Metallogenic Characteristics and Prospecting Prediction of Carbonatite Vein-Type Re-Mo Deposits in Huanglongpu Ore Field,East Qinling
-
摘要:
作为世界上唯一一处碳酸岩型钼矿床集中区,黄龙铺钼矿田位于华北地块南缘东秦岭成矿带西段,空间上受卢氏−马超营断裂控制。笔者在前期研究成果的基础上,通过对黄龙铺矿田的区域地质背景、成矿特征、典型矿床等进行系统梳理与综合分析表明,碳酸岩脉型钼成矿主要与印支期岩浆活动关系密切,构造为其提供了有利的赋矿空间,围岩提供了少量成矿物质,总体形成了NW向垣头−碾子坪铼钼多金属矿(化)带与NE向西坪−秦岭沟铜钼矿(化)带,涉及两个Ⅲ级成矿区带和两个Ⅳ级成矿区带,Re、Mo含量总体表现为正相关。成矿流体主要为中高温硅酸盐−碳酸盐−硫酸盐体系的岩浆水,成矿物质主要来源于幔源火成岩浆,属印支晚期成矿,大致经历了3个主要成矿期。本研究从多角度进行找矿预测认为,在矿田东北端向河南延伸方向及西南端的卢氏−马超营断裂两侧,有好的钼找矿前景,在华阳川−太子坪矿化带及矿田西北部的岩体下部,可能存在大中型钼多金属矿床。
Abstract:The Huanglongpu molybdenum ore field, situated in the western region of the East Qinling metallogenic belt on the southern margin of the North China block, represents the only concentration area of carbonatite-type molybdenum deposits worldwide, and spatially controlled by the Lushi-Machaoying fault. On the basis of previous research results, This study presents a systematic sorting and comprehensive analysis of the regional geological setting, metallogenic characteristics and typical deposits of the Huanglongpu ore field. The formation of carbonate vein-type molybdenum deposits is closely related to the magmatic activities during the Indosinian period, with the favorable structural framework providing ore-bearing spaces and the surrounding rocks contributing trace ore-forming materials. The study delineates two primary ore-forming belts, namely the NW-oriented Yuantou-Nianziping rhenium-molybdenum polymetallic ore (mineralization) belt and the NE-oriented Xiping-Qinlinggou molybdenum-copper ore (mineralization) belt, comprising two third-level ore-forming zones and two fourth-level ore-forming zones. The Re and Mo contents generally exhibit a positive correlation. The ore-forming fluid is mainly characterized as magmatic water from the medium-high temperature silicate-carbonate-sulfate system, with ore-forming materials predominantly derived from mantle-derived igneous magma during the late Indosinian period, and it has roughly gone through three main mineralization stages. This study conducts prospecting predictions from multiple perspectives, there are promising prospects for molybdenum prospecting in the northeastern end of the ore field extending toward Henan and on both sides of the Lushi-MaChaoying fault at the southwest end. Additionally, the Huayangchuan-Taiziping mineralization belt and the lower part of the rock mass in the northwest of the ore field hold potential for large and medium-sized molybdenum polymetallic deposits.
-
-
图 2 黄龙铺钼矿田地质构造图(据陕西省地质矿产局第十三地质队,2002;董王仓等,2021修)
Figure 2.
图 5 大石沟钼矿床16号勘探线剖面图(据陕西省地质矿产局第十三地质队,2002修)
Figure 5.
表 1 东秦岭成矿带碳酸岩脉型钼矿床(点)基本特征表
Table 1. Basic characteristics of carbonate vein type Mo deposits(points)in the East Qinling mineralization belt
