Tectono-Thermal Evolution of Late Mesozoic Extensional Granite Domes in Southern Mongolia and the Sino-Mongolian Border Region: Constraints from Low-Temperature Thermochronology
-
摘要:
南蒙古–中蒙边界地区是东北亚伸展构造发育的重要区域,晚中生代花岗岩穹隆的形成和热演化对于理解区域伸展机制和动力学具有重要意义。笔者采用磷灰石裂变径迹和锆石(U-Th)/He等低温热年代学方法,结合40Ar-39Ar热年代学数据对南蒙古及邻区的罕乌拉、Nartyn和Altanshiree 等3个花岗岩穹隆的构造热演化过程进行分析,结果显示3个穹隆韧性剪切带的磷灰石裂变径迹年龄为(104.9±5.8) Ma、(101.3±5.5) Ma、(110.7±6.2) Ma、(110.1±7.4) Ma,锆石(U-Th)/He年龄为(123.4±7.4) Ma、(123.7±7.4) Ma,黑云母40Ar-39Ar年龄为(123.9±0.9)Ma、(121.3±1.4) Ma,钾长石40Ar-39Ar年龄为(122.2±1.2)Ma、(122.3±0.8) Ma。热史模拟结果表明,晚中生代3个穹隆均经历了明显的隆升,根据隆升速率的差异可分为3个阶段:①133~125 Ma为中等速度隆升。②125~123 Ma为快速隆升。③123~100 Ma为缓慢隆升。穹隆隆升过程与区域性岩浆作用及伸展构造活动紧密相关:早期岩浆开始侵入并加热地壳,导致地壳岩石圈强度降低,诱导穹隆隆升,后期区域性拉张背景促使穹隆快速隆升,此外,隆升活动与东北亚早白垩世其他典型变质核杂岩伸展事件具有一致性。蒙古鄂霍茨克洋闭合后垮塌引发的岩石圈伸展与古太平洋板块俯冲后回撤可能共同驱动了穹隆的隆升。
Abstract:The South Mongolia–Central Mongolia border region is a significant area for the development of extensional tectonics in Northeast Asia. The formation and thermal evolution of Mesozoic granite domes in this region provide key insights into the mechanisms and dynamics of regional extension. This study combines low-temperature thermochronology techniques, including apatite fission-track dating, zircon (U-Th)/He dating and 40Ar-39Ar dating to analyze the tectonothermal evolution of three granite domes (Hannuula, Nartyn, and Altanshiree) across South Mongolia and adjacent areas. The results indicate that the ages of apatite fission-track dating from the ductile shear zones of these domes are (104.9±5.8)Ma, (101.3±5.5) Ma, (110.7±6.2) Ma, and (110.1±7.4) Ma, The zircon (U-Th)/He ages are(123.4±7.4)Ma and (123.7±7.4) Ma; biotite 40Ar/39Ar ages are (123.9±0.9) Ma and (121.3±1.4) Ma; and K-feldspar 40Ar/39Ar ages are (122.2±1.2) Ma and (122.3±0.8) Ma. Thermal history modeling reveals that all three domes underwent significant uplift during the Late Mesozoic with three distinct uplift phases: ① moderate uplift between 133 and 125 Ma. ② rapid uplift from 125 to 123 Ma, and ③ slow uplift from 123 to 100 Ma. The uplift of the domes is closely linked to regional magmatism and extensional tectonics. Early magmatic intrusions heated the crust, reducing lithospheric strength and inducing dome uplift, while regional extension during the later stages promoted rapid uplift. Furthermore, the uplift events are consistent with other extensional events associated with metamorphic core complexes in Northeast Asia during the Early Cretaceous. Lithospheric extension triggered by the collapse of the Mongol-Okhotsk Ocean and the rollback of the subducted Pacific Plate likely played a key role in driving the uplift of these granite domes.
-
-
图 1 东北亚大地构造简图(据王涛等,2022)
Figure 1.
图 2 东北亚地区晚中生代变质核杂岩或伸展穹隆构造分布图(据Wang et al., 2012修改)
Figure 2.
图 3 罕乌拉穹隆构造简图(据杜灿等,2022)
Figure 3.
图 4 Nartyn穹隆构造简图(据Daoudene et al., 2012)
Figure 4.
