新疆西天山阿希低硫型浅成低温热液金矿床碳酸盐矿物形成过程及其成矿启示

杨虹, 彭义伟, 顾雪祥, 韩建民, 魏征, 刘俊平, 宋明伟, 张焱, 陈曦. 2025. 新疆西天山阿希低硫型浅成低温热液金矿床碳酸盐矿物形成过程及其成矿启示. 西北地质, 58(4): 308-327. doi: 10.12401/j.nwg.2025023
引用本文: 杨虹, 彭义伟, 顾雪祥, 韩建民, 魏征, 刘俊平, 宋明伟, 张焱, 陈曦. 2025. 新疆西天山阿希低硫型浅成低温热液金矿床碳酸盐矿物形成过程及其成矿启示. 西北地质, 58(4): 308-327. doi: 10.12401/j.nwg.2025023
YANG Hong, PENG Yiwei, GU Xuexiang, HAN Jianmin, WEI Zheng, LIU Junping, SONG Mingwei, ZHANG Yan, CHEN Xi. 2025. The Formation Process and Metallogenic Implications of Carbonate Minerals in the Axi Low-Sulfidation Epithermal Gold Deposit in the Western Tianshan, Xinjiang. Northwestern Geology, 58(4): 308-327. doi: 10.12401/j.nwg.2025023
Citation: YANG Hong, PENG Yiwei, GU Xuexiang, HAN Jianmin, WEI Zheng, LIU Junping, SONG Mingwei, ZHANG Yan, CHEN Xi. 2025. The Formation Process and Metallogenic Implications of Carbonate Minerals in the Axi Low-Sulfidation Epithermal Gold Deposit in the Western Tianshan, Xinjiang. Northwestern Geology, 58(4): 308-327. doi: 10.12401/j.nwg.2025023

新疆西天山阿希低硫型浅成低温热液金矿床碳酸盐矿物形成过程及其成矿启示

  • 基金项目: 国家自然科学基金项目(42130804、41572062、41702081),成都理工大学珠峰科学研究计划项目(80000-2024ZF11426)联合资助。
详细信息
    作者简介: 杨虹(1999−),女,硕士研究生,研究方向为矿物学、岩石学、矿床学。E−mail:yhong1009@163.com
    通讯作者: 彭义伟(1987−),男,副教授,硕士生导师,从事矿床学教学与相关研究。E−mail:pengyiwei15@cdut.edu.cn
  • 中图分类号: P57

The Formation Process and Metallogenic Implications of Carbonate Minerals in the Axi Low-Sulfidation Epithermal Gold Deposit in the Western Tianshan, Xinjiang

More Information
  • 新疆西天山阿希金矿床是赋存于陆相火山岩中的低硫型浅成低温热液金矿床。该矿床成矿过程分为石英–绢云母–黄铁矿(I)、石英–黄铁矿(II)、石英–多金属硫化物–碳酸盐(III)、碳酸盐–石英(IV)和碳酸盐(V)5个阶段。碳酸盐矿物是金矿石中除石英外最主要的非金属矿物,其组构与成分特征记录了成矿物质来源及成矿流体演化信息。笔者对阶段II皮壳状石英中自形粗粒白云石(Dol-I)、阶段III叶片状白云石(Dol-II)、阶段IV脉状白云石(Dol-III)和阶段V脉状方解石(Cal-IV)开展了岩相学观察、阴极发光拍摄、电子探针和C-O同位素分析。结果显示:Dol-I由白云石(Dol-Ia)和铁白云石(Dol-Ib)组成,二者的FeO含量(0.31%~0.68%、14.17%~14.66%)差异显著;Dol-II和Dol-III的FeO含量(0.63%~1.48%、1.57%~3.89%)相似,均属含铁白云石。Dol-III和Cal-IV的δ13CV-PDB均值分别为3.05‰、2.48‰,与海相碳酸盐的碳同位素组成相似,表明流体中碳可能源自矿区基底灰岩;二者的δ18OSMOW均值为15.72‰和15.68‰,呈负向飘移,可能是循环大气降水萃取赋矿大哈拉军山组火山岩所致。阶段II皮壳状矿石从脉壁向中心分别形成平行的含载金硫化物的石英微条带、梳状石英、胶状结构“球状”石英和Dol-I,表明它是成矿流体经历多次流体沸腾作用后,酸性气体逸失和硫化物大量沉淀的碱性条件下的产物。阶段III中Dol-II呈叶片状发育在烟灰色隐晶质石英中,表明它是流体初始沸腾过程中从非平衡过饱和热液体系中直接析出的产物。阶段IV中Dol-III呈自形粗粒的白云石脉穿切早期矿脉,它是在浅地表成矿环境稳定的条件下缓慢结晶形成的。阶段V中Cal-IV呈自形粗粒分布于成矿系统边缘,在温压降低的条件下,由热液中CO2、H2S逸失以及HCO3−解离产生的CO32−与Ca2+结合所形成。综合碳酸盐矿物组构学、主量元素和同位素地球化学特征,笔者认为流体沸腾是阿希金矿床阶段II、阶段III矿质富集沉淀的关键机制。

  • 加载中
  • 图 1  吐拉苏盆地区域地质图(a)和地层柱状图(b)(据Zhao et al.,2014Li et al.,2023b修改)

    Figure 1. 

    图 2  阿希金矿床地质简图(a)和A-A'勘探线剖面图(b)(董连慧等,2005Zhai et al.,2009

    Figure 2. 

    图 3  阿希金矿床不同类型矿石样品照片

    Figure 3. 

    图 4  阿希金矿床碳酸盐矿物的物质组成和显微组构

    Figure 4. 

    图 5  阿希金矿床成矿阶段及矿物生成顺序

    Figure 5. 

    图 6  阿希金矿床碳酸盐矿物电子探针主量元素三元图

    Figure 6. 

    图 7  阿希金矿床碳酸盐矿物的δ18OSMOW-δ13CV-PDB图解(据刘建明等,1997毛景文等,2002

    Figure 7. 

    图 8  阿希金矿床碳酸盐矿物组构学特征素描图

    Figure 8. 