矿床
名称赋矿地层 碳酸岩脉
类型矿石矿物 脉石矿物 规模 品位Mo(%) 伴生
矿产同位素年龄 参考
文献洛南县大石沟钼矿 熊耳群上亚组变细碧岩、绢云千枚岩、凝灰质板岩、黑云微晶片岩 天青方解石英脉、重晶石英方解石脉 黄铁矿、辉钼矿、方铅矿、黄铜矿、金红石、氟碳铈镧矿、铅铀钛铁矿、铌钛铀矿、钇易解石、铜硫铅铋矿、磷钇矿、硒铋矿等 方解石、石英、斜长石、白云石、钾长石、钡天青石、重晶石、黑云母、绿泥石、锰土等 大型 0.079 铼、锶(天青石)为大型,铅、银、硫、碲、稀土为中型,硒为小型 辉钼矿Re-Os值(221.5±0.3) Ma、(201.53± 0.68) Ma Stein et al.,1997;陈毓川等,2014 洛南县石家湾钼矿(Ⅱ号) 高山河群下亚组变石英砂岩、砂质绢云板岩 钾长方解石英脉、天青方解石英脉 辉钼矿、黄铁矿、方铅矿、闪锌矿、金红石、氟碳铈镧矿、铅铀钛铁矿、黄铜矿、磷钇矿等 石英、方解石、钾长石、白云石、钡天青石、重晶石等 中型 0.104 硫为中型,硒、碲为小型 辉钼矿Re-Os值221 Ma 黄典豪等,1994;陈毓川等,2014 洛南县宋家沟钼矿 熊耳群上亚组细碧玢岩夹变质凝灰岩、大理岩;高山河群下亚组变石英砂岩、泥板岩 天青方解石英脉、重晶石英方解石脉 黄铁矿、辉钼矿、方铅矿,少量闪锌矿、黄铜矿、褐铁矿、铌金红石、钛铀矿、独居石、氟碳铈镧矿等 天青石、石英、方解石、钾长石、钠长石、斜长石、黑云母等 大型 0.101 铅、硫为大型 洛南县秦岭沟钼矿 太华岩群片麻岩类、片麻状花岗岩 天青方解石英脉、重晶石英方解石脉、钾长石英方解石脉 辉钼矿、黄铁矿、方铅矿、黄铜矿、黄钾铁钒、闪锌矿等 石英、方解石、钾长石、微斜长石、黑云母、重晶石、钡天青石等 大型 0.092 LA-ICP-MS独居石Tera -Wasserburg年龄(207±11) Ma 王佳营等,2020 洛南县西沟钼矿 高山河群下亚组变石英砂岩、绢云母板岩;熊耳群变细碧岩、基性熔岩 天青方解石英脉、重晶石英方解石脉 辉钼矿、黄铁矿、方铅矿、白铅矿、氟碳铈镧矿、辉铜矿、金红石、独居石等 方解石、石英、斜长石、钾长石、钡天青、黑云母、绿泥石等 中型 0.083 铼为中型,铅、硫为小型 辉钼矿Re-Os值(224.6±9.1) Ma 杜芷葳等,2020 洛南县碾子坪钼矿 高山河群下亚组变石英砂岩、泥砂板岩、绢云板岩 钾长方解石英脉 黄铁矿、辉钼矿、方铅矿、闪锌矿、氟碳铈矿、硫锑铅银矿,钼铅矿、铁钼华、黄铜矿等 石英、方解石、黑云母、钾长石、绢云母、绿泥石、萤石、重晶石等 中型 0.091 洛南县二道河钼矿 高山河群下亚组石英砂岩、砂质绢云板岩 天青方解石英脉、钾长方解石英脉 黄铜矿、辉钼矿、方铅矿等 石英、钾长石、方解石、钡天青石、
萤石等矿点 0.034~0.129 洛南县卢沟−潘家沟钼矿 高山河群下亚组石英砂岩、绢云母
板岩钾长方解石英脉 辉钼矿、黄铁矿、黄铜矿等 钾长石、石英、高岭土、绢云母等 矿点 0.064 华县桃园
钼矿高山河群下亚组石英砂岩夹绢云板岩;熊耳群变细碧岩 天青方解石英脉、重晶石英方解石脉、钾长方解石英脉 辉钼矿,次为黄铁矿、褐铁矿、黄钾铁钒、钛铁金红石、铀钼华、赤铁矿、黄铜矿、
磁铁矿等微斜长石、方解石、石英、黑云母、
锆石等矿点 0.041~0.096 铅、铜 华阴市垣头东沟钼矿 太华岩群片麻岩类、片麻状二长花岗岩 天青方解石英脉、重晶石英方解石脉 方铅矿、辉钼矿、黄铁矿、黄铜矿、铌钛铀矿、磷钇矿等 石英、方解石、天青石、微斜长石等 矿点 0.07~0.144 铅、银、稀土 辉钼矿Re-Os值(225±7.6) Ma Song W L et al.,2015 华阴市垣头南沟钼矿 高山河群变石英砂岩夹泥板岩;片麻状黑云二长花岗岩 天青方解石英脉 黄铁矿、黄铜矿、方铅矿、孔雀石、辉铜矿、辉钼矿、黄钾铁钒、铅钒等 石英、方解石、天青石、微斜长石、绢云母、黏土矿物等 矿点 0.03~0.217 铅、银 华县西沟
钼矿太华岩群片麻岩类 石英方解石脉、长石石英脉 辉钼矿、黄铁矿、方铅矿、黄铜矿、镜铁矿等 石英、方解石、长石、黑云母、绿泥石、钡天青石等 矿点 0.134 钼、铅、稀土 辉钼矿Re-Os值(212.4±2.8) Ma 袁海潮等,2014 河南嵩县黄水庵钼矿 太华岩群石板沟组片麻岩、混合岩 含锰石英方解石脉 辉钼矿、黄铁矿、方铅矿、闪锌矿、黄铜矿、磁铁矿等 石英、方解石、钾长石、萤石、硬石膏等 大型 0.082 辉钼矿Re-Os值(208.4±3.6) Ma、(212.8~206.3) Ma、(213.5±2.9) Ma 黄典豪等,2009;曹晶,2014;王汉辉等,2023 注:1.陕西省矿床数据来源于陕西省自然资源厅,2019及本次研究;2.黄水庵矿床数据来源于曹晶,2018。 表 2 黄龙铺钼矿田主要含矿岩脉基本特征表
Table 2. Basic characteristics of main ore bearing dikes in Huanglongpu Mo ore field
含矿岩脉 产出形态 脉体规模 矿体围岩 矿石矿物 脉石矿物 重要地段 含铜黄铁矿石石英脉 细脉、网脉 长几厘米至几十米,宽0.2 ~
0.5 cm辉绿岩、元古代花岗岩 黄铜矿、黄铁矿为主,少量磁铁矿 石英 桃园−秦岭沟、二道河−碾子坪 含铜石英方解石脉 单细脉,少量细脉、网脉 长几米至十余米,宽5~10 cm 辉绿岩 黄铜矿为主,其次为磁铁矿、黄铁矿 方解石、石英,少量黑云母、角闪石 桃园−秦岭沟 含钼铀稀土长石石英脉 细脉、粗脉、网脉 长几厘米至几十米,宽几毫米至几十厘米 石英岩、熊耳群火山岩 铌钛铀矿、辉钼矿、氟碳铈镧为主,少量黄铁矿 钾长石、石英为主,其次为黑云母、角闪石 垣头−宋家沟 含铀钼天青方解石英脉 粗脉,个别呈大脉 长几米至几十米,宽一般10~20 cm,
最宽达10 m熊耳群火山岩、高山河群碎屑岩 辉钼矿、铌钛铀矿为主,少量方铅矿、氟碳铈镧、黄铁矿 石英为主,其次为方解石、天青石、钾长石 上河−宋家沟 含钼铅重晶石英方解石脉 细脉、粗脉、大脉 长几米至上千米,宽几毫米至44 m 熊耳群火山岩、高山河群碎屑岩 辉钼矿、黄铁矿、方铅矿为主,少量钛铀矿、氟碳铈镧、
黄铜矿方解石、石英为主,其次为重晶石、钾长石、
萤石垣头−宋家沟、碾子坪 含钼黄铁矿石钾长方解
