膏盐层在矽卡岩型铁矿成矿过程中的作用:以邯邢地区矽卡岩型铁矿床为例

庞旭静, 左文喆, 曹冲, 王俊鹏, 贺海飞, 王岩. 2024. 膏盐层在矽卡岩型铁矿成矿过程中的作用:以邯邢地区矽卡岩型铁矿床为例. 西北地质, 57(5): 272-282. doi: 10.12401/j.nwg.2024022
引用本文: 庞旭静, 左文喆, 曹冲, 王俊鹏, 贺海飞, 王岩. 2024. 膏盐层在矽卡岩型铁矿成矿过程中的作用:以邯邢地区矽卡岩型铁矿床为例. 西北地质, 57(5): 272-282. doi: 10.12401/j.nwg.2024022
PANG Xujing, ZUO Wenzhe, CAO Chong, WANG Junpeng, HE Haifei, WANG Yan. 2024. The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area. Northwestern Geology, 57(5): 272-282. doi: 10.12401/j.nwg.2024022
Citation: PANG Xujing, ZUO Wenzhe, CAO Chong, WANG Junpeng, HE Haifei, WANG Yan. 2024. The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area. Northwestern Geology, 57(5): 272-282. doi: 10.12401/j.nwg.2024022

膏盐层在矽卡岩型铁矿成矿过程中的作用:以邯邢地区矽卡岩型铁矿床为例

  • 基金项目: 国家自然科学基金项目“高氟与低氟型钼矿床Mo金属富集机制对比:以东科翁腊德和苏云河矿床为例”(42002098),河北省自然科学基金面上项目“新疆阿尔泰可可托海伟晶岩型矿床稀有金属富集机制研究”(D2023209016)联合资助。
详细信息
    作者简介: 庞旭静(1997−),女,硕士研究生,水文地质与环境地质专业。E−mail:pangxvjing52@163.com
    通讯作者: 左文喆(1969−),女,博士,教授,主要从事矿山水害防治、水岩作用过程及机理的研究。E−mail:zuowenzhej@sina.com.cn
  • 中图分类号: P578.7; P618.31

The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area

More Information
  • 矽卡岩型铁矿床是中国富铁矿床的重要类型,其储量占全部富铁矿的60%左右。膏盐层在矽卡岩型铁矿成矿过程中的作用一直是广大学者所关注的重点。研究表明,邯邢地区矽卡岩型铁矿层中硫酸盐、硫化物的δ34S值分别为24‰~29‰、11‰~20‰,具有海相沉积岩的S同位素组成特征,沉积膏盐层物质参与矽卡岩型铁矿的成矿过程。以邯邢地区矽卡岩型铁矿床为例,系统地分析了矿床中硫化物、硬石膏等含硫矿物的δ34S的主要组成,阐述了膏盐层在矽卡岩型铁矿成矿过程中的作用。①膏盐层中的Na+、Cl等物质作为矿化剂加入气水热液,富碱的气水热液令接触区附近的闪长岩体出现钠长石化现象,析出Fe,并以铁氯酸钠络合物和铁卤化物的形式随热液运移。②膏盐层中的硫酸盐在高温条件下具有高氧化活性,与还原性的富铁热液发生氧化还原反应,提高热液氧逸度,热液中的Fe2+被氧化成Fe3+,从而产生Fe3O4,磁铁矿在围岩层间富集、沉淀,形成富铁矿床。③膏盐层物质溶解后在碳酸盐岩层间形成各种溶(熔)蚀空隙,为岩浆侵入和矿体就位提供有利的成矿空间,是矽卡岩磁铁矿矿床形成的重要地质条件之一。膏盐层在矽卡岩型铁矿成矿过程中具有提供矿化剂、氧化剂和储矿空间的作用。

  • 加载中
  • 图 1  邯邢地区矽卡岩型铁矿地质简图(据章百明,1996郑建民,2007修)

    Figure 1. 

    图 2  邯邢地区矽卡岩型铁矿成矿流体演化示意图(据文广,2017修)

    Figure 2. 