    表 1  阿希金矿床碳酸盐矿物电子探针分析结果(%)

    Table 1.  The Electron Probe Micro-Analysis (EPMA) results of carbonate minerals from the Axi gold deposit (%)

    样号样品类型Na2OMgOMnOCaOFeOSrOK2OP2O5SiO2Al2O3BaOCO2Total
    17AX-28-2B-1Dol-Ia0.0320.680.0331.030.680.060.000.000.000.000.0547.4399.98
    17AX-28-2B-20.0020.080.0029.710.450.010.000.020.000.030.0048.0198.31
    17AX-28-2B-30.0020.570.0630.710.310.000.000.000.010.000.0047.7099.36
    17AX-28-2B-40.0621.160.0829.520.370.010.000.000.000.000.0447.8799.11
    17AX-28-2B-5Dol-Ib0.009.781.9828.8814.580.000.010.000.000.000.0044.2299.45
    17AX-28-2B-60.029.551.9428.9614.580.060.000.000.030.010.0444.2099.39
    17AX-28-2B-70.039.762.5128.3114.170.000.020.000.000.000.0044.3199.11
    17AX-28-2B-80.049.042.7828.6114.660.000.010.010.010.000.0044.0899.24
    14AX-13T-1-1Dol-II0.0020.030.4229.471.290.000.000.000.040.000.0347.6498.92
    14AX-13T-1-20.0019.710.4430.581.250.020.040.000.060.030.0047.3999.51
    14AX-13T-1-30.0220.690.2429.850.630.030.000.000.050.030.0047.7399.26
    14AX-13T-1-40.0020.030.5429.790.770.030.000.010.060.010.0347.6898.96
    14AX-13T-1-50.0020.040.5829.151.420.000.010.020.050.020.0047.6498.92
    14AX-13T-1-60.0020.280.8729.091.480.000.010.000.000.000.0047.5099.23
    14AX-13T-1-70.0020.240.4330.271.300.030.020.050.020.020.0047.3999.75
    14AX-13T-1-80.0120.120.5729.291.350.000.000.000.000.000.0047.6298.96
    14AX-13T-2-1Dol-III0.0419.440.2630.951.980.000.000.000.030.000.0047.1699.84
    14AX-13T-2-20.0018.710.7629.432.730.000.000.000.060.000.0947.2098.99
    14AX-13T-2-30.0019.040.4730.721.610.000.020.030.020.000.0047.3399.23
    14AX-13T-2-40.0118.121.0429.963.890.000.010.000.010.020.0046.7099.75
    14AX-13T-2-50.0018.451.1129.743.020.080.010.000.050.040.0146.9499.45
    14AX-13T-2-60.0019.630.7229.622.070.000.010.080.000.000.0047.3099.44
    14AX-13T-2-70.0119.310.8029.452.360.000.000.000.000.010.0747.2499.23
    14AX-13T-2-80.0019.540.7129.311.570.000.000.040.000.020.0247.5798.78
    16AX-58J-1-1Cal-IV0.000.241.1653.470.830.050.000.030.000.000.0043.9199.69
    16AX-58J-1-20.010.311.2153.470.910.000.010.030.020.000.0443.8799.87
    16AX-58J-1-30.000.140.6153.490.610.010.000.030.030.000.1044.1299.14
    16AX-58J-1-40.000.170.7953.650.700.070.010.000.020.000.0244.0199.45
    16AX-58J-1-50.000.350.2252.041.340.070.000.000.050.000.0044.3698.43
    16AX-58J-1-60.000.250.2453.170.990.050.000.000.020.000.0044.2198.94
    16AX-58J-1-70.000.190.2753.130.980.120.010.010.040.010.0044.1998.95
    16AX-58J-1-80.030.210.4453.870.890.100.000.050.000.020.0044.0099.60
    下载: 导出CSV

    表 2  阿希、塔吾尔别克、塔北和京希–伊尔曼德矿床碳酸盐矿物的C、O同位素组成(‰)

    Table 2.  The carbon and oxygen isotope compositions of carbonate minerals in the Axi, Tawuerbieke, Tabei and Jingxi-Yelmend deposits (‰)

    矿床 样品号 样品类型 δ13CV-PDB δ18OV-PDB δ18OSMOW 数据来源
    阿希金矿 16AX-34 阶段IV脉状白云石 2.54 −15.61 14.82 本研究
    17AX-57 3.56 −13.86 16.62
    16AX-58 阶段V脉状方解石 1.77 −18.26 12.09 本研究
    16AX-6 3.18 −11.29 19.27
    塔吾尔别克金矿 ABYD-11 方解石 −2.90 −23.90 6.20 Peng et al.,2017
    ABYD-12 方解石 −0.90 −17.10 13.30
    ABYD-16 方解石 −2.80 −21.70 8.60
    TWE IV-6 方解石 −0.30 −17.10 13.30
    TWE I-2 方解石 −1.30 −20.10 10.10
    塔北铅锌矿 TB-18 方解石 0.50 −22.50 7.80 Peng et al.,20182022
    TB-22 方解石 1.30 −22.00 8.30
    TB-35 方解石 1.50 −20.90 9.40
    TB-40 方解石 1.10 −21.40 8.80
    TB-50 方解石 1.00 −21.80 8.50
    15TB-4 方解石 1.00 −23.70 6.50
    15TB-6 方解石 1.00 −23.50 6.70
    21TB-1 方解石 1.50 −24.50 5.60
    21TB-1 方解石 1.50 −24.70 5.40
    21TB-4-2 方解石 0.90 −24.50 5.60
    京希-伊尔曼德金矿 JXQ12 方解石 −2.76 −12.24 18.24 朱亿广等,2011
    JXQ14 方解石 2.14 −17.29 13.04
    GM09 方解石 4.32 −16.70 13.64
    GM21 方解石 6.26 −16.70 13.64
    9-May-08 方解石 1.20 −10.15 20.40
    9-May-10 方解石 2.72 −23.82 6.30
    下载: 导出CSV
  • [1]

    安芳, 朱永峰. 新疆阿希金矿矿床地质和地球化学研究[J]. 矿床地质, 2009, 28(2): 143−156. doi: 10.3969/j.issn.0258-7106.2009.02.004

    AN Fang, ZHU Yongfeng. Geological and Geochemical Studies on the Axi Gold Deposit in Xinjiang[J]. Mineral Deposits,2009,28(2):143−156. doi: 10.3969/j.issn.0258-7106.2009.02.004

    [2]

    鲍景新, 陈衍景, 张增杰, 等. 西天山阿希金矿浊沸石化与古地热成矿流体系统的初步研究[J]. 北京大学学报(自然科学), 2002, 38(2): 252−259.

    BAO Jingxin, CHEN Yanjing, ZHANG Zengjie, et al. The Preliminary Study of Laumontitization of Axi Gold Deposit and Paleogeothermal Minerogenetic Fluid System in West Tianshan[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2002,38(2):252−259.

