Zircon U-Pb Chronology Geochemical Characteristics and Geological Significance of Alkaline Maficionado Dikes and Intermediate Volcanic Rocks in the Ziyang-Zhenping Area of South Qinling
-
摘要:
南秦岭北大巴山地区红椿坝–曾家坝断裂带两侧出露一条由超基性、基性岩墙群和碱性火山岩组成的碱性岩浆岩带。笔者对紫阳–镇坪地区粗面质火山岩开展锆石U-Pb年代学研究,结果表明4件粗面质火山岩成岩年龄为442~439 Ma,为早志留世喷发,与区内基性岩墙为同一时期岩浆作用的产物。对碱性粗面质火山岩及区内与其相伴出现的辉绿岩进行了全岩化学分析,结果表明粗面岩相对高Si(SiO2含量为59.1%~65.4%),富碱(K2O+Na2O含量为8.40%~11.4%),低Ca(CaO含量为0.35%~1.89%)、Mg(MgO含量0.64%~3.31%)和Ti(TiO2含量为0.74%~1.67%),富集大离子亲石元素和轻稀土元素,指示其经历了较高程度的演化。接近原始地幔的高Nb/U值(=39.9~112,平均为58.8)和Nb/Ta值(=15.7~43.9,平均为19.9),表明碱性粗面质火山岩和基性岩墙均有幔源属性。粗面质火山岩Nb/Th=10.5、Th/Yb=3.9、Nb/Ta=20.0、Th/U=5.7值与辉绿岩(分别为11.7、1.6、19.6、5.8)相近,指示它们为同源岩浆经历不同程度分离结晶的产物。综合区域上年代学、地球化学和构造地质背景,笔者认为紫阳‒镇坪地区早古生代碱性火山岩与基性岩墙(脉)形成于大陆板内伸展构造背景下裂谷环境中,均来源于上地幔部分熔融产生的玄武质初始岩浆,并经历不同程度分离结晶作用演化而来。
Abstract:An alkaline magmatic belt, consisting of widespread ultrabasic-basic dikes and alkaline volcanic rocks, occurs along the Hongchunba-Zengjiaba fault in the northern Daba shan aera of South Qinling. Zircon U-Pb dating of trachytic volcanic rocks in the Ziyang-Zhenping area shows that the trachytic rocks erupted in early Silurian (442 Ma~439 Ma), coeval to the basic dikes in the area. Whole-rock compositions of the trachytic rocks and adjacent diabase show that the trachytic rocks have relatively high SiO2 (59.1%~65.4%) and alkali content (K2O+Na2O, 8.40%~11.4%), but low CaO (0.35%~1.89%), MgO (0.64%~3.31%), and TiO2 (0.74%~1.67%) contents. The trachytic rocks show significant enrichment of large ion lithophile and light rare earth elements, indicating that they underwent a high-degree evolution. The trachytic rocks have high Nb/U ratios (=39.9~112, average 58.77) and Nb/Ta ratios (=15.7~43.9, average 19.9) close to the values of the primitive mantle, revealing that both the trachytic rocks and the basic dikes are derived from mantle. The average Nb/Th, Th/Yb, Nb/Ta, Th/U ratios of the trachytic volcanic rocks (10.5, 3.9, 20.0, and 5.7, respectively) are similar to those of the diabase (11.7, 1.6, 19.6, and 5.8, respectively), suggesting that they evolved from cogenetic magma with different degrees of fractional crystallization. Combined with the regional chronological data, geochemical and tectonic characteristics, it is proposed that the early Paleozoic trachytic rocks and alkaline basic rocks in the Ziyang-Zhenping area were formed in a rift environment under the continental extensional setting. The trachytic and basic rocks originated and evolved from the initial basaltic magma, which triggered by the partial melting of the upper mantle, and evolved through different degrees of fractional crystallization.
-
Key words:
- alkaline rocks /
- zircon U-Pb dating /
- trachytic rocks /
- early Silurian /
- rifting
-
-
图 1 中国构造纲要图(a)(据Mattauer et al., 1985)、秦岭构造带简图(b)(据赵东宏等, 2019修)和北大巴山区域地质图(c)(据Wang et al., 2017a修)(年代学数据来源同表3)
Figure 1.
图 6 紫阳-镇坪地区粗面岩及基性岩微量元素稀土元素球粒陨石标准化配分模式图 (a、c)和原始地幔标准化蛛网图 (b、d) (标准化数据据Sun et al., 1989;区域背景数据向忠金等,2016;杨航等,2021;Wu et al., 2023)
Figure 6.