石英脉细脉、网脉 长数米至数十米,脉宽0.2~35 cm,个别超1.0 m 花岗斑岩、熊耳群火山岩、高山河群碎屑岩 黄铁矿、辉钼矿为主,少量锡石、黄铜矿,微量氟碳铈镧、
金红石石英为主,其次为钾长石、
方解石桃园−石家湾、二道河−碾子坪 含钼黄铁矿石石英钾长石脉 细脉 脉宽1 ~5 cm,少量分布 花岗斑岩、高山河群碎屑岩 黄铁矿为主,少量辉钼矿,微量氟碳铈镧、金红石 石英、钾长石、白云母为主,少量萤石 石家湾、
碾子坪含黄铁矿石石英萤石脉 细脉 脉宽几厘米,少量分布 高山河群碎屑岩 黄铁矿为主,少量黄铜矿,微量辉钼矿 石英、萤石、
白云母石家湾 表 3 黄龙铺矿田主要岩石类型微量元素浓度克拉克值表
Table 3. Clark values of trace element concentrations of main rock types in Huanglongpu ore field
元素 地质体丰度(10−6) 熊耳群上亚组变细碧岩、细碧玢岩 高山河群下亚组变质石英砂岩 基性岩 砂岩 酸性岩 ${\mathrm{Pt}}_2^1X_2^1 $ ${\mathrm{Pt}}_2^1X_2^2 $ ${\mathrm{Pt}}_2^1X_2^3 $ ${\mathrm{Pt}}_2^1X_2^{{\text{4-1}}} $ ${\mathrm{Pt}}_2^1X_2^{{\text{4-2}}} $ ${\mathrm{Pt}}_2^1G_1^1 $ ${\mathrm{Pt}}_2^1G_1^{\text{2-1}} $ ${\mathrm{Pt}}_2^1G_1^{\text{2-2}} $ ${\mathrm{Pt}}_2^1G_1^{\text{2-3}} $ Mo 1.50 0.20 1.00 92.13 52.80 66.60 176.53 34.87 401.00 151.00 81.00 32.00 Cu 87.00 0.00 20.00 1.28 1.16 0.25 1.13 0.43 Pb 6.00 7.00 20.00 11.22 12.20 113.30 302.13 53.70 19.10 42.10 2.90 3.30 Zn 105.00 15.00 60.00 0.50 0.50 0.60 1.00 0.40 2.60 2.80 4.40 1.80 Ag 0.11 0.00 0.05 1.36 0.91 6.36 4.36 0.91 Cr 1.50 0.20 3.00 2.90 1.00 0.80 2.10 0.90 9.50 10.00 10.50 8.60 Ni 130.00 2.00 8.00 0.30 0.25 0.30 0.20 0.30 5.60 15.70 11.30 16.00 Co 48.00 0.30 5.00 0.30 0.40 0.30 0.20 0.20 20.00 26.70 52.70 57.30 V 25.00 20.00 40.00 0.45 1.20 0.80 1.00 0.58 3.00 4.90 3.20 6.00 Ba 330.00 0.10 830.00 0.70 5.20 17.30 15.80 9.80 9205.00 6545.00 12670.00 6677.00 表 4 大石沟钼矿床分散元素含量表(10−6)
Table 4. Dispersed element contents (10−6) in Dashigou Mo deposit
岩 性 Re Se Cd Te Ga Ge In Tl Mo* Re/Mo 碳酸岩脉 0.046 2.73 0.914 0.878 5.029 0.818 0.07 0.304 0.042 109.3 氧化碳酸岩脉 0.07 21.22 8.058 4.738 17.09 0.753 0.43 0.53 0.242 28.9 含钼碳酸岩脉 1.205 16.03 7.561 2.858 9.426 0.656 0.291 0.614 0.349 345.2 含铅碳酸岩脉 0.87 30.4 22.5 21.5 1.4 0.24 0.16 0.84 0.13 669.2 石英脉 0.016 0.07 0.03 0.022 1.14 0.8 0.01 0.12 0.004 363.6 尾矿砂 0.062 0.814 0.561 0.214 10.28 0.935 0.045 0.686 0.02 307.2 砂质绢云板岩 0.03 0.295 0.245 0.21 12.8 1.135 0.1 1.065 0.008 384.4 细碧岩 0.01 0.713 1.629 0.12 23.6 1.543 0.077 1.916 0.013 81.2 变石英砂岩 0.013 0.068 0.035 0.05 3.76 0.8 0.011 0.31 0.006 231.3 凝灰质板岩 0.003 0.087 0.09 0.038 17.6 1.337 0.062 0.947 0.001 485.7 注:1.测试单位为有色金属西北矿产地质测试中心;2.*含量为%。 表 5 典型矿床中相关参数特征表
Table 5. Table of eigenvalues for relevant parameters in typical deposits
类 别 参 数 大石沟矿床 石家湾矿床(Ⅱ号) 特征值 数据来源 特征值 数据来源 主要脉石矿物 方解石(%) 50~70 本次研究及
董王仓等,2021石英(%) 28 钾长石(%) 5 包裹体
温度均一化温度(℃) 152~352 石英样爆裂温度(℃) 211~443 251~316 董王仓等,2021 方解石样爆裂温度(℃) 263~350 方铅矿−钡天青石同位素
平衡温度(℃)338~427 包裹体
含盐度CO2多相包裹体(NaCl)% 6.0~7.4 (气)液包裹体(NaCl)% 7.4~15.7 矿石中同位素
特征石英中δ18O值(‰) +8.05~+12.0 方解石中δ18O值(‰) +7.95~+9.5 +8.69~+9.48 许成等,2009 石英包裹体水 $\delta {{\mathrm{D}}_{{{\mathrm{H}}_2}{\mathrm{O}}}} $ 值(‰)−59~−98 206Pb/204Pb、207Pb/204Pb、
208Pb/204Pb17.399、15.398、37.452 辉钼矿、黄铁矿、