表 1 南蒙古-中蒙边境花岗岩穹隆韧性剪切带内样品特征及低温年代学信息
Table 1. Characteristics and geochronology of mylonitic samples from the granite domes at the South Mongolia-Sino-Mongolian border
样品 采样地点 GPS点位 岩性 高程
(m)AFT年龄
(Ma)ZHe年龄
(Ma)Ar-Ar年龄
(Ma)N180717-4 罕乌拉穹隆 116°36′44″E
46°03′54″N糜棱岩化细粒黑云
母钾长花岗岩890 104.94±5.84 123.4±7.35 123.9±0.90(Bi)
122.3±0.80(K)N180717-9 罕乌拉穹隆 116°36′44″E
46°03′54″N糜棱岩化中粗粒黑
云母钾长花岗岩890 121.3±1.40(Bi)
122.2±1.20(K)M19713-39.1 Nartyn穹隆 108°37′43.04″E
45°44′28.47″N糜棱岩化闪长岩 1125 101.30±5.51 123.7±7.42 M19715-310.2 Altanshiree穹隆 110°37′55.60″E
45°46′43.36″N花岗质糜棱岩 1109 101.73±6.20 M19715-311.1 Altanshiree穹隆 110°37′56.89″E
45°45′39.60″N花岗质糜棱岩 1117 110.05±7.38 表 2 南蒙古-中蒙边境花岗岩穹隆磷灰石裂变径迹分析结果
Table 2. Apatite fission track data of the granitoid samples from the South Mongolia-Sino-Mongolian border
样号 颗粒数目 径迹密度(106 tr cm−2) 卡方检验(Pχ2) 裂变径迹
年龄(Ma)平均裂变径
迹长度SD ρs(Ns) ρi(Ni) ρd(Nd) (±1σ) (µm ± 1s.e.)
(no of tracks)(µm) N180717-4 20 0.9584 (679)1.937( 1372 )1.246( 3987 )<0.01%(99.9%) 104.9±5.5 13.66±0.09(100) 0.94 M19713-39.1 20 1.640(723) 3.359( 1481 )1.219( 3902 )<0.01%(>99.9%) 101.3±5.5 13.70±0.10(100) 1.02 M19715-311.1 20 0.4990 (427)0.9303 (796)1.206( 3860 )<0.01%(>99.9%) 110.1±7.4 13.97±0.15(40) 0.93 M19715-310.2 20 1.138(533) 2.271( 1064 )1.193( 3818 )<0.01%(>99.9%) 101.7±6.2 13.58±0.13(54) 0.97 表 3 南蒙古-中蒙边境花岗岩穹隆锆石(U-Th)/He分析结果
Table 3. Analysed ages of ziron of the granitoid samples from the South Mongolia-Sino-Mongolian border
样品 4He +/− U +/− Th +/− Th/U FT 矫正年龄 +/− 等效半径 ncc 10−6 10−6 factor Ma Ma μm M19713-39.1-2 33.46 0.89 1771.08 45.49 673.08 15.56 0.39 0.64 128.1 7.8 42.4 M19713-39.1-3 18.75 0.48 872.21 19.82 515.24 10.44 0.61 0.66 116.9 7.0 44.3 M19713-39.1-4 60.70 1.63 2149.20 49.33 824.03 16.16 0.39 0.69 126.2 7.6 48.0 M19713-39.1-5 37.31 0.95 1150.77 27.68 587.72 12.19 0.52 0.69 121.1 7.3 49.3 加权平均年龄:(123.07±7.42)Ma N1801717-4-1 6.47 0.16 449.93 10.32 173.80 3.70 0.40 0.63 120.8 7.2 40.3 N1801717-4-2 13.52 0.34 1214.71 26.45 527.63 10.08 0.45 0.59 124.4 7.4 37.1 N1801717-4-3 23.41 0.59 847.47 19.27 195.43 3.97 0.24 0.69 124.1 7.4 47.7 N1801717-4-4 7.15 0.18 213.55 4.88 102.70 2.10 0.49 0.69 124.2 7.4 49.4 加权平均年龄:(123.40±7.35) Ma 表 4 罕乌拉穹隆样品40Ar-39Ar数据测试结果
Table 4. Test results of 40Ar-39Ar data of samples of the Hanwula Dome
实验编号 40Ar/39Ar ± 1σ 37Ar/39Ar ± 1σ 36Ar/39Ar ± 1σ 40Ar*/39Ark ± 2σ 40Ar*(%) 39Ark(%) Age± 2σ(Ma) 样号 N180717-4B 黑云母 J = 0.00371200 ±0.00001114 0.24 W 20.531780 0.104821 0.142605 0.060565 0.019815 0.000432 14.68929 ± 0.29077 71.54 15.85 95.79 ±1.85 0.31 W 20.119006 0.103066 0.135168 0.075452 0.005498 0.000148 18.50699 ± 0.20882 91.98 11.71 119.87 ±1.31 0.39 W 20.308166 0.104367 0.120672 0.094277 0.005129 0.000148 18.80366 ± 0.21229 92.58 9.38 121.73 ±1.33 0.47 W 4 20.739718 0.109146 0.409513 0.151288 0.005897 0.000183 19.03585 ± 0.22857 91.76 6.36 123.18 ±1.43 0.54 W 4 20.775851 0.109524 0.115864 0.196640 0.005644 0.000212 19.11888 ± 0.23901 92.02 4.89 123.70 ±1.49 0.63 W 4 20.884293 0.110252 0.278187 0.197592 0.006560 0.000227 18.97202 ± 0.24282 90.83 4.48 122.78 ±1.52 0.70 W 4 20.754695 0.108812 0.234170 0.198751 0.005961 0.000209 19.01533 ± 0.23637 91.60 4.84 123.05 ±1.48 0.78 W 4 20.503014 0.107249 0.340590 