表 1 紫阳-镇坪地区粗面岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1. U-Th-Pb analysis results of the zircon from the trachyte in Ziyang-Zhenping area
点号 含量(10−6) Th/U 同位素比值 年龄 (Ma) Th U 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ LG0613-TW1 1 83.47 158.14 0.53 0.05729 0.00287 0.56057 0.02727 0.07107 0.00101 502 107 452 18 443 6 2 186.92 381.65 0.49 0.05709 0.00181 0.55445 0.01697 0.07053 0.00077 495 69 448 11 439 5 3 259.02 398.33 0.65 0.05568 0.00177 0.53986 0.01656 0.07042 0.00077 439 69 438 11 439 5 4 866.77 778.22 1.11 0.05625 0.00256 0.54797 0.02421 0.07075 0.00094 462 99 444 16 441 6 5 308.86 167.44 1.84 0.05857 0.0026 0.57101 0.02453 0.0708 0.00093 551 94 459 16 441 6 6 167.49 269.46 0.62 0.05446 0.00341 0.53182 0.03245 0.07093 0.00117 390 135 433 22 442 7 7 186.59 266.84 0.70 0.05676 0.00218 0.55272 0.02054 0.07072 0.00085 482 83 447 13 441 5 8 206.90 291.58 0.71 0.06165 0.00219 0.60265 0.02065 0.07099 0.00084 662 74 479 13 442 5 9 246.06 308.64 0.80 0.05644 0.00199 0.54974 0.01873 0.07073 0.00082 469 77 445 12 441 5 10 453.68 368.10 1.23 0.0555 0.00179 0.54217 0.01683 0.07094 0.00078 432 70 440 11 442 5 11 267.47 130.72 2.05 0.05889 0.00344 0.56687 0.03218 0.0699 0.0011 563 122 456 21 436 7 12 166.50 380.17 0.44 0.05579 0.00175 0.55012 0.01666 0.0716 0.00078 444 68 445 11 446 5 13 277.25 108.52 2.55 0.05713 0.00334 0.55639 0.03168 0.07072 0.0011 496 124 449 21 441 7 14 283.43 404.08 0.70 0.05852 0.00272 0.56847 0.02565 0.07053 0.00096 550 98 457 17 439 6 15 561.81 1112.37 0.51 0.06812 0.00231 0.66479 0.02169 0.07086 0.00084 872 69 518 13 441 5 LG2106-TW12 1 248.24 247.81 1.00 0.05713 0.00239 0.56475 0.02296 0.07169 0.00092 496 90 455 15 446 6 2 245.27 303.93 0.81 0.05647 0.00462 0.55082 0.04396 0.07074 0.00146 470 172 446 29 441 9 3 538.48 411.66 1.31 0.06802 0.00335 0.65908 0.03145 0.07027 0.00106 869 99 514 19 438 6 4 673.89 346.88 1.94 0.05482 0.00206 0.53154 0.01942 0.07033 0.00085 405 81 433 13 438 5 5 502.57 417.46 1.20 0.05656 0.00191 0.55097 0.01801 0.07064 0.00082 474 74 446 12 440 5 6 2167.42 444.78 4.87 0.06401 0.00203 0.62742 0.01917 0.07108 0.00082 742 66 495 12 443 5 7 67.99 151.51 0.45 0.0557 0.00364 0.53986 0.03446 0.07027 0.00121 440 140 438 23 438 7 8 124.86 248.42 0.50 0.05716 0.00249 0.56044 0.02374 0.07109 0.00094 497 94 452 15 443 6 9 577.27 785.76 0.73 0.05261 0.00202 0.50997 0.01901 0.07029 0.00086 312 85 418 13 438 5 10 734.09 380.45 1.93 0.05637 0.00202 0.54646 0.01905 0.07029 0.00084 466 78 443 13 438 5 11 89.61 332.60 0.27 0.05491 0.00366 0.53694 0.03494 0.0709 0.00124 408 143 436 23 442 7 12 72.23 189.14 0.38 0.05553 0.00293 0.54447 0.02805 0.07109 0.00105 433 114 441 18 443 6 13 248.67 358.03 0.69 0.05543 0.00205 0.53717 0.01926 0.07026 0.00085 429 80 437 13 438 5 14 531.38 433.10 1.23 0.05615 0.00254 0.54777 0.02411 0.07072 0.00096 458 98 444 16 441 6 15 2382.34 538.66 4.42 0.05706 0.00173 0.55712 0.01635 0.07077 0.00079 493 66 450 11 441 5 16 129.01 444.77 0.29 0.07298 0.00232 0.71317 0.02186 0.07083 0.00085 1013 63 547 13 441 5 LG2106-TW06 1 155.12 231.21 0.67 0.06399 0.00295 0.63195 0.02825 0.0717 0.001 446 6 558 13 446 6 2 196.15 424.66 0.46 0.05796 0.00229 0.57013 0.02185 0.07142 0.00089 445 5 517 12 445 5 3 457.55 1141.39 0.40 0.05749 0.00141 0.55503 0.013 0.07009 0.0007 437 4 473 8 437 4 4 816.43 1709.75 0.48 0.05838 0.00114 0.57778 0.01066 0.07185 0.00068 447 4 456 6 447 4 5 444.08 1160.21 0.38 0.05894 0.00138 0.57721 0.01292 0.0711 0.00071 443 4 510 8 443 4 6 967.87 2228.36 0.43 0.05945 0.00112 0.58375 0.01035 0.07128 0.00067 444 4 461 6 444 4 7 3169.14 2805.98 1.13 0.06284 0.00265 0.59916 0.02447 0.06922 0.00091 431 6 325 9 431 6 8 1401.89 2206.96 0.64 0.05704 0.00275 0.54881 0.02566 0.06985 0.00098 435 6 470 11 435 6 9 403.18 987.20 0.41 0.0575 0.00138 0.56608 0.01295 0.07146 0.00072 445 4 488 8 445 4 10 567.20 724.58 0.78 0.05573 0.00161 0.55549 0.01543 0.07235 0.00077 450 5 431 6 450 5 11 346.38 768.23 0.45 0.06277 0.00178 0.60629 0.01653 0.07011 0.00076 437 5 436 8 437 5 12 406.82 1208.83 0.34 0.05693 0.00135 0.55003 0.01249 0.07012 0.0007 437 4 472 8 437 4 13 607.55 527.18 1.15 0.05669 0.00221 0.54583 