough[J]. Northwestern Geology, 2012, 454): 116. doi: 10.3969/j.issn.1009-6248.2012.04.002

    [20]

    汤中立, 焦建刚, 闫海卿, 等. 小岩体成 (大) 矿理论体系[J]. 中国工程科学, 2015, 172): 419. doi: 10.3969/j.issn.1009-1742.2015.02.002

    TANG Zhongli, JIAO Jiangang, YAN Haiqing, et al. Theoretical System for (Large) Seposit Formed by Smaller Intrusion[J]. Strategic Study of CAE, 2015, 172): 419. doi: 10.3969/j.issn.1009-1742.2015.02.002

    [21]

    汤中立, 钱壮志, 姜常义, 等. 中国矿产地质志—小岩体成 (大) 矿理论体系[M]. 北京: 地质出版社, 2021.

    [22]

    仝立华, 汪洋. 千里山钨锡金属矿床物质运移模式与成岩成矿关系—小岩体成大矿的一个实例[J]. 西北地质, 2012, 454): 380389. doi: 10.3969/j.issn.1009-6248.2012.04.033

    TONG Lihua, WANG Yang. The Explanation of the Metallogeny about Qianlishan Tungst-en-tin by the Theory of Small Magmatic Intrusion Mineralization[J]. Northwestern Geology, 2012, 454): 380389. doi: 10.3969/j.issn.1009-6248.2012.04.033

    [23]

    王登红, 何晗晗, 黄凡, 等. 对华南小岩体找大矿问题的探讨[J]. 地球科学与环境学报, 2014, 361): 1018.

    WANG Denghong, HE Hanhan, HUANG Fan, et al. Discussion on the Issues of Explorat-ion Large Deposits Around Small Intrusions in South China[J]. Journal of Earth Sciences and Environment, 2014, 361): 1018.

    [24]

    王瑞廷, 郑崔勇, 高菊生, 等. 秦岭勉县-略阳-宁强矿集区成矿规律与找矿预测[M]. 北京: 科学出版社, 2021.

    WANG Ruiting, ZHENG Cuiyong, GAO Jusheng, et al. Metallogenic Regularity and Pros-pecting Prediction of Mianxian-Lueyang-Ningqiang Ore Concentration Area in Qinling Mountains[M]. Beijing: Science Press, 2021.

    [25]

    王瑞廷, 毛景文, 任小华, 等. 煎茶岭硫化镍矿床矿石组分特征及其赋存状态[J]. 地球科学与环境学报, 2005, 271): 3438.

    WANG Ruiting, MAO Jingwen, REN Xiaohua, et al. Ore Composition and Hosting Cond-ition in the Jianchaling Sulfide Nickel Deposit, Shaanxi Province[J]. Journal of Earth Sciences and Environment, 2005, 271): 3438.

    [26]

    王瑞廷, 王东生, 李福让, 等. 煎茶岭大型金矿床地球化学特征、成矿地球动力学及找矿标志[J]. 地质学报, 2009, 8311): 17391751. doi: 10.3321/j.issn:0001-5717.2009.11.016

    WANG Ruiting, WANG Dongsheng, LI Furang, et al. Geochemical Characteristics, Met-allogenic Geodynamics and Prospecting Indicator of the Jianchaling Large Gold OreDeposit[J]. Acta Geologica Sinica, 2009, 8311): 17391751. doi: 10.3321/j.issn:0001-5717.2009.11.016

    [27]

    王瑞廷, 赫英, 王东生. 略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003, 492): 205211. doi: 10.3321/j.issn:0371-5736.2003.02.014

    WANG Ruiting, HE Ying, WANG Dongsheng, et al. Re-Os Isotope Age and Its Application to the Jianchaling Nickel-Copper Sulfide Deposit, Lueyang, Shaanxi Province[J]. Geological Review, 2003, 492): 205211. doi: 10.3321/j.issn:0371-5736.2003.02.014

    [28]

    王瑞廷, 赫英, 汤中立, 等. 煎茶岭大型含钴硫化镍矿床微量元素地球化学研究[J]. 矿床地质, 2002, 21S1): 10411044.

    WANG Ruiting, HEYing, TANG Zhongli, et al. Study on Minor Elements Geochemistry -in Jianchaling Large Cobalt-Bearing Sulfide Nickel Deposit[J]. Mineral Deposits, 2002, 21S1): 10411044.

    [29]

    岳素伟, 林振文, 邓小华, 等. 陕西省煎茶岭金矿 C、H、O、S、Pb 同位素地球化学示踪[J]. 大地构造与成矿学, 2013, 374): 653670.