0.190122 0.004625 0.000199 19.16862 ± 0.23448 93.47 4.66 124.01 ±1.47 0.86 W 4 20.610343 0.110820 0.726417 0.257214 0.004061 0.000233 19.47945 ± 0.25430 94.47 3.75 125.96 ±1.59 0.93 W 4 19.988401 0.106379 0.611624 0.216567 0.002748 0.000172 19.23439 ± 0.23151 96.19 4.46 124.42 ±1.45 1.00 W 4 20.585591 0.108484 0.394969 0.209604 0.004985 0.000205 19.14978 ± 0.23770 93.00 4.60 123.90 ±1.49 1.08 W 4 19.813551 0.102555 0.068224 0.115787 0.002211 0.000103 19.16651 ± 0.20846 96.73 8.33 124.00 ±1.30 1.24 W 4 19.575201 0.100446 0.064570 0.091324 0.001823 0.000090 19.04234 ± 0.20308 97.27 10.57 123.22 ±1.27 1.49 W 4 19.838581 0.106558 0.346033 0.386145 0.002960 0.000285 18.99668 ± 0.27236 95.73 2.30 122.94 ±1.70 1.89 W 4 20.273910 0.113862 0.597110 0.563081 0.003629 0.000404 19.25823 ± 0.33578 94.95 1.72 124.57 ±2.10 2.55 W 4 20.496665 0.113778 0.760246 0.424380 0.003933 0.000335 19.40695 ± 0.30111 94.63 2.10 125.50 ±1.88 样号 N180717-4K 钾长石 J = 0.00369000 ±0.00001107 0.24 W 25.163348 0.085913 0.403111 0.219346 0.021854 0.000353 18.74350 ± 0.24421 74.47 2.49 120.66 ±1.52 0.31 W 4 19.328187 0.062117 0.058952 0.083375 0.001435 0.000054 18.90947 ± 0.12654 97.83 6.56 121.69 ±0.79 0.39 W 4 19.252791 0.062362 0.190835 0.093198 0.000720 0.000042 19.05811 ± 0.12694 98.98 6.48 122.62 ±0.79 0.47 W 4 19.529441 0.063189 0.224488 0.122151 0.001812 0.000068 19.01513 ± 0.13113 97.35 4.48 122.35 ±0.82 0.54 W 4 20.093618 0.064802 0.146194 0.103398 0.003816 0.000087 18.97970 ± 0.13392 94.45 5.30 122.13 ±0.83 0.63 W 4 20.881883 0.066766 0.201178 0.104793 0.006824 0.000122 18.88444 ± 0.14161 90.42 5.78 121.53 ±0.88 0.70 W 4 20.657816 0.063624 0.079660 0.019460 0.005707 0.000079 18.97887 ± 0.12567 91.87 28.22 122.12 ±0.78 0.78 W 4 20.571003 0.063101 0.067531 0.023995 0.005056 0.000071 19.08308 ± 0.12423 92.76 25.27 122.77 ±0.77 0.86 W 4 20.548632 0.065367 0.140247 0.066146 0.004848 0.000086 19.12911 ± 0.13234 93.08 8.30 123.06 ±0.82 0.93 W 20.502663 0.076789 1.015035 0.422475 0.003905 0.000210 19.44532 ± 0.20393 94.78 1.30 125.02 ±1.27 1.00 W 20.754697 0.079351 1.312573 0.546316 0.004099 0.000247 19.66863 ± 0.22867 94.68 1.01 126.41 ±1.42 1.08 W 20.448630 0.066922 0.333780 0.124320 0.004055 0.000096 19.28210 ± 0.13989 94.27 4.42 124.01 ±0.87 1.24 W 20.527270 0.102368 1.637441 1.447526 0.002510 0.000531 19.94230 ± 0.44333 97.04 0.38 128.11 ±2.75 1.49 W 21.717950 0.366280 18.755073 20.929979 0.007100 0.006277 21.43388 ± 5.21189 97.43 0.03 137.33 ±32.16 样号 N180717-9B 黑云母 J = 0.00339100 ±0.00001017 0.24 W 23.004564 0.119670 0.181200 0.235896 0.028023 0.000638 14.74023 ± 0.40020 64.07 5.64 88.00 ±2.33 0.31 W 21.943223 0.127811 1.222262 0.795877 0.010930 0.000566 18.82936 ± 0.42035 85.74 1.67 111.67 ±2.42 0.39 W 22.326218 0.123558 0.263407 0.514345 0.010036 0.000428 19.38573 ± 0.34143 86.81 2.59 114.87 ±1.96 0.47 W 21.764129 0.115855 − − 0.008902 0.000281 19.10967 ± 0.26693 87.82 4.08 113.28 ±1.53 0.54 W 21.693013 0.113462 − − 0.007724 0.000253 19.38726 ± 0.25510 89.39 4.93 114.87 ±1.46 0.63 W 21.679232 0.114854 0.185663 0.290037 0.006368 0.000239 19.81492 ± 0.25704 91.39 4.60 117.33 ±1.47 0.70 W 21.889067 0.115529 0.336051 0.356497 0.006520 0.000263 19.99446 ± 