    [3]

    崔广申, 包志伟, 李群. 云南会泽超大型铅锌矿田热液白云岩的成因及地质意义[J]. 大地构造与成矿学, 2023, 47(2): 361−375.

    CUI Guangshen, BAO Zhiwei, LI Qun. Genesis and Geological Significance of Hydrothermal Dolomite in the Huize Super-Large Lead-Zinc Ore Field, Yunnan[J]. Geotectonica et Metallogenia,2023,47(2):361−375.

    [4]

    丁坤. 南秦岭柞-山矿集区典型金矿床成矿作用与成矿动力学背景[D]. 西安: 长安大学, 2020.

    DING Kun. Metallogenesis and Metallogenic Dynamic Background of Typical Gold Deposits in the Zha-Shan Ore Concentration Area, South Qinling[D]. Xi'an: Chang'an University, 2020.

    [5]

    董连慧, 沙德铭. 西天山地区晚古生代浅成低温热液金矿床[M]. 北京: 地质出版社, 2005.

    DONG Lianhui, SHA Deming. Epithermal Gold Deposits in the Late Paleozoic in Western Tianshan Region[M]. Beijing: Geological Publishing House, 2005.

    [6]

    董连慧, 田昌烈. 西天山吐拉苏-也里莫墩金成矿带简述[J]. 地质与资源, 2001, 10(2): 85−90. doi: 10.3969/j.issn.1671-1947.2001.02.004

    DONG Lianhui, TIAN Changlie. A Brief Introduction to the Tulasu-Yerimodun Gold Metallogenic Belt in Western Tianshan[J]. Geology and Resources,2001,10(2):85−90. doi: 10.3969/j.issn.1671-1947.2001.02.004

    [7]

    顾雪祥, 董连慧, 彭义伟, 等. 新疆西天山吐拉苏火山岩盆地浅成低温热液-斑岩型金多金属成矿系统的形成与演化[J]. 岩石学报, 2016, 32(5): 1283−1300.

    GU Xuexiang, DONG Lianhui, PENG Yiwei, et al. Formation and Evolution of the Epithermal-Porphyry Gold Polymetallic Metallogenic System in the Tulasu Volcanic Basin, Western Tianshan, Xinjiang[J]. Acta Petrologica Sinica,2016,32(5):1283−1300.

    [8]

    葛禹, 李昌昊, 彭深远, 等. 四川盆地东南缘下志留统龙马溪组白云岩特征及成因分析[J]. 矿物岩石, 2023, 43(4): 132−141.

    GE Yu, LI Changhao, PENG Shenyuan, et al. Characteristics and Genesis Analysis of Dolomite in the Lower Silurian Longmaxi Formation in the Southeastern Margin of the Sichuan Basin[J]. Journal of Mineralogy and Petrology,2023,43(4):132−141.

    [9]

    高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12): 1804−1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

    GAO Jun, QIAN Qing, LONG Lingli, et al. The Accretionary Orogenic Process of Western Tianshan[J]. Geological Bulletin of China,2009,28(12):1804−1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

    [10]

    顾雪祥, 章永梅, 彭义伟, 等. 西天山博罗科努成矿带与侵入岩有关的铁铜钼多金属成矿系统: 成岩成矿地球化学与构造-岩浆演化[J]. 地学前缘, 2014, 21(5): 156−175.

    GU Xuexiang, ZHANG Yongmei, PENG Yiwei, et al. The Fe-Cu-Mo Polymetallic Metallogenic System Related to Intrusive Rocks in the Boluokenu Metallogenic Belt, Western Tianshan: Geochemistry of Diagenesis and Mineralization and Tectonic-Magmatic Evolution[J]. Earth Science Frontiers,2014,21(5):156−175.

    [11]

    贾斌, 毋瑞身. 新疆阿希晚古生代冰长石-绢云母型金矿特征[J]. 地质与资源, 1999, 8(4): 199−208.

    JIA Bin, WU Ruishen. Characteristics of the Adularia-Sericite Type Gold Deposits in the Late Paleozoic in Axi, Xinjiang[J]. Geology and Resources,1999,8(4):199−208.

    [12]

    梁峰, 毕献武, 冯彩霞, 等. 云南富乐铅锌矿床碳酸盐矿物化学特征及其对成矿作用的指示[J]. 岩石学报, 2016, 32(11): 3418−3430.

    LIANG Feng, BI Xianwu, FENG Caixia, et al. Chemical Characteristics of Carbonate Minerals in the Fule Lead-Zinc Deposit, Yunnan and Their Implications for Mineralization[J]. Acta Petrologica Sinica,2016,32(11):3418−3430.

    [13]

    刘建明, 刘家军. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J]. 矿物学报, 1997, 17(4): 448−456. doi: 10.3321/j.issn:1000-4734.1997.04.012

    LIU Jianming, LIU Jiajun. Basin Fluid Genetic Model of Sediment-Hosted Microdisseminated Gold Deposits in the Gold-Triangle Area between Guizhou, Guangxi and Yunnan[J]. Acta Mineralogica Sinica,1997,17(4):448−456. doi: 10.3321/j.issn:1000-4734.1997.04.012

    [14]

    毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, 21(2): 121−128. doi: 10.3969/j.issn.0258-7106.2002.02.004

    MAO Jingwen, HE Ying, DING Tiping. Mantle Fluids Involved in Metallogenesis of Jiaodong (East Shandong) Gold District: Evidence of C, O and H Isotopes[J]. Mineral Deposits,2002,21(2):121−128. doi: 10.3969/j.issn.0258-7106.2002.02.004

    [15]

    毛先成, 潘敏, 刘占坤, 等. 西天山阿希金矿床黄铁矿微量元素 LA-ICP-MS 原位测试及其指示意义[J]. 中南大学学报(自然科学版), 2018, 49(5): 1148−1159.

    MAO Xiancheng, PAN Min, LIU Zhankun, et al. LA-ICP-MS trace element analysis of pyrite from Axi gold deposit in western Tianshan and its significance[J]. Journal of Central South University (Science and Technology),2018,49(5):1148−1159.

    [16]

    彭义伟, 顾雪祥, 程文斌, 等. 西天山吐拉苏盆地塔吾尔别克金矿床成因探讨: 来自同位素年代学和稳定同位素证据[J]. 岩石学报, 2016, 32(5): 1361−1378.

    PENG Yiwei, GU Xuexiang, CHENG Wenbin, et al. Discussion on the Genesis of the Tawuerbieke Gold Deposit in the Tulasu Basin, Western Tianshan: Evidence from Isotope Geochronology and Stable Isotopes[J]. Acta Petrologica Sinica,2016,32(5):1361−1378.