    YUE Suwei, LIN Zhenwen, DENG Xiaohua, et al. C, H, O, S, Pb Isotopic Geochemistry of the Jianchaling Gold Deposit, Shaanxi Province[J]. Geotectonic et Metallogenia, 2013, 374): 653670.

    [30]

    游军, 张小明, 杨运军. 略阳白雀寺-石瓮子双峰式侵入岩锆石U-Pb定年、地球化学特征及意义[J]. 矿产勘查, 2018, 912): 23652377.

    YOU Jun, ZHANG Xiaoming, YANG Yunjun. Zircon U-Pb Geochronology and Geochemistry of Baiquesi-Shiwengzi Bimodal Intrusive Rocks in Lueyang, and Their Significance[J]. Mineral Exploration, 2018, 912): 23652377.

    [31]

    张旗. 关于“小岩体为什么有利于成矿”的探讨[J]. 甘肃地质, 2013, 224): 17.

    ZHANG Qi. Discussion on “Small Intrusions Associate with Large Deposits” and “Large Intrusions are Not Mineralization”[J]. Gansu Geology, 2013, 224): 17.

    [32]

    张照伟, 李文渊. 小岩体成大矿与岩浆通道成矿理论的比较[J]. 地球科学与环境学报, 2014, 361): 4857.

    ZHANG Zhaowei, LI Wenyuan. Comparison of Theories Between Large Orebodies Hostedin Small Intrusion and Magma Conduit Mineralization[J]. Journal of Earth Sciences and Environment, 2014, 361): 4857.

    [33]

    张照伟, 张江伟, 王亚磊, 等. 准噶尔北缘成矿带蕴都卡拉钴矿成矿特征[J]. 西北地质, 2023, 561): 110. doi: 10.12401/j.nwg.2022009

    ZHANG Zhaowei, ZHANG Jiangwei, WANG Yalei, et al. Metallogenic Characteristics ofYundukala Co Deposit in Northern Margin of Junggar Metallogenic Belt, Northwest -China[J]. Northwestern Geology, 2023, 561): 110. doi: 10.12401/j.nwg.2022009

    [34]

    郑崔勇, 刘建党, 袁波, 等. 与煎茶岭金矿有关超基性岩体地球化学特征[J]. 地质与勘探, 2007, 436): 5257. doi: 10.3969/j.issn.0495-5331.2007.06.010

    ZHENG Cuiyong, LIU Jiandang, YUAN Bo, et al. Geological and Geochemical Character-istics of Rock Mass Related with Gold Minerallization in the Jianchaling Deposit[J]. Geology and Prospecting, 2007, 436): 5257. doi: 10.3969/j.issn.0495-5331.2007.06.010

    [35]

    张小明, 吴应忠, 曾忠诚, 等. 陕西勉略宁地区基性杂岩体中新发现镍钴矿化体[J]. 中国地质, 2022, 492): 669670.

    ZHANG Xiaoming, WU Yingzhong, ZENG Zhongcheng, et al. Discovery of a New Nickel Cobalt Mineralization Body of the Basic Complex in Mian-Lue-Ning Area, Shaanxi[J]. Geology in China, 2022, 492): 669670.

    [36]

    张华添, 李江海. 蛇纹岩化对洋中脊超基性岩热液硫化物成矿的影响: 来自青藏高原德尔尼铜矿床的启示[J]. 大地构造与成矿, 2019, 431): 111122.

    ZHANG Huatian, LI Jianghai. Impacts of Serpentinization on Ultramafic Rock-Hosted Hy-drothermal System along Mid-Ocean Ridges: Insight from Dur’ngoi Copper Massive -Sulfide Deposit, Tibetan Plateau[J]. Geotectonica et Metallogenia, 2019, 431): 111122.

    [37]

    Gao Y H, Wang C Y, Wei B. Magma oxygen fugacity of Permian to Triassic Ni-Cu sulf-ide-bearing maficultramafic intrusions in the central Asian orogenic belt, North China[J]. Journal of Asian Earth Sciences, 2019, 17315): 250262.

    [38]

    Han Z H, Wang R, Tong X S, et al. Multi-scale exploration of giant Qulong porphyry d-eposit in a collisional setting[J]. Ore Geology Reviews, 2021, 139(Part A): 104455.

    [39]

    Hajjar Z, Gervilla F, Fanlo I, et al. Formation of serpentinite-hosted, Fe-rich arsenide ores at the latest stage of mineralization of the Bou-Azzer mining district (Morocco) [J]. Ore Geology Reviews, 2021: 103926.