0.26815 91.32 4.07 118.36 ±1.54 0.78 W 22.129088 0.117367 0.202087 0.315695 0.008445 0.000278 19.65266 ± 0.26971 88.80 4.23 116.40 ±1.55 0.86 W 4 22.041749 0.116604 − − 0.005404 0.000254 20.41729 ± 0.26986 92.65 3.59 120.78 ±1.54 0.93 W 4 22.023307 0.120175 − − 0.004626 0.000246 20.62693 ± 0.27570 93.68 3.40 121.98 ±1.58 1.00 W 4 22.075273 0.120652 0.366199 0.476738 0.005208 0.000311 20.57129 ± 0.30078 93.16 2.81 121.66 ±1.72 1.08 W 4 22.212936 0.117836 0.487768 0.272280 0.005820 0.000231 20.53972 ± 0.26071 92.44 4.92 121.48 ±1.49 1.24 W 4 21.759433 0.111894 0.109716 0.116391 0.004820 0.000134 20.34543 ± 0.22440 93.49 12.51 120.37 ±1.28 1.49 W 4 21.566047 0.110471 0.000000 0.114503 0.004437 0.000128 20.25466 ± 0.22140 93.92 12.72 119.85 ±1.27 2.55 W 4 21.773349 0.112491 0.100670 0.157263 0.003532 0.000135 20.73913 ± 0.23006 95.24 8.54 122.62 ±1.32 样号 N180717-9K 钾长石 J = 0.00340900 ±0.00001023 0.16 W 161.147324 2.051576 − − 0.342016 0.011232 53.85386 ± 6.39471 34.61 0.05 304.13 ±33.24 0.24 W 47.535005 0.356976 1.020714 2.887088 0.073486 0.002361 25.92193 ± 1.49508 54.49 0.22 152.78 ±8.45 0.31 W 4 22.946326 0.134071 − − 0.009189 0.000484 20.20706 ± 0.40361 88.08 0.60 120.19 ±2.32 0.39 W 4 21.559667 0.117302 − − 0.003792 0.000237 20.39952 ± 0.27949 94.65 1.08 121.30 ±1.61 0.47 W 4 21.022739 0.111769 0.185482 0.393483 0.001575 0.000142 20.57489 ± 0.24337 97.86 1.60 122.30 ±1.40 0.54 W 4 20.983271 0.109254 − − 0.001626 0.000108 20.49366 ± 0.22718 97.67 2.36 121.84 ±1.31 0.63 W 4 20.627325 0.107597 − − 0.000455 0.000082 20.44001 ± 0.22204 99.13 2.71 121.53 ±1.28 0.70 W 4 20.605658 0.106689 0.065024 0.169290 0.000615 0.000060 20.42996 ± 0.21637 99.14 3.43 121.47 ±1.24 0.78 W 4 20.621180 0.107199 − − 0.000459 0.000063 20.48313 ± 0.21856 99.33 3.25 121.78 ±1.26 0.86 W 4 20.616450 0.107153 − − 0.000557 0.000068 20.43969 ± 0.21862 99.15 3.00 121.53 ±1.26 0.93 W 4 20.568653 0.107310 0.027789 0.235795 0.000442 0.000076 20.44064 ± 0.22143 99.38 2.68 121.53 ±1.27 1.00 W 4 20.677657 0.108624 0.454520 0.275624 0.000695 0.000089 20.51578 ± 0.22661 99.19 2.29 121.96 ±1.30 1.08 W 4 20.641435 0.109085 0.069387 0.270966 0.000622 0.000094 20.46396 ± 0.22791 99.14 2.15 121.67 ±1.31 1.16 W 4 20.767389 0.110617 0.371822 0.315586 0.000833 0.000102 20.55665 ± 0.23315 98.96 2.00 122.20 ±1.34 1.24 W 4 20.781080 0.110559 − − 0.001087 0.000111 20.45615 ± 0.23230 98.44 2.03 121.62 ±1.34 1.30 W 4 20.921318 0.110546 − − 0.001401 0.000106 20.46399 ± 0.23034 97.84 2.16 121.67 ±1.32 1.38 W 4 20.912413 0.109562 − − 0.001458 0.000101 20.46715 ± 0.22646 97.88 2.52 121.68 ±1.30 1.64 W 4 21.413501 0.109436 0.084902 0.090068 0.002952 0.000082 20.54906 ± 0.21602 95.96 7.04 122.16 ±1.24 1.89 W 4 21.383846 0.108055 0.019233 0.037556 0.002584 0.000062 20.62180 ± 0.21162 96.44 15.55 122.57 ±1.22 2.13 W 4 21.006622 0.107757 0.018975 0.080507 0.001004 0.000042 20.71169 ± 0.21438 98.59 7.94 123.09 ±1.23 2.30 W 4 21.153334 0.107174 0.038664 0.037754 0.001304 0.000039 20.77162 ± 0.21183 98.19 15.59 123.43 ±1.22 2.55 W 4 21.056866 0.107121 0.097790 0.069175 0.001061 0.000042 20.75256 ± 0.21297 98.55 9.25 123.33 ±1.22 2.79 W 4 21.142492 0.108544 − − 0.001029 0.000048 20.83118 ± 0.21640 98.53 6.12 123.78 ±1.24 3.01 W 4 22.324369 0.120802 − − 0.004742 0.000230 20.83340 ± 0.27230 93.38 1.38 123.79 ±1.56 表 5 基于热史模拟法、年龄–封闭温度法和矿物对法的南蒙古–中蒙边境花岗岩穹隆隆升速率