方铅矿δ34S(‰)−8.3、−6.69、−10.54 钡天青石、硬石膏δ34S(‰) +5.86、+7.35 方解石δ13C(‰) −6.7~−7.00 陕西省地质矿产局
第十三地质队,2002−6.75~−6.92 许成等,2009 矿区全硫、
全碳值全硫值δ34S∑S(‰) +1.0 全碳值δ13C∑C(‰) −5.0 碳酸岩脉中方
解石稀土元素
特征∑(La-Eu)、
∑(Gd-Lu、Y)(10−6)1908.3 、656.0907.2~ 1546.4 、
493.0~1188.5 许成等,2009;
黄典豪等,2009∑(La-Eu)/∑(Gd-Lu、Y) 2.909 0.76~2.43 Eu异常δ(Eu) 0.93 0.86 -
[1] 曹晶, 叶会寿, 李洪英, 等 . 河南嵩县黄水庵碳酸岩型钼(铅)矿床地质特征及辉钼矿Re-Os同位素年龄[J]. 矿床地质,2014 ,33 (1 ):53 −69 .CAO Jing, YE Huishou, LI Hongying, et al . Geological characteristics and molybdenite Re-Os isotopic dating of Huangshuian carbonatite vein-type Mo(Pb)deposit in Songxian County, Henan Province[J]. Mineral Deposits,2014 ,33 (1 ):53 −69 .[2] 曹晶. 东秦岭黄水庵碳酸岩型钼矿床成矿作用研究[D]. 北京: 中国地质大学(北京), 2018. CAO Jing. Mineralization of the Huangshui’an Carbonatite Mo Deposit in East Qinling[D]. Beijing: China University of Geosciences (Beijing), 2018. [3] 陈建立, 郭鹏, 陈英男, 等 . 基于科学钻探技术的老湾金矿带金成矿机制研究[J]. 金属矿山,2023 ,559 (1 ):259 −268 .CHEN Jianli, GUO Peng, CHEN Yingnan, et al . Study on Gold Mineralization Mechanism of Laowan Gold Belt Based on Scientific Drilling Technology[J]. Metal Mine,2023 ,559 (1 ):259 −268 .[4] 陈喜峰, 陈秀法, 李娜, 等 . 全球铼矿资源分布特征与开发利用形势及启示[J]. 中国矿业,2019 ,28 (5 ):7 −23 .CHEN Xifeng, CHEN Xiufa, LI Na, et al . Distribution characteristics and development & utilization status of global rhenium resources and its enlightenments[J]. China Mining Magazine,2019 ,28 (5 ):7 −23 .[5] 陈毓川, 王登红, 李华芹, 等. 全国成岩成矿年代谱系[M]. 北京: 地质出版社, 2014. CHEN Yuchuan, WANG Denghong, LI Huaqin, et al. Chronological Pedigree of Diagenesis and Mineralization in China[M]. Beijing: Geological Publishing House, 2014. [6] 董王仓, 李维成, 胡双全, 等. 中国矿产地质志·陕西卷[R]. 西安: 陕西省地质调查院, 2021. [7] 杜芷葳, 叶会寿, 毛景文, 等 . 陕西西沟钼矿床辉钼矿Re-Os年代学和同位素地球化学特征及其地质意义[J]. 矿床地质,2020 ,39 (4 ):728 −744 .DU Zhiwei, YE Huishou, MAO Jingwen, et al . Molybdenite Re-Os gochronology and isotope geochemical characteristics of Xigou molybdenum deposit in Shaanxi province ang its geological significance[J]. Mineral Deposits,2020 ,39 (4 ):728 −744 .[8] 段湘益, 董王仓, 黄凡, 等 . 陕西省钨钼多金属矿床时空分布规律及找矿方向[J]. 金属矿山,2021 ,544 (10 ):121 −142 .DUAN Xiangyi, DONG Wangcang, HUANG Fan, et al . Temporal-spatial Distribution and Prospecting Direction of W-Mo Polymetallic Deposit in Shaanxi Province[J]. Metal Mine,2021 ,544 (10 ):121 −142 .[9] 樊会民, 张嘉升, 柏千惠, 等 . 陕西秦巴地区地球化学分区及找矿意义[J]. 西北地质,2018 ,51 (2 ):75 −82 .FAN Huimin, ZHANG Jiasheng, BAI Qianhui, et al . Geochemical zoning and prospecting significance of Qinba area in Shaanxi[J]. Northwestern Geology,2018 ,51 (2 ):75 −82 .[10] 樊一见, 张昆, 张钊, 等 . 华阴市黄龙铺秦岭沟钼矿床地质特征及找矿标志[J]. 陕西地质,2017 ,35 (2 ):20 −26 .FAN Yijian, ZHANG Kun, ZHANG Zhao, et al . Geological Characteristics and Prospecting Indicator of the Qinlinggou Deposit in Huanglongpu of Shaanxi[J]. Geology of Shaanxi,2017 ,35 (2 ):20 −26 .