    [17]

    彭义伟. 新疆西天山吐拉苏火山岩带岩浆作用与金铜铁多金属成矿系统[D]. 北京: 中国地质大学, 2015.

    PENG Yiwei. Magmatism and Gold-Copper-Iron Polymetallic Metallogenic System in the Tulasu Volcanic Belt, Western Tianshan, Xinjiang[D]. Beijing: China University of Geosciences, 2015.

    [18]

    彭义伟, 顾雪祥, 章永梅, 等. 新疆阿希与塔吾尔别克金矿床的成因联系: 来自流体包裹体、S-Pb同位素和黄铁矿热电性的证据[J]. 地质学报, 2020, 94(10): 2920−2945.

    PENG Yiwei, GU Xuexiang, ZHANG Yongmei, et al. Genetic Links between the Axi and Tawuerbieke Gold Deposits in Xinjiang: Evidence from Fluid Inclusions, S-Pb Isotopes and Pyrite Thermoelectricity[J]. Acta Geologica Sinica,2020,94(10):2920−2945.

    [19]

    史训立. CO2和石英等矿物在常见水盐体系中的溶解度模型研究[D]. 北京: 中国地质大学, 2019.

    SHI Xunli. Research on Solubility Models of CO₂ and Minerals Such as Quartz in Common Water-Salt Systems [D]. Beijing: China University of Geosciences, 2019.

    [20]

    沙德铭, 董连慧, 鲍庆中, 等. 西天山地区金矿床主要成因类型及找矿方向[J]. 新疆地质, 2003, 21(4): 419−425. doi: 10.3969/j.issn.1000-8845.2003.04.008

    SHA Deming, DONG Lianhui, BAO Qingzhong, et al. Main Genetic Types and Prospecting Directions of Gold Deposits in Western Tianshan Region[J]. Xinjiang Geology,2003,21(4):419−425. doi: 10.3969/j.issn.1000-8845.2003.04.008

    [21]

    沙德铭, 金成洙, 董连慧, 等. 西天山阿希金矿成矿地球化学特征研究[J]. 地质与资源, 2005, 14(2): 118−125. doi: 10.3969/j.issn.1671-1947.2005.02.008

    SHA Deming, JIN Chengzhu, DONG Lianhui, et al. Study on the Metallogenic Geochemical Characteristics of the Axi Gold Deposit in Western Tianshan[J]. Geology and Resources,2005,14(2):118−125. doi: 10.3969/j.issn.1671-1947.2005.02.008

    [22]

    孙非非, 张爱奎, 刘智刚, 等. 东昆仑西段阿其音金矿成矿流体特征及其成因机制[J]. 西北地质, 2023, 56(6): 82−94. doi: 10.12401/j.nwg.2023124

    SUN Feifei, ZHANG Aikui, LIU Zhigang, et al. Analysis of the Genesis and H−O−S−Pb Isotopic Characteristics of Aqiyin Gold Deposit in the Western Section of the East Kunlun[J]. Northwestern Geology,2023,56(6):82−94. doi: 10.12401/j.nwg.2023124

    [23]

    谭茂, 吴鹏, 韩润生, 等. 会泽超大型铅锌矿床“矿石-接触带-围岩”白云石微区原位地球化学特征及其指示意义[J]. 矿物学报, 2022, 42(3): 315−328.

    TAN Mao, WU Peng, HAN Runsheng, et al. In-situ Geochemical Characteristics of Dolomite in the “Ore-Contact Zone-Wall Rock” of the Huize Super-large Lead-Zinc Deposit and Their Implications[J]. Acta Mineralogica Sinica,2022,42(3):315−328.

    [24]

    魏佳林, 曹新志, 徐伯骏, 等. 西天山阿希浅成低温热液金矿床剥蚀改造过程探讨[J]. 矿床地质, 2014, 33(2): 241−254. doi: 10.3969/j.issn.0258-7106.2014.02.001

    WEI Jialin, CAO Xinzhi, XU Bojun, et al. Discussion on the Denudation and Reformation Process of the Axi Epithermal Gold Deposit in Western Tianshan[J]. Mineral Deposits,2014,33(2):241−254. doi: 10.3969/j.issn.0258-7106.2014.02.001

    [25]

    王天齐, 李红艳, 王栋. 胶东大尹格庄金矿碳酸盐矿物的特征、物源及其在金成矿过程中的作用[J]. 岩石学报, 2024, 40(4): 1264−1284. doi: 10.18654/1000-0569/2024.04.13

    WANG Tianqi, LI Hongyan, WANG Dong. Characteristics, Provenance and Role in Gold Mineralization Process of Carbonate Minerals in the Dayingezhuang Gold Deposit in Jiaodong[J]. Acta Petrologica Sinica,2024,40(4):1264−1284. doi: 10.18654/1000-0569/2024.04.13

    [26]

    吴胜华, 毛景文, 谭道荣, 等. 赣南印支期中硫化型浅成低温热液银矿床的发现和意义[J]. 矿床地质, 2021, 40(3): 636−640.

    WU Shenghua, MAO Jingwen, TAN Daorong, et al. Discovery and Significance of the Indosinian Intermediate-Sulfidation Epithermal Silver Deposits in Southern Jiangxi Province[J]. Mineral Deposits,2021,40(3):636−640.

    [27]

    薛春纪, 王洪刚, 赵晓波, 等. 新疆西天山吐拉苏金矿集区克峡希小岩体群及其铜矿找矿前景[J]. 地学前缘, 2013, 20(6): 180−194.

    XUE Chunji, WANG Honggang, ZHAO Xiaobo, et al. Kexiaxi Cluster of Small Intrusions in the Tulasu Mineralization District, Western Tianshan, Xinjiang and Its Copper Exploration Prospect[J]. Earth Science Frontiers,2013,20(6):180−194.

    [28]

    徐伯骏, 曹新志, 魏佳林, 等. 新疆伊犁阿希-塔吾尔别克-阿庇因迪成矿区金-铅锌成矿系列和成矿模型研究[J]. 地质找矿论丛, 2014, 29(4): 495−505. doi: 10.6053/j.issn.1001-1412.2014.04.004

    XU Bojun, CAO Xinzhi, WEI Jialin, et al. Study on Gold-Lead-Zinc Metallogenic Series and Metallogenic Model in the Axi-Tawuerbieke-Abiyindi Metallogenic Area in Yili, Xinjiang[J]. Contributions to Geology and Mineral Resources Research,2014,29(4):495−505. doi: 10.6053/j.issn.1001-1412.2014.04.004

    [29]

    岳继宗. 新疆伊宁大哈拉军山组火山岩特征与构造意义[D]. 成都: 成都理工大学, 2021.