    图 3  中关矿区4~5线地层剖面图

    Figure 3. 

    表 1  邯邢式矽卡岩型铁矿的硫同位素组成表

    Table 1.  Sulfur isotope composition of Hanxing type skarn type iron ore

    矿床 硫化物δ34SV-CDT/‰ 硫酸盐δ34SV-CDT/‰ 数据来源
    变化范围 平均 变化范围 平均
    蒸发沉积石膏
    (中奥陶统地层)
    21.3~31.6 27.9(30) 蔡本俊等,1987
    沉积变质石膏
    (中奥陶统地层)
    27.2~27.6 27.4
    热液形成石膏
    (中奥陶统地层)
    21.3~25.5 23.4
    符山铁矿 11~14 13(6) 21.3~31.6 27.9(35) 赵瑞,1986
    蔡本俊等,1987
    章百明等,1996
    矿山村铁矿 14~18 16(17)
    玉石洼铁矿 11~18 16(9)
    马庄铁矿 15~19 16(6)
    钢铁沟铁矿 12~18 16(3)
    三王村铁矿 15~18 16(15)
    北河铁矿 11.6~14.2 13.3(3)
    西石门铁矿 14~18.6 16.2(13) 24~29.1 26.3(4) 文广,2017
    北洺河铁矿 12.2~16.5 14.06(5) 24~29.1 26.3(5) 章百明等,1996
    王艳娟,2011
    符山铁矿 6.3~8.6 7.5(5) 息朝庄等,2022
    王艳娟,2012
    矿山村和武安岩体 6.4~18.8 12.2 徐文炘等,1987
    煤层中黄铁矿 −26~3.3 −14(4)
      注:括号内数字为样品个数。
    下载: 导出CSV

    表 2  常压下盐类矿物的物理化学性质表

    Table 2.  Physical and chemical properties of salt minerals under atmospheric pressure

    矿物 钾石盐 石盐 硫酸钾 方解石 白云石 石膏 钾长石 斜长石 角闪石 辉石 橄榄石
    分子式 KCl NaCl K2SO4 CaCO3 CaMg(CO32 CaSO4 K(AlSi3O8 (Ca, Na)AlSi3O8 (Ca, Mg, Fe)
    Si3O22(OH)2
    (Ca, Mg, Fe)2
    (Si, Al)2O6
    (Ca, Mg,
    Fe)2SiO4
    分解温度(℃) 560~580 850~920 810~950 11001190
    熔融温度(℃) 776 801 10301070 12901340 2800 13001450 10751200 11201550 11001200 12001400 1205~1 890
    晶格能(千卡) 156 179 358 647 1385 622 24003000 25003800 3800 4100 42004800
      注:数据来自草广金,1978
    下载: 导出CSV

    表 3  过渡性金属成矿元素的络合物和卤化物形式

    Table 3.  Complexes and halide forms of transitional metal-forming elements

    金属元素 络合物 卤化物 金属元素/形式 络合物 卤化物
    Fe R(Fe3+Cl4)、R2(Fe2+Cl4 FeCl2、FeF2 W R2(WF8)、WOCl4 WCl6、WF6
    Cu R2(CuCl4 CuCl、CuF Mo R2(MoCl6 MoCl4、MoF4
    Pb R2(PbCl4 PbCl2、PbF2 Sn R2(SnCl6 SnCl4、SnF4
    Zn R2(ZnCl4 ZnCl2、ZnF2 Au R(AuCl2)、R(AuCl4 AuCl3、AuF3
      注:R为K+、Na+等碱金属离子。
    下载: 导出CSV

    表 4  邯邢地区部分铁矿岩石钠化前后的化学元素占比变化表

    Table 4.  Changes in proportion of chemical elements before and after sodification of some iron ore rocks in Hanxing area