0.02064 0.06988 0.00086 435 5 438 7 435 5 14 516.25 1490.73 0.35 0.05856 0.00142 0.56936 0.01321 0.07056 0.00071 440 4 470 8 440 4 15 192.96 233.53 0.83 0.05527 0.00355 0.53344 0.03339 0.07005 0.00117 436 7 441 14 436 7 LG2106-TW07 1 354.87 992.38 0.36 0.06696 0.00448 0.65496 0.04252 0.07098 0.00133 837 134 512 26 442 8 2 510.28 1179.68 0.43 0.06946 0.00225 0.67653 0.02105 0.07068 0.00083 912 65 525 13 440 5 3 385.50 926.43 0.42 0.05506 0.00251 0.52664 0.02329 0.0694 0.00093 415 98 430 15 433 6 4 199.70 292.77 0.68 0.05763 0.00261 0.56209 0.02476 0.07076 0.00095 515 97 453 16 441 6 5 101.70 195.49 0.52 0.13058 0.00617 1.28771 0.05756 0.07154 0.00129 2106 81 840 26 445 8 6 242.41 393.30 0.62 0.21387 0.00597 2.09021 0.0534 0.0709 0.00099 2935 44 1146 18 442 6 7 220.95 260.02 0.85 0.07297 0.00472 0.70279 0.04401 0.06987 0.00131 1013 126 541 26 435 8 8 235.22 366.80 0.64 0.06619 0.00793 0.64219 0.07491 0.07038 0.00216 812 232 504 46 439 13 9 235.35 193.31 1.22 0.0544 0.00458 0.52896 0.04356 0.07054 0.00146 388 179 431 29 439 9 10 145.16 366.94 0.40 0.05654 0.00277 0.54804 0.02609 0.07031 0.00099 473 105 444 17 438 6 11 300.74 222.24 1.35 0.05594 0.00339 0.54316 0.03209 0.07042 0.00114 450 130 441 21 439 7 表 2 粗面质火山岩及辉绿岩主量元素(%)和微量元素(10−6)分析结果表
Table 2. Major (%) and trace(10−6) elements analysis of the trachyte volcanic rocks and diabase
样品号 LG2106-6 LG2106-7 LG20-5 LG20-8 LG20-9 LG20-10 LG0613-1 LG0613-2 LG0613-3 LG2106-12 LG20-4 PM04/57-2 PM04/61-2 PM04/61-3 PM04/61-4 岩性 粗面岩 粗面质岩屑晶屑凝灰岩 辉绿岩 SiO2 64.43 65.43 59.18 59.40 62.94 63.12 61.30 64.20 62.60 59.11 59.37 50.00 53.00 48.50 49.24 TiO2 1.16 1.07 0.74 0.75 0.97 0.97 1.45 1.11 1.67 1.40 0.75 2.60 2.05 2.42 2.39 Al2O3 16.13 16.39 16.77 16.72 16.27 15.05 16.30 15.30 14.20 18.58 17.02 14.40 15.24 15.10 15.34 Fe2O3 4.82 4.47 7.60 7.76 4.53 4.50 7.68 5.97 8.25 7.58 7.10 12.60 8.84 11.10 11.20 MnO 0.25 0.22 0.07 0.07 0.17 0.15 0.06 0.06 0.21 0.15 0.07 0.25 0.17 0.18 0.19 MgO 0.77 0.64 3.28 3.31 1.56 1.57 2.49 1.89 2.45 2.53 3.15 3.79 3.23 4.00 3.95 CaO 0.75 0.55 1.44 1.45 1.08 1.89 1.02 0.35 0.43 0.44 1.59 5.82 7.24 7.41 6.96 Na2O 5.57 5.31 4.30 5.20 5.63 5.49 5.14 5.71 3.89 5.33 4.30 3.99 5.20 4.21 4.35 K2O 5.15 6.09 4.67 5.10 5.58 5.06 3.26 3.88 4.72 5.00 4.58 2.17 1.73 2.11 2.11 P2O5 0.24 0.21 0.12 0.12 0.23 0.24 0.19 0.20 0.17 0.26 0.12 1.26 0.95 1.30 1.38 Na2O+
K2O10.73 11.40 8.97 10.30 11.21 10.55 8.40 9.59 8.61 10.33 8.88 6.16 6.93 6.32 6.46 A/NK 1.50 1.44 1.87 1.62 1.45 1.43 1.94 1.60 1.65 1.80 1.92 2.34 2.19 2.39 2.37 A/CNK 1.00 1.00 1.14 1.00 0.94 0.84 1.18 1.07 1.15 1.24 1.14 0.74 0.64 0.66 0.69 k2O/
Na2O0.92 1.15 1.09 0.98 0.99 0.92 0.63 0.68 1.21 0.94 1.07 0.54 0.33 0.50 0.49 烧失量* 0.51 0.27 1.12 0.42 0.82 1.98 0.86 0.72 0.85 0.24 1.88 2.45 1.77 2.67 2.19 总量 99.81 100.67 99.34 100.29 99.78 100.02 99.75 99.39 99.44 100.61 99.94 99.33 99.45 99.00 99.33 AR 4.49 5.11 2.94 3.62 4.65 4.30 2.88 4.17 3.86 3.38 2.83 1.88 1.89 1.78 1.82 里特曼
指数5.37 5.80 4.97 6.47 6.30 5.53 3.86 4.34 3.78 6.62 4.82 5.42 4.80 7.26 6.73 lgσ 0.73 0.76 0.70 0.81 0.80 0.74 0.59 0.64 0.58 0.82 0.68 0.73 0.68 0.86 0.83 lgτ 0.96 1.02 1.23 1.19 1.04 0.99 0.89 0.94 0.79 0.98 1.23 0.60 0.69 0.65 0.66 Y 43.0 44.3 42.3 38.3 27.5 34.0 36.0 23.7 34.8 27.9 62.7 47.0 39.0 46.4 45.4 La 100 110 290 290 82.0 95.0 61.7 43.2 90.2 201 205 67.30 92.0 98.9 99.3 Ce 214 232 493 493 125 150 130 94.0 194 276 394 155 199 224 215 Pr 24.1 26.0 53.3 24.1 22.0 25.0 14.1 10.4 18.4 24.7 41.0 17.8 22.6 26.3 24.9 Nd 90.9 97.3 199 199 54.0 64.0 53.3 37.8 66.5 73.8 165 78.0 98.5 116 110 Sm 15.4 16.3 30.3 50.1 14.5 18.0 10.1 7.3 12.0 9.26 22.5 16.2 18.1 21.8 20.9 Eu 3.72 3.91 5.04 5.93 3.10 3.40 2.92 1.81 3.13 2.99 3.53 5.12 7.43 8.91 8.12 Gd 14.4 15.0 25.5 25.5 10.5 13.5 9.48 6.49 10.6 10.3 18.4 15.3 15.9 19.5 18.5 Tb 1.83 1.90 3.86 3.86 1.45 1.90 1.39 0.95 1.57 1.07 2.73 2.19 2.03 2.48 2.33 Dy 9.73 9.90 20.6 39.1 7.60 9.30 8.11 5.55 8.97 5.39 14.7 11.8 10.40 12.6 11.70 Ho 1.74 1.77 3.84 3.84 1.40 1.80 1.54 1.08 1.72 1.01 2.76 2.18 1.83 2.20 2.06 Er 4.93 5.02 10.59 10.59 3.60 4.80 4.33 3.25 5.00 3.12 7.67 5.91 4.75 5.63 5.29 Tm 0.63 0.65 1.53 1.53 0.50 0.68 0.63 0.49 0.73 0.43 