Table 5. The rate of granite dome uplift in the South Mongolia-Sino-Mongolian border on thermal history simulation, age-sealing temperature method and mineral pair method
样号 热史模拟法 年龄-封闭温度法 矿物对法 快速隆升阶段 较缓慢隆升阶段 ZHe AFT Bi Ar-Ar/ZHe ZHe/AFT 时间 速率 时间 速率 年龄 速率 年龄 速率 时间 速率 时间 速率 M180717-4 133~124
124~1231.41
5.71123~105 0.109 123.4 0.038 104.9 0.026 123.9~123.4 5.71 123.4~104.9 0.109 M19713-39.1 133~125
125~1231.79
2.02123~101 0.09 123.7 0.038 101.3 0.027 125~123.7 2.02 123.7~101.3 0.09 M19715-311.1 127~126
126~12314.3
1.27123~110 0.151 110.1 0.025 时间单位为Ma;速率单位为Km/Ma -
[1] 程银行, 滕学建, 李艳锋, 等. 东乌旗罕乌拉韧性剪切带的构造属性及其年代约束[J]. 地球科学, 2014, 39(4): 375−386.
CHENG Yinhang, TENG Xuejian, LI Yanfeng, et al. Structural attributes and chronological constraints of the Hanwula ductile shear zone in Dongwuqi[J]. Earth Science,2014,39(4):375−386.
[2] 杜灿, 郭磊, 王涛, 等. 中蒙边界早白垩世不对称花岗岩穹隆的伸展时限、剪切作用类型和区域构造意义[J]. 岩石矿物学杂志, 2022, 41(1): 18−36. doi: 10.3969/j.issn.1000-6524.2022.01.002
DU Can, GUO Lei, WANG Tao, et al. Timing of extension, shear types, and regional tectonic implications of the Early Cretaceous asymmetric granitic dome along the China-Mongolia border[J]. Acta Petrologica et Mineralogica,2022,41(1):18−36. doi: 10.3969/j.issn.1000-6524.2022.01.002
[3] 郭磊, 李建波, 童英, 等. 内蒙古苏尼特左旗早白垩世宝德尔花岗岩伸展穹隆的确定及其地质意义[J]. 地质通报, 2015, 34(12): 2195−2202.
GUO Lei, LI Jianbo, TONG Ying, et al. Identification and geological significance of the Early Cretaceous Baode’er granite extensional dome in Sonid Left Banner, Inner Mongolia[J]. Geological Bulletin of China,2015,34(12):2195−2202.
[4] 林伟, 许德如, 侯泉林, 等. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿[J]. 大地构造与成矿学, 2019, 43(3): 409−430.
LIN Wei, XU Deru, HOU Quanlin, et al. Early Cretaceous extensional doming and polymetallic mineralization in central-eastern China[J]. Geotectonica et Metallogenia,2019,43(3):409−430.
[5] 林伟, 王军, 刘飞, 等. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论[J]. 岩石学报, 2013, 29(5): 1791−1810.
LIN Wei, WANG Jun, LIU Fei, et al. Late Mesozoic extensional structures and their geodynamic background in the North China Craton and adjacent regions[J]. Acta Petrologica Sinica,2013,29(5):1791−1810.
[6] 林少泽, 朱光, 赵田, 等. 燕山地区喀喇沁变质核杂岩的构造特征与发育机制[J]. 科学通报, 2014, 59(32): 3174−3189. doi: 10.1360/N972014-00100
LIN Shaoze, ZHU Guang, ZHAO Tian, et al. Structural characteristics and development mechanism of the Kalaqin metamorphic core complex in the Yanshan area[J]. Chinese Science Bulletin,2014,59(32):3174−3189. doi: 10.1360/N972014-00100
[7] 王雅美, 尹继元, 袁超, 等. 新疆西准噶尔苏云河斑岩型钼矿的剥露和保存条件: 来自裂变径迹和(U-Th)/He热年代学的约束[J]. 岩石学报, 2021, 37(8): 2547−2561. doi: 10.18654/1000-0569/2021.08.18
WANG Yamei, YIN Jiyuan, YUAN Chao, et al. Exhumation and preservation conditions of the Suyunhe porphyry Mo deposit in West Junggar, Xinjiang: Constraints from fission track and (U-Th)/He thermochronology[J]. Acta Petrologica Sinica,2021,37(8):2547−2561. doi: 10.18654/1000-0569/2021.08.18
[8] 王涛, 郑亚东, 刘树文, 等. 中蒙边界亚干变质核杂岩糜棱状钾质花岗岩——早中生代收缩与伸展构造体制的转换标志[J]. 岩石学报, 2002, 18(2): 177−186.