[11] 范羽, 周涛发, 张达玉, 等 . 中国钼矿床时空分布与成矿背景分析[J]. 地质学报,2014 ,88 (4 ):784 −804 .FAN Yu, ZHOU Taofa, ZHANG Dayu, et al . Spatial and Temporal Distribution and Metallogical Background of the Chinese Molybdenum Deposits[J]. Acta Geologica Sinica,2014 ,88 (4 ):784 −804 .[12] 付鑫宁, 唐利, 姚梅青, 等 . 东秦岭黄水庵钼矿床的碳酸岩成因与地质意义: 来自痕量元素和Sr-Nd-Pb同位素的约束[J]. 成都理工大学学报(自然科学版),2021 ,48 (5 ):525 −538 .FU Xinling, TANG Li, YAO Meiqing, et al . Genesis and geological significance of the carbonatite in the Huangshui'an Mo deposit in Eastern Qinling area of China: Constraints from trace elements and Sr-Nd-Pb isotopes[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2021 ,48 (5 ):525 −538 .[13] 侯增谦, 田世洪, 谢玉玲, 等 . 川西冕宁−德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型[J]. 矿床地质,2008 ,27 (2 ):145 −176 .HOU Zengqain, TIAN Shihong, XIE Yuling, et al . Mianning-Dechang Himalayan REE belt associated with carbonatite-alkalic complex in eastern Indo-Asian collision zone southwest China: Geological characteristics of REE deposits and a possible metallogenic model[J]. Mineral Deposits,2008 ,27 (2 ):145 −176 .[14] 黄典豪, 王义昌, 聂凤军, 等 . 黄龙铺碳酸岩脉型钼(铅)矿床的的硫、碳和氧同位素特征及成矿物质来源[J]. 地质学报,1984 ,58 (3 ):252 −264 .HUANG Dianhao, WANG Yichang, NIE Fengjun, et al . Isotopic Composition of Sulfur and Oxygen and Source Material of the Huanglongpu Carbonatite Vein-type of Molybdenum(Lead)Deposit[J]. Acta Geologica Sinica,1984 ,58 (3 ):252 −264 .[15] 黄典豪, 王义昌, 聂凤军, 等 . 一种新的钼矿床类型——陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制[J]. 地质学报,1985 ,3 :241 −257 .HUANG Dianhao, WANG Yichang, NIE Fengjun, et al . A New Type of Molybdenum Deposit——Geological Characteristics and Metal-logenic Mechanism of the Huanglongpu Carbonatite Vein-type of Molybdenum(Lead)Deposit, Shaaxi[J]. Acta Geologica Sinica,1985 ,3 :241 −257 .[16] 黄典豪, 吴澄宇, 杜安道, 等 . 东秦岭地区钼矿床的铼−锇同位素年龄及其意义[J]. 矿床地质,1994 ,13 (3 ):221 −230 .HUANG Dianhao, WU Chengyu, DU Andao, et al . Re-Os Isotope Ages of Molybdenum Deposits in East Qinling and Their Significance[J]. Mineral Deposits,1994 ,13 (3 ):221 −230 .[17] 黄典豪, 侯增谦, 杨志明, 等 . 东秦岭钼矿带内碳酸岩脉钼(铅)矿床地质−地球化学特征、成矿机制及成矿构造背景[J]. 地质学报,2009 ,83 (12 ):1968 −1984 .HUANG Dianhao, HOU Zengqian, YANG Zhiming, et al . Geological and Geochemical Characteristics, Metallogenetic Mechanism and Tectonic Setting of Carbonatite Vein-Type Mo(Pb)Deposits in the East Qinling Molybdenum Ore Belt[J]. Acta Geologica Sinica,2009 ,83 (12 ):1968 −1984 .[18] 黄典豪 . 就若干矿床的类型、成矿物质来源及辉钼矿含铼量的地质意义等与毛景文研究员商榷[J]. 地质论评,2015 ,61 (5 ):990 −1000 .HUANG Dianhao . Discussion with Prof. Mao Jingwen on Types, Ore-Forming Material Source of Some Deposits and Geological Significance of Rhenium Content in Molybdenite[J]. Geological Review,2015 ,61 (5 ):990 −1000 .[19] 黄凡, 王登红, 王岩, 等 . 中国铼矿成矿规律和找矿方向研究[J]. 