    YUE Jizong. Characteristics and Tectonic Significance of Volcanic Rocks of the Dahalajunshan Formation in Yining, Xinjiang [D]. Chengdu: Chengdu University of Technology, 2021.

    [30]

    由雪莲, 贾文强, 徐帆, 等. 铁白云石矿物学特征及原生次生成因机制[J]. 地球科学, 2018, 43(11): 4046−4055.

    YOU Xuelian, JIA Wenqiang, XU Fan, et al. Mineralogical Characteristics and Primary and Secondary Genesis Mechanisms of Ankerite[J]. Earth Science,2018,43(11):4046−4055.

    [31]

    杨虎城, 林良彪, 余瑜, 等. 川西南天全地区中二叠统碳酸盐岩地球化学特征及其古环境意义[J]. 矿物岩石, 2022, 42(2): 47−59. doi: 10.3969/j.issn.1001-6872.2022.2.kwys202202005

    YANG Hucheng, LIN Liangbiao, YU Yu, et al. Geochemical Characteristics of Middle Permian Carbonate Rocks in Tianquan Area, Southwestern Sichuan and Their Palaeo Environmental Significance[J]. Journal of Mineralogy and Petrology,2022,42(2):47−59. doi: 10.3969/j.issn.1001-6872.2022.2.kwys202202005

    [32]

    张涛, 陈正乐, 周振菊, 等. 西南天山阿沙哇义金矿床流体包裹体和H-O同位素地球化学特征与造山型金矿成因[J]. 中国地质, 2023, 50(5): 1513−1531. doi: 10.12029/gc20200418001

    ZHANG Tao, CHEN Zhengle, ZHOU Zhenju, et al. Geochemical Characteristics of Fluid Inclusions and H-O Isotopes in the Ashawayi Gold Deposit in Southwestern Tianshan and the Genesis of Orogenic Gold Deposits[J]. Geology in China,2023,50(5):1513−1531. doi: 10.12029/gc20200418001

    [33]

    张作衡, 毛景文, 王志良, 等. 新疆西天山阿希金矿床流体包裹体地球化学特征[J]. 岩石学报, 2007, 23(10): 2403−2414. doi: 10.3969/j.issn.1000-0569.2007.10.009

    ZHANG Zuoheng, MAO Jingwen, WANG Zhiliang, et al. Geochemical Characteristics of Fluid Inclusions in the Axi Gold Deposit in Western Tianshan, Xinjiang[J]. Acta Petrologica Sinica,2007,23(10):2403−2414. doi: 10.3969/j.issn.1000-0569.2007.10.009

    [34]

    翟伟, 孙晓明, 高俊, 等. 新疆阿希金矿床赋矿围岩-大哈拉军山组火山岩SHRIMP锆石年龄及其地质意义[J]. 岩石学报, 2006, 22(5): 1399−1404. doi: 10.3321/j.issn:1000-0569.2006.05.028

    ZHAI Wei, SUN Xiaoming, GAO Jun, et al. SHRIMP Zircon Ages of the Ore-Hosting Wall Rocks-Dahalajunshan Formation Volcanic Rocks in the Axi Gold Deposit, Xinjiang and Their Geological Significance[J]. Acta Petrologica Sinica,2006,22(5):1399−1404. doi: 10.3321/j.issn:1000-0569.2006.05.028

    [35]

    翟伟, 孙晓明, 贺小平, 等. 新疆阿希低硫型金矿床流体地球化学特征与成矿机制[J]. 地质学报, 2007, 81(5): 659−669. doi: 10.3321/j.issn:0001-5717.2007.05.010

    ZHAI Wei, SUN Xiaoming, HE Xiaoping, et al. Fluid Geochemical Characteristics and Metallogenic Mechanism of the Axi Low-sulfur Gold Deposit, Xinjiang[J]. Acta Geologica Sinica,2007,81(5):659−669. doi: 10.3321/j.issn:0001-5717.2007.05.010

    [36]

    翟伟, 孙晓明, 苏丽薇, 等. 新疆阿希金矿: 古生代的低硫型浅成低温热液金矿床[J]. 地学前缘, 2010, 17(2): 266−285.

    ZHAI Wei, SUN Xiaoming, SU Liwei, et al. Axi Gold Deposit in Xinjiang: A Paleozoic Low-Sulfur Epithermal Gold Deposit[J]. Earth Science Frontiers,2010,17(2):266−285.

    [37]

    郑永飞. 稳定同位素体系理论模式及其矿床地球化学应用[J]. 矿床地质, 2001, 20(1): 57−85. doi: 10.3969/j.issn.0258-7106.2001.01.007

    ZHENG Yongfei. Theoretical Models of Stable Isotope Systems and Their Application in Deposit Geochemistry[J]. Mineral Deposits,2001,20(1):57−85. doi: 10.3969/j.issn.0258-7106.2001.01.007

    [38]

    朱亿广, 刘家军, 朱炳玉, 等. 新疆金山金矿床硫铅碳同位素组成及对成矿物质的示踪[J]. 黄金, 2011, 32(11): 10−15. doi: 10.3969/j.issn.1001-1277.2011.11.003

    ZHU Yiguang, LIU Jiajun, ZHU Bingyu, et al. Sulfur, Lead and Carbon Isotope Compositions of the Jinshan Gold Deposit in Xinjiang and Their Tracing for Ore-forming Materials[J]. Gold,2011,32(11):10−15. doi: 10.3969/j.issn.1001-1277.2011.11.003

    [39]

    朱志新, 李锦轶, 董连慧, 等. 新疆西天山古生代侵入岩的地质特征及构造意义[J]. 地学前缘, 2011, 18(2): 170−179.

    ZHU Zhixin, LI Jinyi, DONG Lianhui, et al. Geological Characteristics and Tectonic Significance of Paleozoic Intrusive Rocks in Western Tianshan, Xinjiang[J]. Earth Science Frontiers,2011,18(2):170−179.

    [40]

    André-Mayer A, Leroy J, Bailly L, et al. Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru[J]. Mineralium Deposita,2002,37(5):452−464. doi: 10.1007/s00126-001-0247-2

    [41]

    An F, Zhu Y. Geology and geochemistry of the early permian Axi low-sulfidation epithermal gold deposit in North Tianshan (NW China)[J]. Ore Geology Reviews,2018,100:12−30. doi: 10.1016/j.oregeorev.2017.03.021

    [42]

    Brathwaite R L, Faure K. The waihi epithermal gold-silver-base metal sulfide-quartz vein system, New Zealand: temperature and salinity controls on electrum and sulfide deposition[J]. Economic Geology,2002,97(2):269−290. doi: 10.2113/gsecongeo.97.2.269

    [43]

    Burtner, Geoffrey K. The mercedes gold-silver district, sonora, mexico: geology, geochemistry and structure of a sierra madre low-sulfidation epithermal system[D]. Reno: University of Nevada, 2013.