WANG Tao, ZHENG Yadong, LIU Shuwen, et al. Mylonitized K-feldspar granites in the Yagan metamorphic core complex along the China-Mongolia border: A marker of transition from contraction to extension in the Early Mesozoic[J]. Acta Petrologica Sinica,2002,18(2):177−186.
[9] 王涛, 张建军, 李舢, 等. 东北亚晚古生代—中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 2022, 29(2): 28−44.
WANG Tao, ZHANG Jianjun, LI Shan, et al. Spatiotemporal evolution of Late Paleozoic–Mesozoic magmatism in Northeast Asia: Identification evidence for the scope and superposition of multiple plate tectonic regimes[J]. Earth Science Frontiers,2022,29(2):28−44.
[10] 王涛, 郑亚东, 张进江, 等. 华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义[J]. 地质通报, 2007, 26(9): 1154−1166.
WANG Tao, ZHENG Yadong, ZHANG Jinjiang, et al. Some problems in the study of Mesozoic extensional tectonics of the North China Craton and their significance for lithospheric thinning[J]. Geological Bulletin of China,2007,26(9):1154−1166.
[11] 吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.
WU Yanrong,ZHOU Hai,ZHAO Guochun,et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology,2024,57(3):11−28.
[12] 杨雪叶, 尹继元, 肖文交, 等. 东北那丹哈达岭中—新生代构造-热演化史: 来自(U-Th)/He和裂变径迹热年代学的证据[J]. 地质学报, 2021, 95(12): 3660−3675.
YANG Xueye, YIN Jiyuan, XIAO Wenjiao, et al. Meso-Cenozoic tectonic-thermal evolution of the Nadanhada Range in Northeast China: Evidence from (U-Th)/He and fission track thermochronology[J]. Acta Geologica Sinica,2021,95(12):3660−3675.
[13] Amanatov V A. First discovery of the lower Cambrian deposits in Eastern Mongolia[M]//Marinov N A, ed. Materials for Geology of Mongolian People’s Republic. Moscow: Nedra, 1966: 13–15.
[14] Badarch G. Tectonics of south Mongolia[M]//Seltmann R, Gerel O, Kirwin D, eds. Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. London: CERCAMS, 2005: 119–129.
[15] Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences,2002,21:87−110. doi: 10.1016/S1367-9120(02)00017-2
[16] Byamba J, Lkhundev S, Tundev S. New data on age of Upper Proterozoic deposits in Middle Gobi[J]. Doklady Akademii Nauk SSSR,1990,312(12):428−431.
[17] Corrigan J. Inversion of apatite fission track data for thermal history information[J]. Journal of Geophysical Research: Solid Earth,1991,96(B6):10347−10360. doi: 10.1029/91JB00514
[18] Daoudene Y, Gapaïs D, Ruffet G, et al. Syn-thinning pluton emplacement during Mesozoic extension in eastern Mongolia[J]. Tectonics,2012,31(3):TC3001.
[19] Daoudene Y, Ruffet G, Cocherie A, et al. Timing of exhumation of the Ereendavaa metamorphic core complex (north-eastern Mongolia): U-Pb and 40Ar/39Ar constraints[J]. Journal of Asian Earth Sciences,2013,62:98−116. doi: 10.1016/j.jseaes.2011.04.009
[20] Darby B J, Davis A D, Zhang X H. The newly discovered Waziyu metamorphic core complex, Yiwulushan, western Liaoning Province, northeast China[J]. Earth Science Frontiers,2004,11(3):145−155.
[21] Davis G A, Wang C, Zheng Y D, et al. The enigmatic Yinshan fold-and-thrust belt of northern China: New views on its intraplate contractional styles[J]. Geology,1998,26(1):43−46. doi: 10.1130/0091-7613(1998)026<0043:TEYFAT>2.3.CO;2
[22] Davis G A, Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, Northern China[C]//Geological Society of America Memoir. Boulder: Geological Society of America, 2001: 171–197.
[23] Ding R X, Zhou Z Y, Wang W. Modeling exhumation rates of orogenic belts with low-temperature thermochronological data[J]. Advances in Earth Science,2007,22(5):447−455.