1.09 0.79 0.60 0.72 0.66 Yb 4.00 4.13 8.72 8.72 2.60 3.30 3.92 3.10 4.53 2.97 6.54 4.54 3.45 4.13 3.83 Lu 0.56 0.57 1.46 1.46 0.68 0.96 0.59 0.47 0.65 0.43 1.04 0.64 0.49 0.61 0.57 Nb 137 134 323 323 144 144 63.5 29.1 139 242 212 71.6 76.5 70.3 71.2 Ta 6.91 7.15 17.9 34.3 7.82 7.83 3.08 1.85 6.86 5.52 12.7 3.57 3.86 3.75 3.60 Zr 666 688 1095 1095 708 698 324 189 557 1013 1031 414 285 278 320 Hf 12.9 13.3 24.5 52.3 15.7 15.7 8.97 6.75 16.0 12.6 22.2 13.5 10.6 10.4 15.2 Li 29.4 24.5 18.1 18.1 37.0 52.3 36.6 21.8 68.6 39.7 41.2 21.60 7.13 10.30 9.31 V 31.1 18.0 11.0 11.0 17.1 18.1 17.3 19.4 18.6 18.2 23.8 162 137 187 212 Cr 5.35 2.53 7.13 7.13 5.73 6.31 2.12 2.04 1.58 24.5 8.13 34.8 18.5 11.6 5.87 Co 2.27 1.05 1.15 1.15 0.58 0.42 0.17 0.16 0.15 4.38 3.56 18.8 12.5 13.0 14.0 Ni 1.04 0.64 1.75 1.75 2.13 3.37 0.81 0.84 0.61 17.5 10.8 9.90 5.94 4.15 1.66 Ga 33.0 33.6 46.3 46.3 34.0 35.7 29.2 19.0 22.0 32.3 68.7 25.2 22.6 20.8 22.0 Rb 80.2 90.2 180 274 78.0 74.6 66.4 181 81.5 49.0 169 48.9 34.2 40.3 43.0 Sr 106 92.5 92.5 148 116 46.5 120 47.6 127 148 106 711 2811 2121 2604 Cs 7.67 7.38 11.4 11.4 − − 2.45 6.51 2.95 1.55 1.26 0.88 0.57 0.61 0.69 W 7.95 8.32 8.48 8.48 − − 1.17 1.37 1.08 1.92 13.9 0.85 0.71 0.63 0.64 Th 10.5 11.3 25.0 41.5 10.2 9.72 17.6 14.6 13.8 24.5 13.7 7.46 6.38 5.34 5.89 U 2.16 2.08 5.08 8.28 2.44 2.19 3.97 2.26 1.24 4.95 2.08 1.19 1.20 0.94 1.00 ΣREE 486 524 1146 1117 328 391 302 216 418 612 887 383 477 544 523 LREE 448 485 1070 1041 3006 355 272 194 384 588 831 339 437 495 478 HREE 37.8 38.9 76.1 76.1 28.3 36.2 30.0 21.4 33.8 24.7 55.0 43.4 39.5 47.9 44.9 LREE/
HREE11.9 12.5 14.1 13.7 10.6 9.81 9.07 9.10 11.4 23.8 15.1 7.83 11.1 10.4 10.6 (La/Yb)N 17.9 19.1 23.9 23.9 22.6 20.7 11.3 10.0 14.3 48.5 22.5 10.6 19.1 17.2 18.6 δEu 0.76 0.76 0.55 0.55 0.77 0.67 0.91 0.81 0.85 0.94 0.53 0.99 1.34 1.32 1.26 δCe 1.07 1.06 0.97 1.44 0.72 0.75 1.08 1.09 1.17 0.96 1.06 1.10 1.07 1.08 1.06 表 3 北大巴山地区基性岩墙和碱性火山岩年龄数据统计表
Table 3. Compiled geochronologic data of basic dikes and alkaline volcanic rocks in the Dabashan
岩石类型 序号 采样位置 岩性 测试矿物 年龄 (Ma) 数据来源 基性岩墙(脉) 1 石泉 辉绿岩 锆石 422.1 ± 4.7 陈虹等, 2014 2 紫阳 辉绿岩 锆石 446.2 ± 1.1 Zhang et al., 2020 3 紫阳 辉绿岩 锆石 435.3 ± 1.4 Zhang et al., 2020 4 紫阳 辉绿岩 锆石 433.5 ± 0.9 张方毅等, 2020 5 紫阳 辉绿岩 锆石 455.9 ± 1.5 Zhang et al., 2020 6 紫阳 辉石闪长岩 锆石 438.4 ± 3.1 Wang et al., 2015 7 紫阳 正长斑岩 锆石 432 ± 5.8 龙井山等, 2016 8 紫阳 辉绿岩 锆石 440.0 ± 0.5 Wang et al., 2017a 9 紫阳 辉长岩 锆石 439.9 ± 0.5 Wang et al., 2017a 10 紫阳 金伯利岩 金云母 431.9 黄月华等, 1992 11 紫阳 石英正长岩 锆石 435.1 ± 1.2 Wang et al., 2017b 12 竹山 正长岩 锆石 441.8 ± 2.2 Xu et al., 2008 13 岚皋 辉绿岩 锆石 436.9 ± 2.4 许光等, 2018 14 镇坪 辉绿岩 锆石 439 ± 6 邹先武等, 2011 15 岚皋 辉绿岩 锆石 431.0 ± 3.2 王存智等, 2009 16 岚皋 辉绿岩 锆石 433.3 ± 4.1 张成立等, 2007 17 房县 辉绿岩 锆石 439.3 ± 4.1 曹亮等, 2015 碱性火山岩 1 平利 粗面岩 锆石 431–395 Nie et al., 2020 2 竹溪 粗面岩 锆石 406.0 ± 12.0 Yang et al., 2021 3 竹溪 粗面岩 锆石 427.9 ± 6.6 Yang et al., 2021 4 竹溪 粗面岩 磷灰石 434 ± 10 Wang et al., 2021 5 竹溪 粗面质凝灰岩 锆石 432± 2 Wu et al., 2023 6 竹溪 粗面质凝灰岩 锆石 433±2 Wu et al., 2023 7 竹溪 粗面质凝灰岩 锆石 432± 2 Wu et al., 2023 8 岚皋 玄武岩 金云母 446 ± 3 向忠金等, 2016 9 竹山 粗面岩 锆石 446.4 ± 4.4 鲁显松, 2021 10 竹山 粗面岩 锆石 430.6 ± 2.7 万俊等, 2016 11 竹山 粗面岩 锆石 441.6 ± 4.0 鲁显松等, 2019 12 竹山 粗面质凝灰岩 锆石 441.7 ± 3.7 鲁显松等, 2019 13 竹山 粗面质凝灰岩 锆石 443.2 ± 4.5 鲁显松等, 2019 碱性火山岩 1 岚皋 粗面质凝灰岩 锆石 442.2±1.31 本文 2 岚皋 粗面质凝灰岩 锆石 441.9±1.34 3 岚皋 粗面岩 锆石 439.2±2.01 4 岚皋 粗面岩 锆石 441.1±1.33 -
[1] doi: 10.3969/j.issn.0001-5717.2015.12.009曹亮, 张权绪, 胡尚军, 等 . 大巴山南部房县东河辉绿玢岩LA-ICP-MS锆石U-Pb测年及其构造意义[J]. 地质学报,2015 ,89 (12 ):2314 −2322 . doi: 10.3969/j.issn.0001-5717.2015.12.009CAO Liang, ZHANG Quanxu, HU Shangjun, et al . LA-ICP-MS Zircon U-Pb Age of Diabase Porphyry from the Donghe Area, Fangxian in South Daba Mountain and Its Tectonic Significance[J]. Acta Geologica Sinica,2015 ,89 (12 ):2314 −2322 .[2] 陈虹, 田蜜, 武国利, 等 . 南秦岭构造带内早古生代碱基性岩浆活动: 古特提斯洋裂解的证据[J]. 地质论评,2014 ,60 (6 ):1437 −1452 .CHEN Hong, TIAN Mi, WU Guoli, et al . The Early Paleozoic Alkaline and Marie Magmatic Events in Southern Qinling Belt, Central China: Evidences for the Break-up of the Paleo-Tethyan Ocean[J]. Geological Review,2014 ,60 (6 ):1437 −1452 .[3] 何建坤, 卢华复, 朱斌 . 东秦岭造山带南缘北大巴山构造反转及其动力学[J]. 