地质学报,2019 ,93 (6 ):1252 −1269 .HUANG Fan, WANG Denghong, WANG Yan, et al . Study on metallogenic regularity rhenium deposits in China and their prospecting direction[J]. Acta Geologica Sinica,2019 ,93 (6 ):1252 −1269 .[20] 焦建刚, 袁海潮, 何克, 等 . 陕西华县八里坡钼矿床锆石U-Pb和辉钼矿Re-Os年龄及其地质意义[J]. 地质学报,2009 ,83 (8 ):1159 −1167 .JIAO Jianggang, YUAN Haichao, HE Ke, et al . Zircon U-Pb and Molybdenite Re-Os Dating for the Balipo Porphyry Mo Deposit in East Qinling, China, and Its Geological Implication[J]. Acta Geologica Sinica,2009 ,83 (8 ):1159 −1167 .[21] 李俊平, 李永峰, 罗正传, 等 . 大别山北麓钼矿找矿重大进展及其矿床地质特征研究[J]. 大地构造与成矿学,2011 ,35 (4 ):576 −586 .LI Junping, LI Yongfeng, LUO Zhengchuan, et al . Geological Features of Molybdenum Deposits and Ore Prospecting in Northern Slope of the Dabie Mountain, China[J]. Geotectonica et Metallogenia,2011 ,35 (4 ):576 −586 .[22] 李诺, 陈衍景, 张辉, 等 . 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘,2007 ,14 (5 ):186 −198 .LI Nuo, CHEN Yanjing, ZHANG Hui, et al . Molybdenum deposits in East Qinling[J]. Earth Science Frontiers,2007 ,14 (5 ):186 −198 .[23] 李毅, 李诺, 杨永飞, 等 . 大别山北麓钼矿床地质特征和地球动力学背景[J]. 岩石学报,2013 ,29 (1 ):95 −106 .LI Yi, LI Nuo, YANG Yongfei, et al . Geological features and geodynamic settings of the Mo deposits in the northern segment of the Dabie Mountains[J]. Acta Petrologica Sinica,2013 ,29 (1 ):95 −106 .[24] 李永峰, 毛景文, 胡华斌, 等 . 东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J]. 矿床地质,2005 ,24 (3 ):292 −304 .LI Yongfeng, MAO Jingwen, HU Huabin, et al . Geology, distribution, types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area[J]. Mineral Deposits,2005 ,24 (3 ):292 −304 .[25] 刘云华, 成玉姝, 郑绪忠. 陕西省洛南县(区)黄龙铺钼矿区资源储量核查报告[R]. 西安: 陕西鑫源勘探有限责任公司, 2009. [26] 毛景文, 华仁民, 李晓波 . 浅议大规模成矿作用与大型矿集区[J]. 矿床地质,1999 ,18 (4 ):291 −299 .MAO Jingwen, HUA Renmin, LI Xiaobo . A preliminary study of largescale metallogenesis and large clusters of mineral deposits[J]. Mineral Deposits,1999 ,18 (4 ):291 −299 .[27] 陕西省地质调查院. 中国区域地质志·陕西志[M]. 北京: 地质出版社, 2017. Shaanxi Institute of Geological Survey. Regional geology of China: Shaanxi Province[M]. Beijing: Geological Publishing House, 2017. [28] 陕西省地质矿产局第十三地质队. 陕西省洛南县黄龙铺钼矿区大石沟矿段详细普查地质报告[R]. 2002. [29] 陕西省地质矿产局第十三地质队. 陕西省洛南县黄龙铺钼矿区详细普查地质报告[R]. 1989. [30] 陕西省自然资源厅. 2018年度陕西省非油气矿产资源储量表[Z]. 2019. [31] 沈其韩 . 推荐一个系统的矿物缩写表[J]. 岩石矿物学杂志,2009 ,28 (5 ):495 −500 .SHEN Qihan . The recommendation of a systematic list of mineral abbreviations[J]. Acta Pewrologica et Minera1Ogica,2009 ,28 (5 ):495 −500 .[32] 王汉辉, 唐利, 杨勃畅, 等 . 东秦岭黄水庵碳酸岩型Mo-REE 矿床方解石地球化学特征和氟碳铈矿U-Th-Pb 年龄及其意义[J]. 西北地质,2023 ,56 (1 ):48 −62 .WANG Hanhui, TANG Li, YANG Bochang, et al . Geochemical Characteristics of Calcite and Bastnäsite U-Th-Pb Age of the Huangshui’an Carbonatite–hosted Mo-REE Deposit, Eastern Qinling[J]. Northwestern Geology,2023 ,56 (1 ):48 −62 .