    矿区 带入元素(%) 带出元素(%) 数据来源
    SiO2 Al2O3 Na2O K2O CaO MgO Fe2O3+FeO
    中关铁矿 原岩 51.15 13.56 2.47 4.98 7.97 9.56 5.14 贾木欣等,2006
    钠化岩石 57.94 16.19 7.19 1.61 5.71 2.82 3.83
    白涧铁矿 原岩 59.16 15.58 4.54 2.55 4.78 3.38 5.68 赵书梅等,2011
    钠化岩石 58.83 15.8 7.08 1.08 5.83 2.9 4.08
    西石门铁矿 原岩 59.01 16.63 8.2 0.28 6.65 2.05 4.2 魏宏飞,2011
    钠化岩石 73.23 12.78 8.69 0.13 2.61 0.01 0.41
    下载: 导出CSV
  • [1]

    蔡本俊, 李席珍, 魏寿彭, 等. 邯邢地区中奥陶统蒸发岩特征及其对内生铁(硫)矿床的控制[J]. 中国地质科学院地质力学研究所所刊, 1987, (2): 1−84.

    CAI Benjun, LI Xizhen, WEI Shoupeng, et al. Features of the middle ordovician evaporites and its control over the endogenic iron (sulfur) deposits in Han-Xing district, HeBei[J]. Journal of Geomechanics,1987,(2):1−84.

    [2]

    成嘉伟, 刘新星, 张娟, 等. 河北邯邢地区白涧铁矿蚀变矿物红外光谱分析及找矿研究[J]. 地球科学, 2023, 48(4): 1551−1567.

    CHENG Jiawei, LIU Xinxing, ZHANG Juan, et al. Infrared spectral analysis and prospecting of alteration minerals of Baijian skarn type iron deposit in Han-Xing area[J]. Earth Science,2023,48(4):1551−1567.

    [3]

    陈洪新. 鄂东南程潮铁矿区矿化与三叠系蒸发岩的关系[J]. 中国地质科学院地质力学研究所所刊, 1993, 163−176.

    CHEN Hongxin. Relationship of the triassic evaporite beds with the mineralization of iron ores in Chengchao, southeastern Hubei Province[J]. Journal of Geomechanics, 1993, 163−176.

    [4]

    草广金. 我国内生铁铜矿床与膏盐的关系[J]. 地质与勘探, 1978, (3): 24−30.

    CAO Guangjin. Relationship between pig iron copper deposit and paste salt in China[J]. Geology and Exploration,1978,(3):24−30.

    [5]

    陈艳, 张招崇. 矽卡岩型铁矿的铁质来源与迁移富集机理探讨[J]. 岩矿测试, 2012, 31(5): 889−897.

    CHEN Yan, ZHANG Zhaochong. Study on source, transport and the enrichment mechanism of iron in iron skarn deposits[J]. Rock and Mineral Analysis,2012,31(5):889−897.

    [6]

    贾木欣, 于方, 冯钟燕. 邯邢式铁矿成因机理探讨[J]. 矿冶, 2006, (2): 80−84. doi: 10.3969/j.issn.1005-7854.2006.02.021

    JIA Muxin, YU Fang, FENG Zhongyan. Study on the mechanism of the HanXing iron ore formation[J]. Mining and Metallurgy,2006,(2):80−84. doi: 10.3969/j.issn.1005-7854.2006.02.021

    [7]

    蒋俊毅, 苏尚国, 崔晓亮, 等. 早白垩世华北克拉通东部岩石圈减薄过程和机制: 来自河北西石门杂岩体的证据[J]. 岩石学报, 2020, 36(2): 356−390. doi: 10.18654/1000-0569/2020.02.03

    JIANG Junyi, SU Shangguo, CUI Xiaoliang, et al. Process and mechanism of lithosphere thinning in the eastern North China Craton during the Early Cretaceous: evidence from the Xishimen Complex in Hebei Province[J]. Acta Petrologica Sinica,2020,36(2):356−390. doi: 10.18654/1000-0569/2020.02.03

    [8]

    霍延安, 苏尚国, 杨誉博, 等. 中生代华北克拉通岩石圈减薄的证据——以河北武安固镇杂岩体为例[J]. 岩石学报, 2019, 35(4): 989−1014. doi: 10.18654/1000-0569/2019.04.02

    HUO Yanan, SU Shangguo, YANG Yubo, et al. Evidence of lithosphere thinning in the Mesozoic North China Craton: a case study of the Guzhen Complex in Wuan, Hebei Province[J]. Acta Petrologica Sinica,2019,35(4):989−1014. doi: 10.18654/1000-0569/2019.04.02

    [9]

    孔源. 河北省沙河市綦村铁矿田邯邢式铁矿成矿地质特征及找矿方向[D]. 石家庄: 石家庄经济学院, 2014.