[24] Donelick R A, Ketcham R A, Carlson W D. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects[J]. American Mineralogist,1999,84(9):1224−1234. doi: 10.2138/am-1999-0902
[25] Donelick R A, O’Sullivan P B, Ketcham R A. Apatite fission track analysis[J]. Reviews in Mineralogy and Geochemistry,2005,58(1):49−94. doi: 10.2138/rmg.2005.58.3
[26] Donskaya T V, Windley B F, Mazukabzov A M, et al. Age and evolution of late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia[J]. Journal of the Geological Society of London,2008,165(1):405−421. doi: 10.1144/0016-76492006-162
[27] Edel J B, Schulmann K, Hanžl P, et al. Palaeomagnetic and structural constraints on 90° anticlockwise rotation in SW Mongolia during the Permo–Triassic: Implications for Altaid oroclinal bending[J]. Journal of Asian Earth Sciences,2014,94:157−171. doi: 10.1016/j.jseaes.2014.07.039
[28] Gleadow A J W, Duddy I R, Green P F, et al. Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy and Petrology,1986,94(4):405−415. doi: 10.1007/BF00376334
[29] Green P F. Thermal and tectonic history of the East Midlands shelf (onshore UK) and surrounding regions assessed by apatite fission track analysis[J]. Journal of the Geological Society,1989,146(5):755−773. doi: 10.1144/gsjgs.146.5.0755
[30] Guo L, Wang T, Zhang J J, et al. Evolution and time of formation of the Hohhot metamorphic core complex, North China: New structural and geochronological evidence[J]. International Geology Review,2011,54(11):1309−1331.
[31] Huang B, Yan Y L, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during late Paleozoic and early Mesozoic times[J]. Earth-Science Reviews,2018,186:8−36. doi: 10.1016/j.earscirev.2018.02.004
[32] Huang H, Wang T, Tong Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews,2020,208:103255. doi: 10.1016/j.earscirev.2020.103255
[33] Hurford A J. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I. U. G. S. Subcommission on Geochronology[J]. Chemical Geology,1990,80(2):171−178.
[34] Hurford A J, Green P F. The zeta age calibration of fission-track dating[J]. Chemical Geology,1983,41(1):285−317.
[35] Ketcham R A, Carter A, Donelick R A, et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist,2007,92(5−6):799−810.
[36] Ketcham R A, Donelick R A, Balestrieri M L, et al. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters,2009,284(3−4):504−515.
[37] Koppers A A P. ArArCALC—Software for 40Ar/39Ar age calculations[J]. Computers & Geosciences,2002,28(5):605−619.
[38] Lehmann J, Schulmann K, Lexa O, et al. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science,2010,310(7):575−628. doi: 10.2475/07.2010.02
[39] Lin W, Faure M, Monie P, et al. Polyphase Mesozoic tectonics in the eastern part of North China Block: Insights from the Eastern Liaoning Peninsula massif (NE China)[J]. Geological Society, London, Special Publications,2007,280(1):153−169. doi: 10.1144/SP280.7
[40] Lin W, Wei W. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: A review and synthesis[J]. International Geology Review, 2018.
[41] Liu J L, Davis G A, Lin Z Y, et al. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics,2005,407(1):65−80.
[42] Li S Z, Zhang G W, Zhou L H, et al. The opposite Meso-Cenozoic intracontinental deformations under the super convergence: Rifting and extension in the North China Craton and shortening and thrusting in the South China Craton[J]. Earth Science Frontiers,2011,18(3):79−107.
[43] Lü H H, Chang Y, Wang W, et al. Rapid exhumation of the Tianshan Mountains since the early Miocene: Evidence from combined apatite fission track and (U-Th)/He thermochronology[J]. Science China Earth Sciences,2013,56(12):2116−2125. doi: 10.1007/s11430-013-4715-1
[44] Meng Q R. What drove Late Mesozoic extension of the northern China–Mongolia tract?[J]. Tectonophysics,2003,369(3−4):155−174.
[45] Reiners P W, Spell T L, Nicolescu S, et al. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating[J]. Geochimica et Cosmochimica Acta,2004,68(8):1857−1887. doi: 10.1016/j.gca.2003.10.021
[46] Ruzhentsev S V, Pospelov I I, Badarch G. Tectonics of the Mongolian Indosinides[J]. Geotectonics,1989,23(5):476−487.
[47] Sengör A M C. Some current problems on the tectonic evolution of the Mediterranean during the Cainozoic[M]. Dordrecht: Springer Netherlands, 1993.
[48] Sengör A M C, Natal'In B A. Paleotectonics of Asia: Fragments of a synthesis[C]//Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 1996: 486–641.
[49] Steiger R H, Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochemistry[J]. Earth and Planetary Science Letters,1977,36(3):359−362. doi: 10.1016/0012-821X(77)90060-7
[50] Tang J, Li A P, Xu W L. Geochronology and geochemistry of late Carboniferous–Middle Jurassic magmatism in the Helong area, NE China: Implications for the tectonic transition from the Paleo-Asian oceanic to circum-Pacific regime[J]. Geological Journal,2020,55(3):1808−1825. doi: 10.1002/gj.3611
[51] Thomson S N, Ring U. Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey[J]. Tectonics,2006,25(3):TC3005.