地质科学,1999 ,34 (2 ):139 −153 .HE Jiankun, LU Huafu, ZHU Bin . The Tectonic Inversion and Its Geodynamic Processes in Northern Daba Mountains of Eastern Qinling Orogenic Belt[J]. Chinese Journal of Geology,1999 ,34 (2 ):139 −153 .[4] doi: 10.3321/j.issn:1000-0569.1992.03.004黄月华, 任有祥, 夏林圻, 等 . 北大巴山早古生代双模式火成岩套: 以高滩辉绿岩和蒿坪粗面岩为例[J]. 岩石学报,1992 ,8 (3 ):243 −256 . doi: 10.3321/j.issn:1000-0569.1992.03.004HUANG Yuehua, REN Youxiang, XIA Linxi, et al . Early Palaeozoic Bimodal Igneous Suite on Northern Daba Mountains Gaotan Diabase and Haoping Trachyte as Examples[J]. Acta Geologica Sinica,1992 ,8 (3 ):243 −256 .[5] 黄月华, 杨建业 . 北大巴山笔架山-铜洞湾碱性镁铁质熔岩的岩石学研究[J]. 西北地质科学,1990 , (2 ):15 −24 .HUANG Yuehua, YANG Jianye . Petrological Study for Bijiashantongdongwan Alkali-mafic Lavas from Northern Daba Mountains[J]. Northwest Geoscience,1990 , (2 ):15 −24 .[6] doi: 10.3969/j.issn.1007-2802.2016.04.009龙井山, 张贵山, 韩文华, 等 . 北大巴山紫阳地区正长斑岩岩墙地球化学特征与锆石SHRIMP U-Pb定年[J]. 矿物岩石地球化学通报,2016 ,35 (4 ):681 −691 . doi: 10.3969/j.issn.1007-2802.2016.04.009LONG Jingshan, ZHANG Guishan, HAN Wenhua, et al . Geochemical Characteristics and Zircon U-Pb Dating of the Syenite Porphyry Dike Swarms in the Ziyang Area in the Northern Daba Mountains[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2016 ,35 (4 ):681 −691 .[7] 鲁显松, 孙腾, 熊意林, 等 . 南秦岭南沟寨铌钽矿床粗面岩锆石U-Pb年代学特征及地质意义[J]. 资源环境与工程,2021 ,35 (4 ):453 −457 .LU Xiansong, SUN Teng, XIONG Yilin, et al . Zircon U-Pb Geochronology Characteristics and Geological Significance of Coarse Rocks in Nangouzhai Nb-Ta Deposit, South Qinling[J]. Resources Environment & Engineering,2021 ,35 (4 ):453 −457 .[8] 鲁显松, 黄景孟, 熊意林, 等 . 南秦岭土地岭铌钽矿床火山岩地球化学、锆石U-Pb年代学特征及地质意义[J]. 地质科技情报,2019 ,38 (3 ):40 −51 .LU Xiansong, HUANG Jingmeng, XIONG Yilin, et al . Geochemical and Zircon U-Pb Geochronology of the Volcanic Rocks in the TudiLing Nb-Ta deposit, south Qinling Orogenic Belt, and Its Geological Implications[J]. Geological Science and Technology Information,2019 ,38 (3 ):40 −51 .[9] 雒昆利, 端木和顺 . 大巴山区早古生代基性火成岩的形成时代[J]. 中国区域地质,2001 ,20 (3 ):262 −266 .LUO Kunli, DUAN Muheshun . Timing of Early Paleozoic basic igneous rocks in the Daba Mountains[J]. Regional Geology of China,2001 ,20 (3 ):262 −266 .[10] 孟凡超, 刘嘉麒, 崔岩 . 松辽盆地徐家围子断陷营城组粗面岩成因与隐爆机制[J]. 吉林大学学报(地球科学版),2013 ,43 (3 ):704 −715 .MENG Fanchao, LIU Jialin, CUN Yan . Petrogenesis and Crypto-Explosive Mechanism of Trachyte in Yingcheng Formation of Xujiawei Fault Depression, Songliao Basin, NE China[J]. Journal of Jilin University(Earth Science Edition),2013 ,43 (3 ):704 −715 .[11] 倪世钊, 杨德骊, 杨振强, 等. 东秦岭东段南带古生代地及沉积相[M]. 武汉: 中国地质大学出版社, 1994, 1−80. [12] 孟五一, 张振, 高永宝, 等 . 南秦岭新发现王庄金矿床矿物成分及其地质意义[J]. 西北地质,2024 ,57 (4 ):157 −169 .MENG Wuyi, ZHANG Zhen, GAO Yongbao, et al . Material Composition and Geological Significance of the Newly Discovered Wangzhuang Gold Deposit in South Qinling[J]. Northwestern Geology,2024 ,57 (4 ):157 −169 .[13] 冉亚洲, 陈涛, 梁文天, 等 . 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质,2024 ,57 (1 ):110 −121 .RAN Yazhou, CHEN Tao, LIANG Wentian, et al . Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology,2024 ,57 (1 ):110 −121 .[14] doi: 10.3969/j.issn.1671-2552.2016.07.009万俊, 刘成新, 杨成, 等 . 南秦岭竹山地区粗面质火山岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其大地构造意义[J]. 地质通报,2016 ,35 (7 ):1134 −1143 . doi: 10.3969/j.issn.1671-2552.2016.07.009WAN Jun, LIU Chengxin, YANG Cheng, et al . Geochemical Characteristics and LA-ICP-MS Zircon U-Pb age of the Trachytic volcanic rocks in Zhushan area of Southern Qinling Mountains and their significance[J]. Geological Bulletin of China,2016 ,35 (7 ):1134 −1143 .[15] 王存智, 杨坤光, 徐扬, 等 . 北大巴基性岩墙群地球化学特征、LA-ICP-MS锆石U-Pb定年及其大地构造意义[J]. 地质科技情报,2009 ,28 (3 ):19 −26 .WANG Cunzhi, YANG Kunguang, XU Yang, et al . Geochemical characteristics and LA-ICP-MS zircon U-Pb age of the trachytic volcanic rocks in Zhushan area of Southern Qinling Mountains and their significance[J]. Geological Bulletin of China,2009 ,28 (3 ):19 −26 .[16] 王刚, 王宗起, 张英利, 等 . 北大巴山紫阳地区粗面岩黑云母化学特征及成因意义[J]. 矿物学报,2014 ,34 (3 ):343 −350 .WANG Gang,WANG Zongqi,ZHANG Yingli, et al . Geochemical characteristics and LA-ICP-MS zircon U-Pb age of the trachytic volcanic rocks in Zhushan area of Southern Qinling Mountains and their significance[J]. Geological Bulletin of China,2014 ,34 (3 ):343 −350 .