    KONG Yuan. The metallogenic geological characteristics and prospecting direction research of Qicun Han-Xing type iron ore of Shahe City in Hebei Province[D]. Shijiazhuang: Shijiazhuang University of Economics, 2014.

    [10]

    梁贤, 张聚全, 卢静, 等. 邯邢地区中生代侵入岩中磷灰石的成因矿物学研究[J]. 地质与勘探, 2020, 56(5): 969−984. doi: 10.12134/j.dzykt.2020.05.007

    LIANG Xian, ZHANG Juquan, LU Jing, et al. Genetic mineralogy of apatite in mesozoic intrusive rocks in Handan-Xingtai region, Hebei Provinc[J]. Geology and Exploration,2020,56(5):969−984. doi: 10.12134/j.dzykt.2020.05.007

    [11]

    李延河, 谢桂青, 段超, 等. 膏盐层在矽卡岩型铁矿成矿中的作用[J]. 地质学报, 2013, 87(9): 1324−1334.

    LI Yanhe, XIE Guiqing, DUAN Chao, et al. Effect of sulfate evaporate salt layer over the formation of skarn-type iron ores[J]. Acta geologica Sinica,2013,87(9):1324−1334.

    [12]

    李延河, 段超, 韩丹, 等. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J]. 岩石学报, 2010, 26(5): 1355−1368.

    LI Yanhe, DUAN Chao, HAN Dan, et al. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the middle-lower yangtze river area[J]. Acta Petrologica Sinica,2010,26(5):1355−1368.

    [13]

    李延河, 段超, 韩丹, 等. 矿浆型铁矿的氧同位素判别标志: 以宁芜玢岩铁矿为例[J]. 岩石学报, 2017, 33(11): 3411−3421.

    LI Yanhe, DUAN Chao, HAN Dan, et al. Oxygen isotopic discriminant marker of magmatic iron deposits: Ningwu porphyrite iron ore as an example[J]. Acta Petrologica Sinica,2017,33(11):3411−3421.

    [14]

    李雷, 秦永军, 张凯. 矽卡岩型铁矿的成矿地质特征及成因综述[J]. 中国金属通报, 2018(11): 252−253.

    LI Lei, QIN Yongjun, ZHAG Kai. Skarn type iron ore ore-forming geological characteristics and genesis of review[J]. China Metal Bulletin,2018(11):252−253.

    [15]

    马健飞, 胡永亮, 李仁杰. 矽卡岩型铁矿的成矿地质特征及成因综述[J]. 西部资源, 2016(4): 21−23.

    MA Jianfei, HU Yongliang, LI Renjie. Skarn type iron ore ore-forming geological characteristics and genesis of review[J]. Western Resources,2016(4):21−23.

    [16]

    毛景文, 周涛发, 谢桂青, 等. 长江中下游地区成矿作用研究新进展和存在问题的思考[J]. 矿床地质, 2020, 39(4): 547−558.

    MAO Jingwen, ZHOU Taofa, XIE Guiqing, et al. Metallogeny in middle-lower yangtze river ore belt: advances and problems remained[J]. Mineral Deposits,2020,39(4):547−558.

    [17]

    沈保丰, 陆松年, 于恩泽, 等. 某区磁铁矿床中钠质交代作用的特征及其找矿意义[J]. 地质科学, 1977, 12(3): 263−274.

    SHEN Baofeng, LU Songnian, YU Enze, et al. The characteristics of sodium metasomatism in magnetite deposits of a certain region and its prospecting significance[J]. Chinese Journal of Geology(Scientia Geologica Sinica),1977,12(3):263−274.