[33] 王佳营, 李志丹, 张祺, 等 . 东秦岭地区碳酸岩型银-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报,2020 ,94 (10 ):2946 −2964 .WANG Jiaying, LI Zhidan, ZHANG Qi, et al . Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica,2020 ,94 (10 ):2946 −2964 .[34] 王林均, 许成, 吴敏, 等 . 华阳川碳酸岩流体包裹体研究[J]. 矿物学报,2011 ,31 (3 ):372 −379 .WANG Linjun, XU Cheng, WU Min, et al . A Study of Fluid Inclusion from Huayangchuan Carbonatite[J]. Acta Mineralogica Sinica,2011 ,31 (3 ):372 −379 .[35] 王林均, 许成, 吴敏, 等 . 小秦岭碳酸岩的Sr-Nb-Pb同位素地球化学[J]. 矿物学报,2012 ,32 (3 ):370 −378 .WANG Linjun, XU Cheng, WU Min, et al . Sr-Nd-Pb Isotope Geochemistry of Lesser Qinling[J]. Acta Mineralogica Sinica,2012 ,32 (3 ):370 −378 .[36] 王瑞廷, 袁海潮, 孟德明, 等 . 小秦岭地区金钼多金属矿成矿特征与找矿预测[J]. 地球科学与环境学报,2014 ,36 (1 ):19 −31 .WANG Ruiting, YUAN Haichao, MENG Deming, et al . Metallogenic Characteristics and Exploration Prediction of Au-Mo Polymetallic Deposits in Xiaoqinling Area[J]. Journal of Earth Sciences and Environment,2014 ,36 (1 ):19 −31 .[37] 许成, 曾亮, 宋文磊, 等 . 造山带碳酸岩起源与深部碳循环[J]. 矿物岩石地球化学通报,2017 ,36 (2 ):213 −221 .XU Cheng, ZENG Liang, SONG Wenlei, et al . Orogenic Carbonatite Petrogenesis and Deep Carbon Recycle[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2017 ,36 (2 ):213 −221 .[38] 许成, 宋文磊, 漆亮, 等 . 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景[J]. 岩石学报,2009 ,25 (2 ):422 −430 .XU Cheng, SONG Wenlei, QI Liang, et al . Geochemical characteristics and tectonic setting of ore-bearing carbonatits in HuanglongPu Mo ore field[J]. Acta Petrologica Sinica,2009 ,25 (2 ):422 −430 .[39] 袁海潮, 王瑞廷, 焦建刚, 等 . 东秦岭华县西沟钼矿床Re-Os同位素年龄及其地质意义[J]. 地球科学与环境学报,2014 ,36 (1 ):120 −127 .YUAN Haichao, WANG Ruiting, JIAO Jiangang, et al . Re-Os Isotopic Ages of Molybdenites from Xigou Mo Deposit in Huaxian of East Qinling and Their Geological Significance[J]. Journal of Earth Sciences and Environment,2014 ,36 (1 ):120 −127 .[40] 张国伟, 郭安林, 董云鹏, 等 . 关于秦岭造山带[J]. 地质力学学报,2019 ,25 (5 ):746 −768 .ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al . Rethinking of the Qinling Orogen[J]. Journal of Geomechanics,2019 ,25 (5 ):746 −768 .[41] 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001. ZHANG Guowei, ZHANG Benren, YUANG Xuecheng, et al. Qinling Orogenic belt and continental dynamics[M]. Beijing: Science Press, 2001. [42] 朱赖民, 张国伟, 郭波, 等 . 东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景[J]. 地质学报,2008 ,82 (2 ):204 −220 .ZHU Laimin, ZHANG Guowei, GUO Bo, et al . U-Pb(LA-ICP-MS) Zircon Dating for the large Jinduicheng porphyry Mo deposit in the East Qinling, China, and Its Metallogenic Geodynamical Setting[J]. Acta Geologica Sinica,2008 ,82 (2 ):204 −220 .