[17] doi: 10.3321/j.issn:0001-5717.2009.11.001王宗起, 闫全人, 闫臻, 等 . 秦岭造山带主要大地构造单元的新划分[J]. 地质学报,2009 ,83 (11 ):1527 −1546 . doi: 10.3321/j.issn:0001-5717.2009.11.001WANG Zongqi, YAN Quanren, YAN Zhen, et al . New Division of the Main Tectonic Units of the Qinling Orogenic Belt, Central China[J]. Acta Geologica Sinica,2009 ,83 (11 ):1527 −1546 .[18] 王一烽, 裴先治, 李佐臣, 等 . 南秦岭勉略构造带三岔子地区田坝辉绿岩地球化学、锆石U-Pb年龄及地质意义[J]. 西北地质,2021 ,54 (2 ):1 −18 .WANG Yifeng, PEI Xianzhi, LI Zuochen, et al . Geochemical Characteristics, Zircon U-Pb Dating and Geological Significance of Tianba Diabase in Sanchazi Area, Mianlue Tectonic Belt of South Qinling[J]. Northwestern Geology,2021 ,54 (2 ):1 −18 .[19] 夏林圻, 夏祖春, 张诚, 等. 北大巴山碱质基性-超基性潜火山杂岩岩石地球化学[M]. 北京: 地质出版社, 1994, 1−226. [20] doi: 10.3969/j.issn.0001-5717.2016.05.006向忠金, 闫全人, 宋博, 等 . 北大巴山超基性、基性岩墙和碱质火山杂岩形成时代的新证据及其地质意义[J]. 地质学报,2016 ,90 (5 ):896 −916 . doi: 10.3969/j.issn.0001-5717.2016.05.006XIANG Zhongjin, YAN Quanren, SONG Bo, et al . New Evidence for the Ages of Ultramafic to Mafic Dikes and Alkaline Volcanic Complexes in the North Daba Mountains and Its Geological Implication[J]. Acta Geologica Sinica,2016 ,90 (5 ):896 −916 .[21] 向忠金, 闫全人, 闫臻, 等 . 北大巴山志留系滔河口组火山碎屑岩相序、组构特征及古火山作用环境分析[J]. 地质学报,2010a ,84 (3 ):311 −328 .XIANG Zhongjin, YAN Quanren, YAN Zhen, et al . Facies Succession and Architecture of Volcaniclastic Rocks of the Taohekou Formation: Implication for Early Silurian Volcanism in the North Dabashan Area, China[J]. Acta Geologica Sinica,2010a ,84 (3 ):311 −328 .[22] 向忠金, 闫全人, 闫臻, 等 . 北大巴山志留系滔河口组碱质斑状玄武岩的岩浆源区及形成环境——来自全岩和辉石斑晶地球化学的约束[J]. 岩石学报,2010b ,26 (4 ):1116 −1132 .XIANG ZhongJin, YAN QuanRen, YAN Zhen, et al . Magma source and tectonic setting of the porphyritic alkaline basalts in the Silurian Taohekou Formation, North Daba Mountain: Constraints from the geochemical features of pyroxene phenocrysts and whole rocks[J]. Acta Geologica Sinica,2010b ,26 (4 ):1116 −1132 .[23] 许光, 王坤明, 王宗起, 等 . 北大巴山花栎村镁铁质岩地球化学、年代学及其构造环境制约[J]. 地质通报,2018 ,37 (7 ):1279 −1290 .XU Guang, WANG Kunming, WANG Zongqi, et al . Geochemistry and geohronology of Hualicun mafic rocks in North Daba Mountain and tectonic control[J]. Geological Bulletin of China,2018 ,37 (7 ):1279 −1290 .[24] 晏云翔. 陕西紫阳‒岚皋地区碱‒基性岩墙群的岩石地球化学及Sr、Nd、Pb同位素地球化学研究[D]. 西安: 西北大学, 2005. YAN Yunxiang. Petrogeochemistry and Sr, Nd and Pb isotope geochemistry of alkali-basic dike group in Ziyang-Langao area, Shaanxi Province[D]. Xi'an:Northwest University, 2005. [25] 杨航, 赖绍聪, 秦江锋 . 北大巴山紫阳-岚皋地区碱性粗面岩地球化学特征: 与辉绿岩的成因联系[J]. 大地构造与成矿学,2021 ,45 (2 ):413 −424 .YANG Hang, LAI Shaocong, QIN Jiangfeng . Geochemical Characteristics of Alkali Trachytes in Ziyang-Langao Area, North Daba Mountains and Petrogenetic Relation with the Diabases[J]. [J]. Geotectonica et Metallogenia,2021 ,45 (2 ):413 −424 .[26] 张成立, 高山, 袁洪林, 等 . 南秦岭早古生代地幔性质: 来自超镁铁质、镁铁质岩脉及火山岩的Sr-Nd-Pb 同位素证据[J]. 中国科学(D 辑),2007 ,37 (7 ):857 −865 .ZHANG Qisheng, GAO Shan, YUAN Honglin, et al . Early Paleozoic mantle properties in the South Qinling Mountains: Sr-Nd-Pb isotopic evidence from ultramafic, mafic dikes and volcanic rocks[J]. Science in China, Ser. D,2007 ,37 (7 ):857 −865 .[27] 张成立, 高山, 张国伟, 等 . 南秦岭早古生代碱性岩墙群的地球化学及其地质意义[J]. 中国科学(D辑: 地球科学),2002 ,32 (10 ):819 −829 .ZHANG Chengli, GAO Shan, ZHANG Guowei, et al . Geochemistry and geological significance of early Paleozoic alkaline dike group in South Qinling Mountains[J]. Science in China, Ser. D,2002 ,32 (10 ):819 −829 .[28] 张方毅, 赖绍聪, 秦江锋, 等 . 北大巴山早古生代辉绿岩地球化学特征及其地质意义[J]. 岩石矿物学杂志,2020 ,39 (1 ):35 −46 .ZHANG Fangyi, LAI Shaocong, QIN Jiangfeng, et al . Geochemical characteristics and geological significance of Early Paleozoic alkali diabases in North Daba Mountain[J]. Acta Petrologica et Mineralogica,2020 ,39 (1 ):35 −46 .[29] doi: 10.3321/j.issn:1006-9267.1996.03.001张国伟, 孟庆任, 于在平, 等 . 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D辑),1996 ,26 (3 ):193 −201 . doi: 10.3321/j.issn:1006-9267.1996.03.001ZHANG Guowei, MENG Qingren, YU Zaiping, et al . Orogenic process and dynamic characteristics of Qinling orogenic belt[J]. Science in China, Ser. D,1996 ,26 (3 ):193 −201 .