    [44]

    Camprubí A, Albinson T. Epithermal deposits in Mexico-Update of current knowledge and an empirical reclassification[J]. Special Paper of the Geological Society of America,2007,422:377−415.

    [45]

    Clark L V, Gemmell J B. Vein Stratigraphy, Mineralogy, and Metal Zonation of the Kencana Low-Sulfidation Epithermal Au-Ag Deposit, Gosowong Goldfield, Halmahera Island, Indonesia[J]. Economic Geology,2018,113(1):209−236. doi: 10.5382/econgeo.2018.4549

    [46]

    Carrillo-Rosúa J, Morales-Ruano S, Roberts S, et al. Application of the mineralogy and mineral chemistry of carbonates as a genetic tool in the hydrothermal environment[J]. Minerals,2021,11(8):822. doi: 10.3390/min11080822

    [47]

    Chen Y J, Pirajno F, Wu G, et al. Epithermal deposits in North Xinjiang, NW China[J]. International Journal of Earth Sciences,2012,101(4):889−917. doi: 10.1007/s00531-011-0689-4

    [48]

    Dong G, Morrison G, Jaireth S. Quartz textures in epithermal veins, Queensland-classification, origin, and implication[J]. Economic Geology,1995,90(6):1841−1856. doi: 10.2113/gsecongeo.90.6.1841

    [49]

    Drummond S E, Ohmoto H. Chemical evolution and mineral deposition in boiling hydrothermal systems[J]. Economic Geology,1985,80(1):126−147. doi: 10.2113/gsecongeo.80.1.126

    [50]

    Dong L L, Wan B, Deng C, et al. An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ oxygen-sulfur isotopes and geochronology[J]. Journal of Asian Earth Sciences,2018,153:412−424. doi: 10.1016/j.jseaes.2017.07.044

    [51]

    Dong G Y, Zhou T. Zoning in the Carboniferous-Lower Permian Cracow epithermal vein system, central Queensland, Australia[J]. Mineralium Deposita,1996,31(3):210−224. doi: 10.1007/BF00204028

    [52]

    Etoh J, Izawa E, Taguchi S. A fluid inclusion study on columnar adularia from the Hishikari low-sulfidation epithermal gold deposit, Japan[J]. Resource Geology,2002,52(1):73−78. doi: 10.1111/j.1751-3928.2002.tb00119.x

    [53]

    Fu Hanjing, Jian Xing, Zhang Wei, et al. A comparative study of methods for determining carbonate content in marine and terrestrial sediments[J]. Marine and Petroleum Geology,2020,116:104337. doi: 10.1016/j.marpetgeo.2020.104337

    [54]

    Faure K, Matsuhisa Y, Metsugi H, et al. The Hishikari Au-Ag Epithermal Deposit, Japan: Oxygen and Hydrogen Isotope Evidence in Determining the Source of Paleohydrothermal Fluids[J]. Economic Geology,2002,97(3):481−498. doi: 10.2113/gsecongeo.97.3.481

    [55]

    Frondel C. Stability of colloidal gold under hydrothermal conditions[J]. Economic Geology,1938,33:1−20. doi: 10.2113/gsecongeo.33.1.1

    [56]

    Fournier R O. Silica minerals as indicators of conditions during gold deposition[J]. Geological Survey Bulletin,1985,1646:15−26.

    [57]

    Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment: A Review[J]. Sedimentology,2015,62(6):1749−1769. doi: 10.1111/sed.12202

    [58]

    Gorczyk W, Gonzalez M C, Hobbs B. Carbon dioxide as a proxy for orogenic gold source[J]. Ore Geology Reviews,2020,127:103829. doi: 10.1016/j.oregeorev.2020.103829

    [59]

    Gao S, Xu H, Zang Y Q, et al. Mineralogy, ore-forming fluids and geochronology of the Shangmachang and Beidagou gold deposits, Heilongjiang province, NE China[J]. Journal of Geochemical Exploration,2018,188:137−155. doi: 10.1016/j.gexplo.2017.12.016

    [60]

    Gao S, Hofstra A H, Zou X, et al. Oxygen isotope evidence for input of magmatic fluids and precipitation of Au-Ag telluride s in an otherwise ordinary adularia sericite epithermal system in NE China[J]. American Mineralogist,2021,106:2003−2019. doi: 10.2138/am-2021-7825

    [61]

    Genna A, Jebrak M, Marcoux E, et al. Genesis of cockade breccias in the tectonic evolution of the Cirotan epithermal gold system, West Java[J]. Canadian Journal of Earth Sciences,1996,33(1):93−102. doi: 10.1139/e96-010

    [62]

    Hoefs J. Stable lsotope Geochemistry[M]. Berlin: Springer, 2009.

    [63]

    Hedenquist J W, Arribas A, Gonzalez-Ruien E. Exploration for epithermal gold deposits[J]. Reviews in Economic Geology,2000,13:245−277.

    [64]

    Heald P, Foley N, Hayba D. Comparative Anatomy of Volcanic-Hosted Epithermal Deposits-Acid-Sulfate and Adularia-Sericite Types[J]. Economic Geology,1987,82(1):1−26. doi: 10.2113/gsecongeo.82.1.1

    [65]

    Hayashi K I, Maruyama T, Satoh H. Precipitation of gold in a low-sulfidation epithermal gold deposits: Insights from a submillimeter-scale oxygen isotope analysis of vein quartz[J]. Economic Geology,2001,96:211−216. doi: 10.2113/gsecongeo.96.1.211

    [66]

    John D A, Hofstra A H, Fleck R J, et al. Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, north-central Nevada[J]. Economic Geology and the Bulletin of the Society of Economic Geologists,2003,98(2):425−463. doi: 10.2113/gsecongeo.98.2.425

    [67]

    Klein C, Dutrow B. Manuel of Mineral Science[M]. New York: Wiley, 2008.