[43] doi: 10.1016/0016-7037(87)90241-9Bell K, Blenkinsop J . Archean depleted mantle evidence from Nd and Sr initial isotopic ratios of carbonatites[J]. Geochim Cosmochim Acta,1987a ,51 :291 −298 .[44] Bell K, Blenkinsop J . Nd and Sr isotopic composition of East African carbonatltes: Implications for mantle heterogeneity[J]. Geology,1987b ,15 :99 −102 .[45] doi: 10.1016/0016-7037(79)90169-8DePaolo D J , Wasserburg G J . Geochimica petrogenetic mixing models and Nd-Sr isotopic patterns[J]. Geochimica et Cosmochimica Acta,1979 ,43 :615 −627 .[46] Keller J, Hoefs J. Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai[A]. Bell K, Keller J. Carbonatites Volcanism: Oldoinyo Lengai and Petrogenesis of Natrocarbonatites. LAVCEI Proceeding in Volcanology[C]. Berlin: Springer-Verlag, 1995: 113−123. [47] Le Maitre R W. Igneous Rocks: A Classification and Glossary of Terms[M]. Cambridge UK: Cambridge University Press, 2002. [48] Mao J W, Zhang Z C, Zhang Z H, et al . Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,1999 ,63 :1815 −1818 .[49] Mao J W, Xie G Q, Bierlein F, et al . Tectonicimplication from Re-Os dating of Mesozoic molybdenum deposits in the East Qingling-Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta,2008 ,72 :4607 −4626 .[50] Maravic H V, Morteani G . Petrology and geochemistry of the carbonatite and syenite complex of Lueshe(N.F.Zaire)[J]. Lithos,1980 ,3 (2 ):159 −168 .[51] Ray J S, Ramesh R, Paude K . Carbon isotopes in Kerquelen plume-derived carbonatites: evidence for recycled inorganic carbon[J]. Earth and Planetary Science Letters,1999 ,170 :205 −214 .[52] Stein H J, Markey R J, Morgan M J, et al . Highly precise and accurate Re-Os ages for molybdenite from the East Qinling-Dabie molybdenum belt, Shaanxi province, China[J]. Economic Geology,1997 ,92 (7−8 ):827 −835 .[53] Stein H J, Markey R J, Morgan J W, et al . The remarkable Re-Os chronometer in molybdenite: how and why it works[J]. Terra Nova,2001 ,13 :479 −486 .[54] Song W L, Xu C, Qi L, et al . Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization[J]. Ore Geology Reviews,2015 ,64 :756 −765 .[55] Tang Li, Wagner T, Fusswinke T, et al . Magmatic-hydrothermal evolution of an unusual Mo-rich carbonatite: a case study using LA-ICP-MS fluid inclusion microanalysis and He–Ar isotopes from the Huangshui’an deposit, Qinling, China[J]. Mineralium Deposita,2021 ,56 (6 ):1 −18 .[56] doi: 10.1016/j.lithos.2006.07.016Xu C, Campbell I H, Mlen C M, et al . Flat rare-earth element patterns as an indicator of cumulate processes in the Lesser Qiling carbonatites, China[J]. Lithos,2007 ,95 :267 −278 .[57] Xu C, Kynicky J, Chakhmouradian A N, et al . A unique Mo deposit associated with carbonatites in the Qinling orogenic belt, central China[J]. Lithos,2010 ,118 (1−2 ):50 −60 . -