[30] 张国伟, 张本仁, 肖庆辉, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001. [31] doi: 10.3969/j.issn.0001-5717.2016.04.009张英利, 王宗起, 王刚, 等 . 北大巴山地区晚古生代滔河口组碎屑锆石年代学研究及对古生代岩浆事件的限定[J]. 地质学报,2016 ,90 (4 ):728 −738 . doi: 10.3969/j.issn.0001-5717.2016.04.009ZHANG Yingli, WANG Zongqi, WANG Gang, et al . Detrital Zircon Geochronology of the Late Paleozoic Taohekou Formation and Its Constraints on the Paleozoic Magmatic Events in North Daba Mountains[J]. Acta Geologica Sinica,2016 ,90 (4 ):728 −738 .[32] 赵东宏, 杨忠堂, 李宗会, 等. 秦岭成矿带成矿地质背景及优势矿产成矿规律[M]. 北京: 科学出版社, 2019. [33] 张梓尧, 张义虎, 徐磊, 等 . 西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义[J]. 西北地质,2024 ,57 (5 ):232 −247 .ZHANG Ziyao, ZHANG Yihu, XU Lei, et al . Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling[J]. Northwestern Geology,2024 ,57 (5 ):232 −247 .[34] 邹先武, 段其发, 汤朝阳, 等 . 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征[J]. 中国地质,2011 ,38 (2 ):28 .ZOU Xianwu, DUAN Qifa, TANG Zhaoyang, et al . SHRIMP zircon U-Pb dating and lithogeochemical characteristics of diabase from Zhenping area in North Daba Mountain[J]. Geology of China,2011 ,38 (2 ):28 .[35] doi: 10.1038/375308a0Baker M B, Hischmann M M, Ghiorso M S, et al . Compositions of near solidus predictive melts from experiments and thermodynamic calculations[J]. Nature,1995 ,375 :308 −311 .[36] doi: 10.1016/j.chemgeo.2010.03.003Chen Jianlin, Xu Jifeng, Wang Baodi, et al . Origin of Cenozoic alkalinepotassic volcanic rocks at Konglongxiang, Lhasa terrane, Tibetan Plateau: products ofpartial melting of a mafic lower-crustal source?[J]. Chemical Geology,2010 ,273 :286 −299 .[37] doi: 10.1016/j.lithos.2011.07.008Ding L X, Ma C Q, Li J W, et al . Timing and genesis of the adakitic and shoshonitic intrusions in the Laoniushan complex, southern margin of the North China Craton: implications for post-collisional magmatism associated with the Qinling Orogen[J]. Lithos,2011 ,126 (3-4 ):212 −232 .[38] Holbig E S, Grove T L . Mantle melting beneath the Tibetan Plateau: experimental constraints on ultrapotassic magmatism[J]. Journal of Geophysical Research-Solid Earth,2008 ,113 (B04 ):210 .[39] doi: 10.1016/j.lithos.2009.06.015Jahn B M, Litvinovsky B A, Zanvilevich A N, et al . Peralkaline granitoid magmastism in the Mongolian-Transbaikalian Belt: evolution, petrogenesis and tectonic significance[J]. Lithos,2009 ,113 :521 −539 .[40] Lassiter J C, DePaolo D J . Plume/lithosphere interaction in the generation of Continental and Oceanic Flood basalts: Chemical and isotopic constraints[J]. Geophysical Monograph Series,1997 ,100 :335 −355 .[41] Litvinovsky B A, Steele I M , Wickham S M . Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar[J]. Journal of Petrology,2000 ,41 (5 ):717 −737 .[42] doi: 10.1007/s00531-012-0792-1Lucassen F, Pudlo D, Franz G, et al . Cenozoic intra-plate magmatism in the Darfur volcanic province: Mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa[J]. International Journal of Earth Sciences,2013 ,102 (1 ):183 −205 .[43] doi: 10.1007/BF01173568Müller D, Rock N M S, Groves D I . Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study[J]. Mineralogy and Petrology,1992 ,46 :259 −289 .[44] Morrison G W . Characteristics and Tectonic Setting of the Shoshonite Rock Association[J]. Lithos,1980 ,13 :97 −108 .[45] doi: 10.1038/317496a0Mattauer M, Matte P, Malavieille L, et al . Tectonics of the Qinling Belt: Build-up and evolution of eastern Asia[J]. Nature,1985 ,317 (6037 ):496 −500 .[46] McDonough W F , Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120: 223-253. [47] doi: 10.1016/S0040-1951(00)00106-2Meng Q R, Zhang G W . Geologic framework and tectonic evolution of the Qinling orogen, Central China[J]. Tectonophysics,2000 ,323 :183 −196 .[48] Middlemost E . A. K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews,1994 ,37 :215 −224 .[49] Montel J M , Vielzeuf D . Partial melting of metagreywackes, part Ⅱ. Compositions of minerals and melts[J]. Contributions to Mineralogy and Petrology,1997 ,128 (2−3 ):176 −196 .