    [18]

    孙天琦. 邯邢地区白涧矽卡岩型铁矿成因矿物学研究[D]. 石家庄: 河北地质大学, 2018.

    SUN Tianqi. Genetic mineralogy study on Baijian skarn iron deposit in Hanxing area[D]. Shijiazhuang: Hebei Geology University, 2018.

    [19]

    文广. 邯邢地区矽卡岩富铁矿床形成机理及关键控制因素[D]. 北京: 中国地质大学, 2017.

    WEN Guang. The mechanisms and key factors in forming high-grade iron skarn deposits in Handan-Xingtai district, North China Craton[D]. Beijing: China University of Geosciences, 2017.

    [20]

    魏宏飞. 邯郸西石门矽卡岩型铁矿地质特征及矿床成因[D]. 石家庄: 石家庄经济学院, 2011.

    WEI Hongfei. Geological characteristics and genesis of Xishimen skarn iron deposit in Handan[D]. Shijiazhuang: Shijiazhuang University of Economics, 2011.

    [21]

    王艳娟. 河北邯郸符山铁矿矿床学特征及其对华北克拉通演化的记录[D]. 北京: 中国地质大学(北京), 2012.

    WANG Yanjuan. The characteristics of Fushan iron deposit, Handan, Hebei Provience, China, and its implication to the North China craton evolution[D]. Beijing: China University of Geosciences (Beijing), 2012.

    [22]

    王艳娟, 胡援越, 申俊峰, 等. 太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪[J]. 现代地质, 2011, 25(5): 846−852.

    WANG Yanjuan, HU Yuanyue, SHEN Junfeng, et al. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in Beiming river iron deposits, Southern Taihang Mountains[J]. Geoscience,2011,25(5):846−852.

    [23]

    息朝庄, 杜高峰, 戴塔根, 等. 冀南符山铁矿床成因研究: 来自流体包裹体和H、O、S同位素证据[J]. 矿物岩石地球化学通报, 2022, 41(4): 837−848.

    XI Chaozhuang, DU Gaofeng, DAI Tagen, et al. Genesis of the Fushan iron deposit in the southern Hebei: Evidences from studies of fluid inclusions and H, O, S isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2022,41(4):837−848.

    [24]

    徐文炘, 陈民扬. 武安、涉县地区接触交代型铁矿硫同位素研究[J]. 矿产与地质, 1987(01): 83−91.

    XU Wenxin,CHEN Minyang. Study on sulfur isotope of contact metasomatic iron ore in Wu’an and Shexian areas[J]. Mineral Resources and Geology,1987(01):83−91.

    [25]

    赵一鸣. 中国主要富铁矿床类型及地质特征[J]. 矿床地质, 2013, 32(4): 686−705. doi: 10.3969/j.issn.0258-7106.2013.04.004

    ZHAO Yiming. Main genetic types and geological characteristics of iron rich ore deposits in China[J]. Mineral Deposits,2013,32(4):686−705. doi: 10.3969/j.issn.0258-7106.2013.04.004

    [26]

    章百明, 马国玺, 毕伏科, 等. 河北主要成矿区带与岩浆作用有关的矿床成矿系列及成矿模式[J]. 华北地质矿产杂志, 1996, (3): 19−21+27−28.

    ZHANG Baiming, MA Guoxi, BI Fuke, et al. Magmatism associated metallogenic series and metallogenic model of the main metallogenic zones in Hebei[J]. North China Journal of Geology and Mineral Resources,1996,(3):19−21+27−28.

    [27]

    张海东, 刘建朝, 刘淑文, 等. 太行山南段平顺地区矽卡岩铁矿地质特征及成矿模式探讨[J]. 矿物岩石, 2009, 29(3): 53−59.

    ZHANG Haidong, LIU Jianchao, LIU Shuwen, et al. Geological characteristics and metallogenic model of skarn iron deposits in Pingshun area, sourthern Taihang mountains[J]. Mineralogy and Petrology,2009,29(3):53−59.