    [40]

    Hajjar Z, Ares G, Fanlo I, et al. Cr-spinel tracks genesis of Co-Fe ores by serpentinite r-eplacement at Bou Azzer, Morocco[J]. Journal of African Earth Sciences, 2022, 188: 104471. doi: 10.1016/j.jafrearsci.2022.104471

    [41]

    Hui B, Dong Y P, Zhang F F, et al. Geochronology, Geochemistry, and Isotopic Composi-tion of the Early Neoproterozoic Granitoids in the Bikou Terrane Along the Northwe-sternMargin of the Yangtze Block, South China: Petrogenesis and Tectonic Implications[J]. Pre-cambrian Research, 2022, 377: 106724. doi: 10.1016/j.precamres.2022.106724

    [42]

    Jiang J Y, Zhu Y F. Geology and geochemistry of the Jianchaling hydrothermal nickel de-posit: T-pH-fO2-fS2 conditions and nickel precipitation mechanism[J]. Ore Geology Re-views, 2017, 91: 216235. doi: 10.1016/j.oregeorev.2017.10.005

    [43]

    Lv L S, Mao J W, Li H B, et al. Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of -the Hongqiling Ni–Cu sulfide deposits in Northeast China[J]. Ore Geology Reviews, 2010, 431): 106119.

    [44]

    Li H Y, Ye H S, Wang X X, et al. Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China[J]. Journal of Asian Earth Sciences, 2014, 79Part B): 641654.

    [45]

    Mou N N, Wang G W, Sun X. Identification of geochemical anomalies related to mineral-ization: A case study from porphyry copper deposits in the Qulong-Jiama mining dist-rict of Tibet, China[J]. Journal of Geochemical Exploration, 2023, 244: 107126. doi: 10.1016/j.gexplo.2022.107126

    [46]

    Peng B, Sun F Y, Li B L, et al. The geochemistry and geochronology of the Xiarihamu -II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications forthe enesis of magmatic Ni-Cu sulfide deposits[J]. Ore Geology Reviews, 2016, 731): 1328.

    [47]

    Slack J F, Kimball B E, Shedd K B, et al. Critical Mineral Resources of the United StatesEconomic and Environmental Geology and Prospects for Future Supply[R]. U. S. Geological Survey, Professional Paper, 2017, 1802: p. F1-F40.

    [48]

    Tourneur E, Chauvet A, Kouzmanov K, et al. Co-Ni-arsenide mineralisation in the Bou Azzer district (Anti-Atlas, Morocco): Genetic model and tectonic implications[J]. Ore Geology Reviews, 2021, 134: 104128.

    [49]

    Vasyukova O V, Williams-Jones A E. Constrains on the genesis of cobalt deposits: Part II, application to natural systems[J]. Economic Geology, 2022, 117: 529544. doi: 10.5382/econgeo.4888

    [50]

    Wang K Y, Song X Y, Yi J N, et al. Zoned orthopyroxenes in the Ni-Co sulfide ore-bea-ring Xiarihamu mafic-ultramafic intrusion in northern Tibetan Plateau, China: Implicat-ions for multiple magma replenishments[J]. Ore Geology Reviews, 2019, 113: 103082. doi: 10.1016/j.oregeorev.2019.103082

    [51]

    Wang Y, Yang X Y, Kang X N, et al. Geochemical and mineralogical studies of zircon, -apatite, and chlorite in the giant Dexing porphyry Cu-Mo-Au deposit, South China: I-mplications for mineralization and hydrothermal processes[J]. Journal of Geochemical Exploration, 2022, 240: 107042. doi: 10.1016/j.gexplo.2022.107042

    [52]

    Wang G G, Ni P, Li L, et al. Petrogenesis of the Middle Jurassic andesitic dikes in the -giant Dexing porphyry copper ore field, South China: Implications for mineralization[J]. Journal of Asian Earth Sciences, 2020, 1961): 104375.

    [53]

    Williams-Jones A E, Vasyukova O V. Constraints on the genesis of cobalt deposits: Part I, theoretical considerations[J]. Economic Geology, 2022, 117: 513528. doi: 10.5382/econgeo.4895

    [54]

    Xu L L, Bi X W, Zhang X C, et al. Mantle contribution to the generation of the giant Jinduicheng porphyry Mo deposit, Central China: New insights from combined in-situ element and isotope compositions of zircon and apatite[J]. Chemical Geology, 2023, 61612): 121238.

    [55]

    Yue W S, Deng X H, Bagas L, et al. Fluid inclusion geochemistry and 40Ar/39Ar geochronology constraints on the genesis of the Jianchaling Au deposit, China[J]. Ore Geology Reviews, 2017, 80: 676690. doi: 10.1016/j.oregeorev.2016.08.024

  • 加载中

(7)

(1)

计量
  • 文章访问数:  475
  • PDF下载数:  55
  • 施引文献:  0
出版历程
收稿日期:  2023-07-25
修回日期:  2024-01-15
刊出日期:  2024-10-20

目录