    [68]

    Kaewpaluk S, Salam A, Assawincharoenkij T, et al. Geology, mineralization, and alteration of B Prospect of the epithermal Au-Ag deposit in Central Thailand: A study on Chatree's satellite deposit for future gold exploration[J]. Scienceasia,2023,49(1):131. doi: 10.2306/scienceasia1513-1874.2022.142

    [69]

    Lovering T G. Jasperoid in the United States; its characteristics, origin, and economic signifcance[M]. Washington: U. S. Geological Survey, 1972.

    [70]

    Liu Z, Mao X, Ackerman L, et al. Two-stage gold mineralization of the Axi epithermal Au deposit, Western Tianshan, NW China: Evidence from Re-Os dating, S isotope, and trace elements of pyrite[J]. Mineralium Deposita,2020,55(5):863−880. doi: 10.1007/s00126-019-00903-6

    [71]

    Liu Z K, Mao X C, Deng H L, et al. Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan: Insights from geochemical effects of alteration, mineralization and trace elements in pyrite[J]. Ore Geology Reviews,2018,102:368−385. doi: 10.1016/j.oregeorev.2018.09.009

    [72]

    Li K, Xi K L, Cao Y C, et al. Genesis of granular calcite in lacustrine fine-grained sedimentary rocks and its indication to volcanichy-drothermal events: A case study of Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development,2023b,50(3):615−627. doi: 10.1016/S1876-3804(23)60414-8

    [73]

    Li N, Zhang B, Ulrich T, et al. Magmatic degassing controlled the metal budget of the Axi epithermal gold deposit, China[J]. American Mineralogist,2024,109(1):51−60.

    [74]

    Li N, Zhang B, Danisik M, et al. Formation-exhumation history of the Carboniferous Axi epithermal gold deposit in the Chinese Western Tianshan based on zircon U-Pb and pyrite Re-Os geochronology, and (U-Th)/He zircon-apatite thermochronometry[J]. Journal of the Geological Society, 2023a: jgs2021-150.

    [75]

    Marinova I. Bladed Texture and Exploration Implications. A Case Study from the Kuklitsa Deposit, Krumovgrad Goldfield, SE Bulgaria[J]. Geology of Ore Deposits,2019,61(2):185−197. doi: 10.1134/S1075701519020028

    [76]

    Moncada D, Baker D, Bodnar R J. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México[J]. Ore Geology Reviews,2017,89:143−170. doi: 10.1016/j.oregeorev.2017.05.024

    [77]

    Mottram, Catherine M K, Dawn A B, et al. Tracking the porphyry-epithermal mineralization transition using U-Pb carbonate dating[J]. Geology,2024,52(9):723−728. doi: 10.1130/G52211.1

    [78]

    Ma L T, Dai L Q, Zheng Y F, et al. Geochemical evidence for incorporation of subducting sediment-derived melts into the mantle source of Paleozoic high-Mg andesites from northwestern Tianshan in western China[J]. Geological Society of America Bulletin,2023,135(1-2):310−330. doi: 10.1130/B36341.1

    [79]

    Marinova I, Ganev V, Titorenkova R. Colloidal origin of colloform banded textures in the Paleogene low sulfidation Khan Krum gold deposit, SE Bulgaria[J]. Mineralium Deposita,2014,49:49−74. doi: 10.1007/s00126-013-0473-4

    [80]

    Moncada D, Mutchler S, Nieto A, et al. Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration[J]. Journal of Geochemical Exploration,2012,114:20−35. doi: 10.1016/j.gexplo.2011.12.001

    [81]

    Monecke T, Monecke J, Reynolds J T. The Influence of CO2 on the Solubility of Quartz in Single-Phase Hydrothermal Fluids: Implications for the Formation of Stockwork Veins in Porphyry Copper Deposits[J]. Economic Geology,2019,114(6):1195−1206. doi: 10.5382/econgeo.4680

    [82]

    Marchev P, Singer B, Jelev D, et al. The Ada Tepe deposit: a sediment-hosted, detachment fault controlled, low-sulfidation gold deposit in the Eastern Rhodopes, SE Bulgaria[J]. Schweizerische Mineralogische Und Petrographische Mitteilungen,2004,84:59−78.

    [83]

    Miladinovic Z, Simic V, Nikolic N, et al. Agates of the Lece Volcanic Complex (Serbia): Mineralogical and Geochemical Characteristics[J]. Minerals,2024,14(5):511−511. doi: 10.3390/min14050511

    [84]

    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos,2005,79:1−24. doi: 10.1016/j.lithos.2004.04.048

    [85]

    McLeish D F, Williams-Jones A E, Vasyukova O V, et al. Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature[J]. Proceedings of the National Academy of Sciences, 2021, 118(20).

    [86]

    Nickel E H, Grice J D. The IMA commission on new minerals and mineral names: Procedures and guidelines on mineral nomenclature, 1998[J]. Canadian Mineralogist,1998,36(3):913−926.

    [87]

    Özbaş F, Hanilçi N. Quartz textures, mineral chemistry and fluid inclusion features of Tuztaşı low-sulphidation Au mineralization: Implication to it's formation[J]. Geochemistry,2025,85(1):126220.

    [88]

    Ohmoto H. Systematics of sulfur and carbon isotopes in hydro thermal ore deposits[J]. Economic Geology,1972,67:551−578. doi: 10.2113/gsecongeo.67.5.551

    [89]

    Ohmoto H, Rye R O. Isotopes of sulfur and carbon[M]. New York: John Wiley and Sons, 1979.

    [90]

    Peng Y W, Gu X X, Cheng W B, et al. Metallogenesis of the Late Palaeozoic Axi-Tawuerbieke Au-Pb-Zn district in the Tulasu Basin, Western Tianshan, China: Constraints from geological characteristics and isotope geochemistry[J]. Geological Journal,2018,53(6):3030−3050. doi: 10.1002/gj.3141

    [91]

    Peng Y W, Gu X X, Lv P R, et al. Genesis and tectonic setting of the Late Devonian Tawuerbieke gold deposit in the Tulasu ore cluster, western Tianshan, Xinjiang, China[J]. International Geology Review,2017,59(10):1344−1368. doi: 10.1080/00206814.2016.1236354

    [92]

    Peng Y W, Gu X X, Su J, et al. Geology, geochemistry and genesis of Tabei: A newly identified intermediate-sulphidation epithermal Pb-Zn deposit adjacent to low-sulphidation Au deposit in the Tulasu Basin, Chinese Western Tianshan[J]. Geological Journal,2022,58(2):583−604.

