甘肃北山地区早白垩世古气候定量研究:基于爬行动物C-O同位素分析

王茜, 申欢, 魏正安, 李宇白, 张治锋. 2024. 甘肃北山地区早白垩世古气候定量研究:基于爬行动物C-O同位素分析. 西北地质, 57(6): 136-149. doi: 10.12401/j.nwg.2024071
引用本文: 王茜, 申欢, 魏正安, 李宇白, 张治锋. 2024. 甘肃北山地区早白垩世古气候定量研究:基于爬行动物C-O同位素分析. 西北地质, 57(6): 136-149. doi: 10.12401/j.nwg.2024071
WANG Qian, SHEN Huan, WEI Zheng'an, LI Yubai, ZHANG Zhifeng. 2024. Quantitative Study of the Early Cretaceous Paleoclimate in Beishan Area, Gansu Province: Based on C-O Isotope Analysis of Reptiles. Northwestern Geology, 57(6): 136-149. doi: 10.12401/j.nwg.2024071
Citation: WANG Qian, SHEN Huan, WEI Zheng'an, LI Yubai, ZHANG Zhifeng. 2024. Quantitative Study of the Early Cretaceous Paleoclimate in Beishan Area, Gansu Province: Based on C-O Isotope Analysis of Reptiles. Northwestern Geology, 57(6): 136-149. doi: 10.12401/j.nwg.2024071

甘肃北山地区早白垩世古气候定量研究:基于爬行动物C-O同位素分析

  • 基金项目: 国家科技重大专项“全球重点领域油气地质与富集规律研究”(2016ZX05029-001)资助。
详细信息
    作者简介: 王茜(1990−),女,助理研究员,研究方向为沉积学与古环境、地球化学。E−mail:944085175@qq.com
  • 中图分类号: P532

Quantitative Study of the Early Cretaceous Paleoclimate in Beishan Area, Gansu Province: Based on C-O Isotope Analysis of Reptiles

  • 为定量查明甘肃省北山地区早白垩世古气温、古降水量等重要古气候指标,在酒泉盆地东北缘北山地区下白垩统采集了恐龙牙齿、鳄类牙齿和龟类背甲有效样品。笔者通过化学实验从牙釉质和龟甲中获取了生物磷灰石,提纯并测得了磷灰石中磷酸根的δ18OP值(‰, V-SMOW)、碳酸根的δ13CC值(‰, V-PDB)。禽龙类牙齿牙釉质的δ18OP值(‰, V-SMOW)为14.627‰~22.137‰,平均值为17.634‰;角龙类牙齿牙釉质的δ18OP值(‰, V-SMOW)为15.532‰~22.668‰,平均值为18.225‰;兽脚龙类牙齿牙釉质的δ18OP值(‰, V-SMOW)为16.915‰~20.763‰,平均值为18.925‰;鳄鱼牙齿牙釉质的δ18OP值(‰, V-SMOW)为16.619‰;龟类背甲δ18OP值(‰, V-SMOW)为15.106‰~16.627‰,平均值为16.061‰。禽龙类牙齿牙釉质的δ13Cc值(‰, V-PDB)为−6.477‰~−1.852‰,平均值为−5.274‰;角龙类牙齿牙釉质的δ13Cc值(‰, V-PDB)为−5.609‰~−2.495‰,平均值为−4.051‰。根据O同位素数据计算得出全年平均古气温为(19.5±3.2)℃,根据C同位素数据计算出全年平均降水量为(605±151)mm/y,表明酒泉地区早白垩世为暖温–亚热带的干燥森林气候,以半干旱–干旱环境为主。

  • 加载中
  • 图 1  酒泉盆地东北缘北山地区地质简图(据1∶50万地质图编绘)

    Figure 1. 

    图 2  北山地区下白垩统综合地层柱状图(据甘肃省地质矿产局,1989张茜楠等,2015Jin et al.,2020李爱静等,2021编绘)

    Figure 2. 

    图 3  样品特征及相关信息

    Figure 3. 

    图 4  磷酸根提取实验流程图(据Lécuyer et al.,2010修改)

    Figure 4. 

    图 5  碳酸根提取实验流程图(改自Koch et al., 1997

    Figure 5. 

    图 6  不同类型样本磷酸盐O同位素数据分布图

    Figure 6. 

    图 7  禽龙类与角龙类样本生物磷灰石C同位素数据分布图

    Figure 7. 

    图 8  研究区早白垩世气候分带图(据Holdridge,1947修)

    Figure 8. 