[50] Nie X, Wang Z Q, Chen L, et al . Trachytic magmatism and Nb- rare earth element mineralization in the Pingli area, North Daba Mountain: insights from geochronology and geochemistry[J]. Geology,2020 ,55 :8225 −8243 .[51] Niu Y L, O’Hara M J. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2209 [52] Rollinson H R. Using geochemical data: Evaluation, presentation, interpretation[M]. Taylor and Francis, 2014. [53] doi: 10.1016/S0009-2541(01)00355-2Rubatto D . Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology,2002 ,184 :123 −138 .[54] Rudnick R L, Fountain D M . Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics,1995 ,33 :267 −309 .[55] Sun S S, McDonough W F . Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications,1989 ,42 (1 ):313 −345 .[56] doi: 10.1016/S0024-4937(00)00072-4Tchameni R, Mezger K, Nsifa N E, et al . Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex) South Cameroon[J]. Lithos,2001 ,57 (1 ):23 −42 .[57] doi: 10.1093/petrology/37.1.45Turner S, Arnaud N O, Liu J, et al . Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts[J]. Journal of Peterology,1996 ,37 (1 ):45 −71 .[58] doi: 10.1111/1755-6724.12404Wang K M, Wang Z Q, Zhang Y L, et al . Geochronology and geochemistry of mafic rocks in the Xuhe, Shaanxi, China: Implications for petrogenesis and mantle dynamics[J]. Acta Geologica Sinica(English Edition),2015 ,89 (1 ):187 −202 .[59] Wang G, Wang Z Q, Zhang Y L, et al . Devonian alkaline magmatism in South Qinling, China: evidence from the Taohekou Formation, Northern Daba Mountain[J]. International Geology Review,2017a ,59 (14 ):1737 −1763 .[60] Wang K, Wang L X, Ma C Q, et al . Mineralogy and geochemistry of the Zhuxi Nb-rich trachytic rocks, South Qinling (China): Insights into the niobium mineralization during magmatic-hydrothermal processes[J]. Ore Geology Reviews,2021 ,138 :104346 .[61] Wang R R, Xu Z Q, Santosh M, et al . Petrogenesis and tectonic implications of the early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes[J]. Tectonophysics,2017b ,712 (1 ):270 −288 .[62] doi: 10.1016/0012-821X(91)90217-6Weaver B L . The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth and Planetary Science Letters,1991 ,104 (2−4 ):381 −397 .[63] doi: 10.2138/am-2003-2-309White J C, Holt G S, Parker D F, et al . Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part Ⅰ: Systematics of trace-element partitioning[J]. American Mineralogist,2003 ,88 (2−3 ):316 −329 .[64] doi: 10.1017/S0016756800058222Wright J B . A simple alkalinity ratio and its application to questions of nonorogenic granite genesis[J]. Geological Magazine,1969 ,106 (4 ):370 −384 .[65] Wu H, Huang H, Zhang Z, et al . Highly differentiated trachytic magma linked with rare metal mineralization: A case study from the Shuanghekou Nb deposit, South Qinling[J]. Lithos,2023 ,438 :106990 .[66] doi: 10.1016/0040-1951(77)90005-1Wyllie P J . Crustal anatexis: An experimental review[J]. Tectonophysics,1977 ,43 (1−2 ):41 −71 .[67] doi: 10.1016/j.lithos.2008.03.002Xu C, Campbell I H, Allen C M, et al . U–Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China[J]. Lithos,2008 ,105 (1−2 ):118 −128 .[68] doi: 10.1080/00206814.2020.1818302Yang H, Lai S C, Qin, J F, et al . Early Palaeozoic alkaline trachytes in the North Daba Mountains, South Qinling Belt: petrogenesis and geological implications[J]. International Geology Review,2021 ,63 (16 ):2037 −2056 .[69] Ying Y C, Chen W, Chakhmouradian A R, et al . Textural and compositional evolution of niobium minerals in the Miaoya carbonatite-hosted REE-Nb deposit from the South Qinling Orogen of central China[J]. Mineralium Deposita,2023 ,58 (1 ):97 −220 .[70] Zhang G S, Liu S W, Han W H, et al . Baddeleyite U-Pb age and geochemical data of the mafic dykes from South Qinling: Constraints on the lithospheric extension[J]. Geological Journal,2017 ,52 (1 ):272 −285 .[71] Zhang Y F , Lai S C, Qin F J , et al. Alkali diabases in the South Qinling Belt, Central China [J]. Lithos, 2020, 370−371. [72] Zhu Jiang, Wang Lianxun, Peng Sanguo, et al . U-Pb Zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China[J]. Geological Journal,2017 ,52 (6 ):938 −954 . -