    [93]

    Qiu K F, Deng J, Laflamme C, et al. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments[J]. Geochimica et Cosmochimica Acta,2023,343:133−141. doi: 10.1016/j.gca.2023.01.002

    [94]

    Rottier B, Casanova V. Trace element composition of quartz from porphyry systems: a tracer of the mineralizing fluid evolution[J]. Mineralium Deposita,2021,56(5):843−862. doi: 10.1007/s00126-020-01009-0

    [95]

    Reed M H, Spycher N F. Boiling, cooling, and oxidation in epithermal systems: A numerical modelling approach[J]. Reviews in Economic Geology, 1985, 249-272.

    [96]

    Saunders J A. Colloidal transport of gold and silica in epithermal precious metal systems. Evidence from the Sleeper deposit, Nevada[J]. Geology,1990,18(8):757−760. doi: 10.1130/0091-7613(1990)018<0757:CTOGAS>2.3.CO;2

    [97]

    Simmons S F, Brown K L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit[J]. Science,2006,314(5797):288−291. doi: 10.1126/science.1132866

    [98]

    Simmons S F, Christenson B W. Origins of calcite in boiling geothermal system[J]. American Journal of Science,1994,294:361−400. doi: 10.2475/ajs.294.3.361

    [99]

    Sander M V, John E B. Crystallization and recrystallization of growth-zoned vein quartz crystals from epithermal systems; implications for fluid inclusion studies[J]. Economic Geology,1988,83(5):1052−1060. doi: 10.2113/gsecongeo.83.5.1052

    [100]

    Simon G, Kesler S E, Russell N, et al. Epithermal gold mineralization in an old volcanic arc: The Jacinto deposit, Camaguey district, Cuba[J]. Economic Geology and the Bulletin of the Society of Economic Geologists,1999,94(4):487−506. doi: 10.2113/gsecongeo.94.4.487

    [101]

    Shimizu T. Reinterpretation of quartz textures in terms of hydrothermal fluid evolution at the Koryu Au-Ag deposit, Japan[J]. Economic Geology,2014,109:2051−2065. doi: 10.2113/econgeo.109.7.2051

    [102]

    Shimizu T, Matsueda H, Ishiyama D, et al. Genesis of epithermal Au-Ag mineralization of the Koryu mine, Hokkaido, Japan[J]. Economic Geology,1998,93(3):303−325. doi: 10.2113/gsecongeo.93.3.303

    [103]

    Swinkels L J, Schulz I J, Frenzel M, et al. Spatial and Temporal Evolution of the Freiberg Epithermal Ag-Pb-Zn District, Germany[J]. Economic Geology,2021,116(7):1649−1667. doi: 10.5382/econgeo.4833

    [104]

    Saunders J A, Unger D L, Kamenov G D, et al. Genesis of Middle Miocene Yellowstone-hotspotrelated bonanza epithermal Au-Ag deposits, Northern Great Basin Region, USA[J]. Mineralium Deposita,2008,43:715−734. doi: 10.1007/s00126-008-0201-7

    [105]

    Tang G J, Wang Q, Wyman D A, et al. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions[J]. Journal of Asian Earth Sciences,2013,74:113−128. doi: 10.1016/j.jseaes.2013.03.022

    [106]

    Wang Y N, Cai K D, Sun M, et al. Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track (AFT) dating: implication for the preservation of epithermal deposits in the ancient orogenic belt[J]. Ore Geology Reviews,2018,100:111−132. doi: 10.1016/j.oregeorev.2017.04.011

    [107]

    Wang Q X, Deng T, Xu D, et al. Genetic association between carbonates and gold precipitation mechanisms in the Jinshan deposit, eastern Jiangnan orogen[J]. Bulletin of the Geological Society of America,2024,136(9-10):4195−4217. doi: 10.1130/B37361.1

    [108]

    Warmada I W, Lehmann B, Simandjuntak M, et al. Fluid inclusion, rare-earth element and stable isotope study of carbonate minerals from the Pongkor epithermal gold-silver deposit, west Java, Indonesia[J]. Resource Geology,2007,57(2):124−135. doi: 10.1111/j.1751-3928.2007.000012.x

    [109]

    Xie Z J, Huang K J, Xia Y, et al. Heavy δ26Mg values in carbonate indicate a magmatic-hydrothermal origin of Carlin-type Au deposit[J]. Geochimica et Cosmochimica Acta,2022,333:166−183. doi: 10.1016/j.gca.2022.07.009

    [110]

    Yilmaz H, Sonmez F N, Akay E, et al. Low-sulfidation epithermal Au-Ag mineralization in the Sindirgi District, Balikesir Province, Turkey[J]. Turkish Journal of Earth Sciences,2013,22(4):485−522.

    [111]

    Zheng Y F, Hoefs J. Carbon and oxygen isotopic covariations in hydrothermal calcites[J]. Mineralium Deposita,1993,28(2):79−89.

    [112]

    Zeeck L R, Monecke T, Reynolds T J, et al. Textural Characteristics of Barren and Mineralized Colloform Quartz Bands at the Low-Sulfidation Epithermal Deposits of the Omu Camp in Hokkaido, Japan: Implications for Processes Resulting in Bonanza-Grade Precious Metal Enrichment[J]. Economic Geology,2021,116(2):407−425. doi: 10.5382/econgeo.4795

    [113]

    Zhang B L, Nuo S, Sun P W, et al. Textural and compositional evolution of Au-hosting Fe-S-As minerals at the Axi epithermal gold deposit, Western Tianshan, NW China[J]. Ore Geology Reviews,2018,100:31−50. doi: 10.1016/j.oregeorev.2017.08.002

    [114]

    Zhai W, Sun X M, Sun W D, et al. Geology, geochemistry, and genesis of Axi: A Paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China[J]. Ore Geology Reviews,2009,36(4):265−281. doi: 10.1016/j.oregeorev.2009.04.003

    [115]

    Zhang Y Z, Wang Y J, Fan W M, et al. Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (similar to 825 Ma) high-mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications[J]. Precambrian Research,2012,220:139−157.

    [116]

    Zhao X B, Xue C J, Symons D T A, et al. Microgranular enclaves in island-arc andesites: a possible link between known epithermal Au and potential porphyry Cu-Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China[J]. Journal of Asian Earth Sciences,2014,85:210−223. doi: 10.1016/j.jseaes.2014.01.014

    [117]

    Zhang H, Zhou X J, Zhou F M, et al. Zinc isotopes revealed the role of ore-hosting carbonate rocks in the formation of MVT deposits: A case study of the Huize Pb-Zn deposit, SW China[J]. Journal of Geochemical Exploration, 2024, 258.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  15
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2024-11-23
修回日期:  2025-02-20
录用日期:  2025-03-05
刊出日期:  2025-08-20

目录