    [28]

    郑建民, 毛景文, 陈懋弘, 等. 冀南邯郸—邢台地区矽卡岩铁矿的地质特征及成矿模式[J]. 地质通报, 2007, 26(2): 150−154. doi: 10.3969/j.issn.1671-2552.2007.02.005

    ZHENG Jianmin, MAO Jingwen, CHEN Maohong, et al. Geological characteristics and metallogenic model of skarn iron deposits in the Handan-Xingtai area, southern Hebei, China[J]. Geological Bulletin of China,2007,26(2):150−154. doi: 10.3969/j.issn.1671-2552.2007.02.005

    [29]

    周涛发, 范裕, 袁峰, 等. 安徽庐枞盆地泥河铁矿床与膏盐层的成因联系及矿床成矿模式[J]. 地质学报, 2014, 88(04): 562−573.

    ZHOU Taofa,FAN Jan,YUAN Feng,et al. The genetic relationship between the Nihe iron deposit and the gypsum salt layer and the metallogenic model of the deposit in the Luzong Basin,Anhui Province[J]. Acta Geologica Sinica,2014,88(04):562−573.

    [30]

    朱乔乔, 谢桂青, 王建, 等. 含膏盐地层与矽卡岩型铁矿的关系: 以湖北金山店铁矿为例[J]. 地质学报, 2013, 87(9): 1419−1429.

    ZHU Qiaoqiao, XIE Guiqing, WANG Jian, et al. The relationship between the evaporate and skarn-type iron deposit: a case study of the Jinshandian iron skarn deposit in Hubei[J]. Acta Geologica Sinica,2013,87(9):1419−1429.

    [31]

    朱乔乔, 李伟, 张志远, 等. 多元稳定同位素组合示踪含膏盐地层参与湖北金山店矽卡岩型铁矿成矿作用[J]. 地质学报, 2016, 90(2): 361−375. doi: 10.3969/j.issn.0001-5717.2016.02.012

    ZHU Qiaoqiao, LI Wei, ZHANG Zhiyuan, et al. Tracing incursion of the evaporites into Jinshandian skarn Fe deposit, Hubei Province, by combination of multiple stable isotopes[J]. Acta Geologica Sinica,2016,90(2):361−375. doi: 10.3969/j.issn.0001-5717.2016.02.012

    [32]

    朱乔乔. 湖北金山店矽卡岩型铁矿成矿作用[D]. 北京: 中国地质科学院, 2016.

    ZHU Qiaoqiao. Mineralization of skarn type iron ore in Jinshandian, Hubei Province[D]. Beijing: Chinese Academy of Geological Sciences, 2016.

    [33]

    赵瑞. 冀鲁皖若干内生矿床的硫同位素研究[J]. 岩石学报, 1986, 2(1): 26−32.

    ZHAO Rui. Sulfur isotopes study of some endogenic ore deposits in Hebei. Shandong and Anhui provinces[J]. Acta Petrologica Sinica,1986,2(1):26−32.

    [34]

    赵书梅, 王金河, 孔令海. 钠长石化与接触交代(矽卡岩)型铁矿成矿关系的探讨——邯邢式铁矿为例[J]. 矿产与地质, 2011, 25(6): 491−494.

    ZHAO Shumei, WANG Jinhe, KONG Linghai. Albitization and mineralization mechanism of contact metasomatic iron ore (skarns)-Taking Han-Xing type iron ore as an example[J]. Mineral Resources and Geology,2011,25(6):491−494.

    [35]

    Barton M D, Johnson D A. Evaporitic-source model for ingeous-related fe oxide-(REE-CU-AU-U) mineralization[J]. Geology, 1996, 24(3).

    [36]

    Chen H Y. External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan[J]. Ore Geology Reviews,2013,51:74−78. doi: 10.1016/j.oregeorev.2012.12.002

    [37]

    Cao Y T, LIU Chenglin, CHEN Yongzhi, et al. Characteristics of copper mineralization in the Kuqa Foreland basin, and origin, enrichment and distribution of copper[J]. Acta Geologica Sinica,2010,84(12):1791−1804.