[52] Wang F, Jourdan F, Lo C H, et al. YBCs: A new standard for 40Ar/39Ar dating[J]. Chemical Geology,2014,388:87−98. doi: 10.1016/j.chemgeo.2014.09.003
[53] Wang T, Guo L, Zheng Y D, et al. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes[J]. Lithos,2012,154:315−345. doi: 10.1016/j.lithos.2012.07.020
[54] Wang T, Guo L, Zhang L, et al. Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 2015, 97(Part B): 365–392.
[55] Wang T, Zheng Y D, Zhang J J, et al. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics,2011,30(6):TC6007.
[56] Wang T, Tong Y, Xiao W J, et al. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age-data[J]. National Science Review,2022,9(12):nwab210.
[57] Webb LE, Graham S A, Johnson C L, et al. Occurrence, age, and implications of the Yagan-Onch Hayrhan metamorphic core complex, southern Mongolia[J]. Geology,1999,27(2):143−146.
[58] Wilde S A. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—A review of the evidence[J]. Tectonophysics,2015,662:345−362. doi: 10.1016/j.tecto.2015.05.006
[59] Wu F Y, Han R H, Yang J H, et al. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology[J]. Chemical Geology,2007,238(3):232−248.
[60] Wu F Y, Ji W Q, Sun D H, et al. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos,2012,150:6−25. doi: 10.1016/j.lithos.2012.03.020
[61] Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews,2018,186:94−128. doi: 10.1016/j.earscirev.2017.09.020
[62] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics,2003,22(6):1069.
[63] Xu W L, Pei F P, Wang F, et al. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences,2013,74:167−193. doi: 10.1016/j.jseaes.2013.04.003
[64] Xu W, Zhou Y S, Zhang J, et al. Thermo-tectonic evolution of the northern Erlian Basin (NE China): Evidence from fission track and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences,2023,248:105620.
[65] Yang F, Chen G Z, Wu G, et al. Geochronology and geochemistry of Early Cretaceous bimodal volcanic rocks from Erguna Massif, NE China: Evidence for the back-arc extension of the Mongol-Okhotsk orogenic belt[J]. International Journal of Earth Sciences,2022,111(1):173−194. doi: 10.1007/s00531-021-02106-9
[66] Yang J H, Wu F Y, Chung S L, et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar-39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton[J]. Geological Society of America Bulletin,2007,119(11):1405−1414.
[67] Yang L Q, Deng J, Goldfarb R, et al. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China[J]. Gondwana Research,2014,25(4):1469−1483. doi: 10.1016/j.gr.2013.07.001
[68] Yin A. Gneiss domes and gneiss dome systems[C]//Whitney D L, Teyssier C, Siddoway C S, eds. Gneiss Domes in Orogeny. Boulder: Geological Society of America Special Paper, 2004, 380: 1−14.
[69] York D. Least squares fitting of a straight line with correlated errors[J]. Earth and Planetary Science Letters,1969,5(5):320−324.
[70] Zhang B, Cai F, Chen S, et al. Sinistral strike-slip shearing along the Jiali shear zone around the Eastern Himalaya syntaxis region: Evidence for Oligocene eastward limited translation of Tibet[J]. Journal of Structural Geology,2020,139:104016.
[71] Zhang F Q, Dilek Y, Chen H L, et al. Late Cretaceous tectonic switch from a Western Pacific- to an Andean-Type continental margin evolution in East Asia, and a foreland basin development in NE China[J]. Terra Nova,2017,29(6):335−342. doi: 10.1111/ter.12286
[72] Zhang F Q, Chen H L, Yang S F, et al. Late Mesozoic–Cenozoic evolution of the Sanjiang Basin in NE China and its tectonic implications for the West Pacific continental margin[J]. Journal of Asian Earth Sciences,2012,49:287−299. doi: 10.1016/j.jseaes.2011.12.017
[73] Zhang J J, Guo P Y, Sun P, et al. Petrogenesis of the early Cretaceous intra-plate basalts from the Western North China Craton: Implications for the origin of the metasomatized cratonic lithospheric mantle[J]. Lithos, 2021, 380–381: 105887.
[74] Zhang J J, Zheng Y D, Liu S W. Xiao Qinling Metamorphic Core Complex[M]. Beijing: Ocean Press, 1998: 1–120.
[75] Zhang S H, Zhao Y, Yang Z Y, et al. The 1.35 Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent[J]. Earth and Planetary Science Letters,2009,288(3−4):588−600.
[76] Zheng Y D, Wang S Z, Wang Y F. An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sino-Mongolian boundary area[J]. Science in China Series B,1991,34(9):1146−1152.
[77] Zhou Y Z, Han B F, Zhang B, et al. The Yingba shear zone on the Sino-Mongolian border: Southwestern extension of the Zuunbayan Fault from Mongolia to China and implications for Late Mesozoic intracontinental extension in Eastern Asia[J]. Tectonophysics,2012,574:118−132.
-