    [38]

    Deng X, Li J, Wen G. U-Pb Geochronology of hydrothermal zircons from the early cretaceous Iron Skarn deposits in the Handan-Xingtai district, North China Craton[J]. Econmoic Geology. 2015, 110(8): 2159-2180.

    [39]

    Einaudi M T, Hedenquist J W, Inan E E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments[J]. Society of Economic Geologists, 2003.

    [40]

    Eugster H P, Chou I. A model for the deposition of cornwall-type magnetite deposits[J]. Economic Geology,1979,74(4):763−774.

    [41]

    Hryciuk M, Bedard J H, Minarik W. Evaporite assimilation window triggers sulfide immiscibility. Goldschmidt 2012 Conference Abstracts, 1864.

    [42]

    Liang H, Sun W, Su W. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration[J]. Economic Geology,2009,104(4):587−596.

    [43]

    Li W, Audetat A, Zhang J. The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: Evidence from LA-ICP-MS analysis of fluid inclusions[J]. Ore Geology Reviews,2015,67:264−278.

    [44]

    Lehmann J, Arndt N, Windley B, et al. Field Relationships and Geochemical Constraints on the Emplacement of the Jinchuan Intrusion and its Ni-Cu-PGE Sulfide Deposit, Gansu, China[J]. Economic Geology,2007,102(1):75−94. doi: 10.2113/gsecongeo.102.1.75

    [45]

    Li Wei, Xie Guiqing, Mao Jingwen, et al. Mineralogy fluid inclusion and stable isotope studies of the Chengchao deposit Hubei province eastern China: Implications for the formation of high-grade Fe skarn deposits[J]. Economic Geology,2019,114:325−352. doi: 10.5382/econgeo.2019.4633

    [46]

    Meinert L D, Dipple G M, Nicolescu S. World skarn deposits[J]. Economic Geology 100th Anniversary Volume, 2005: 299−336.

    [47]

    Nabelek P I, Bedard J H, Hryciuk M, et al. Short-duration contact metamorphism of calcareous sedimentary rocks by Neoproterozoic Franklin gabbro sills and dykes on Victoria Island, Canada[J]. Metamorphic Geology,2013,31(2):205−220.

    [48]

    Ohomoto H, Rye R O. Isotopes of sulfur and carbon[J]. Geochemistry of Hydrothermal Ore Deposits,1979,10:509−576.

    [49]

    Pokrovski, Gleb S, Dubrovinsky. The S3Ion Is Stable in Geological Fluids at Elevated Temperatures and Pressures[J]. Science, 2011.

    [50]

    Xie G Q, Mao J W, Zhu Q Q, et al. Geochemical constraints on Cu–Fe and Fe skarn deposits in the Edong district, Middle–Lower Yangtze River metallogenic belt, China[J]. Ore Geology Reviews,2015,64:425−444.

    [51]

    Webster J. The exsolution of magmatic hydrosaline chloride liquids[J]. Chemical Geology,2004,210(1−4):33−48.

    [52]

    Wen G, Bi S J, Li J W. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton[J]. Mineralium Deposita,2017,52(4):1−20.

    [53]

    Yi Sun, Long Xiao, Dan Zhu, et al. Geochemical geochronological and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Qicun intrusive complex from the Handan–Xingtai district: Implications for the mechanism of lithospheric thinning of the North China Craton[J]. Ore Geology Reviews,2014,57:363−374. doi: 10.1016/j.oregeorev.2013.09.007

    [54]

    Zhou T F, Fan Yu, Yuan Feng, et al. The metallogenic model of Nihe iron deposit in Lu-Zong basin and genetic relationship between Gypsum-Salt layer and deposit[J]. Acta Geologica Sinica,2014,88(4):562−573.

    [55]

    Zhao B M, Liu Yongbin, Lin Xiaoxing, et al. Geological and geophysical characteristics and prospecting direction of iron orein Xingtai-Handan[J]. Progress in Geophysics,2014,29(6):2838−2842.

  • 加载中

(3)

(4)

计量
  • 文章访问数:  601
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2023-06-11
修回日期:  2023-11-07
录用日期:  2024-02-28
刊出日期:  2024-10-20

目录