    表 1  测试样本信息及测试结果汇总表

    Table 1.  Summary of test sample information and test results

    样品
    编号
    样品类别 食性 习性 δ18Op(‰,
    V-SMOW)
    δ13Cc(‰,
    V-PDB)
    样品
    编号
    样品类别 食性 习性 δ18Op(‰,
    V-SMOW)
    δ13Cc(‰,
    V-PDB)
    xmb-1(1) 禽龙类恐龙齿根釉质 植食 陆生 18.883 −6.341 xmb-13 角龙类恐龙牙齿釉质 植食 陆生 16.832 −3.312
    xmb-1(2) 禽龙类恐龙齿中釉质 植食 陆生 17.870 −5.677 xmb-14 角龙类恐龙牙齿釉质 植食 陆生 16.988 −4.077
    xmb-1(3) 禽龙类恐龙齿尖釉质 植食 陆生 16.666 −5.876 xmb-15 角龙类恐龙牙齿釉质 植食 陆生 17.094 −2.495
    xmb-2(1) 禽龙类恐龙齿根釉质 植食 陆生 17.713 −6.455 xmb-16 角龙类恐龙牙齿釉质 植食 陆生 15.523 −5.207
    xmb-2(2) 禽龙类恐龙齿中釉质 植食 陆生 17.272 −6.247 xmb-17 角龙类恐龙牙齿釉质 植食 陆生 19.373 /
    xmb-2(3) 禽龙类恐龙齿尖釉质 植食 陆生 16.085 −5.605 xmb-18 兽脚类恐龙牙齿釉质 肉食 陆生 20.736 /
    xmb-3(1) 禽龙类恐龙齿根釉质 植食 陆生 17.678 −6.278 xmb-19 兽脚类恐龙牙齿釉质 肉食 陆生 17.552 /
    xmb-3(2) 禽龙类恐龙齿中釉质 植食 陆生 18.345 −5.605 xmb-20 兽脚类恐龙牙齿釉质 肉食 陆生 20.577 /
    xmb-3(3) 禽龙类恐龙齿尖釉质 植食 陆生 16.453 −6.477 xmb-21 兽脚类恐龙牙齿釉质 肉食 陆生 18.847 /
    xmb-4 禽龙类恐龙牙齿釉质 植食 陆生 22.137 −4.035 xmb-22 兽脚类恐龙牙齿釉质 肉食 陆生 16.915 /
    xmb-5 禽龙类恐龙牙齿釉质 植食 陆生 19.335 −3.820 xmb-23 蜥臀目恐龙牙齿釉质 未知 陆生 17.895 /
    xmb-6 禽龙类恐龙牙齿釉质 植食 陆生 16.643 −4.297 xmb-24 蜥臀目恐龙牙齿釉质 未知 陆生 19.527 /
    xmb-7 禽龙类恐龙牙齿釉质 植食 陆生 19.105 −1.852 xmb-25 鳄鱼牙齿釉质 肉食 水生/半水生 16.619 /
    xmb-8 禽龙类恐龙牙齿釉质 植食 陆生 15.696 / xmb-26 水生龟类背甲 杂食 水生/半水生 15.106 /
    xmb-9 禽龙类恐龙牙齿釉质 植食 陆生 14.627 / xmb-27 水生龟类背甲 杂食 水生/半水生 15.982 /
    xmb-10 禽龙类恐龙牙齿釉质 植食 陆生 17.847 / xmb-28 水生龟类背甲 杂食 水生/半水生 16.313 /
    xmb-11 角龙类恐龙牙齿釉质 植食 陆生 19.235 −3.603 xmb-29 水生龟类背甲 杂食 水生/半水生 16.276 /
    xmb-12 角龙类恐龙牙齿釉质 植食 陆生 22.668 −5.609 xmb-30 水生龟类背甲 杂食 水生/半水生 16.627 /
    下载: 导出CSV
  • [1]

    甘肃省地质矿产局. 甘肃省区域地质志[M]. 北京: 地质出版社, 1989, 5−320.

    [2]

    胡修棉. 白垩纪“温室”气候与海洋[J]. 中国地质, 2004, 314): 442448. doi: 10.3969/j.issn.1000-3657.2004.04.017

    HU Xiumian. Greenhouse climate and ocean during the Cretaceous[J]. Geology in China, 2004, 314): 442448. doi: 10.3969/j.issn.1000-3657.2004.04.017

    [3]

    李爱静, 惠建国, 马国荣, 等. 甘肃马鬃山地区早白垩世 Carpolithus 化石的研究[J]. 地质学报, 2021, 955): 14001413. doi: 10.19762/j.cnki.dizhixuebao.2021029

    LI Aijing, HUI Jianguo, MA Guorong, et al. Study of Carpolithus from the Lower Cretaceous of Mazongshan, Gansu Province[J]. Acta Geologica Sinica, 2021, 955): 14001413. doi: 10.19762/j.cnki.dizhixuebao.2021029

    [4]

    李成元, 薄海军, 李钢柱, 等. 川井坳陷砂岩型铀矿含矿地层孢粉组合及古气候意义[J]. 地质学报, 2023, 974): 12621277.

    LI Chengyuan, BO Haijun, LI Gangzhu, et al. Palynomorph assemblage of ore-bearing strata for sandstone-type uranium deposit in Chuanjing depression and its paleoclimatic significance[J]. Acta Geologica Sinica, 2023, 974): 12621277.

    [5]

    李大庆. 中国甘肃酒泉地区俞井子盆地早白垩世镰刀龙类恐龙化石[D]. 北京: 中国地质大学(北京), 2008.

    LI Daqing. Therizinosauroid dinosaurs from the Early Cretaceous of Yujingzi Basin, Jiuquan Area, Gansu Province, China[D]. Beijing: China University of Geosciences (Beijing), 2008.

    [6]

    李涛, 那玉玲, 李云峰, 等. 内蒙古大兴安岭地区下白垩统龙江组孢粉组合及其地质意义[J/OL]. 世界地质, 2023, 42(3): 409−421.

    LI Tao, NA Yuling, LI Yunfeng, et al. Sporollen assemblage from Lower Cretaceous Longjiang Formation in Greater Khingan Range, Inner Mongolia, and its geological implications[J/OL]. World Geology, 2023, 42(3): 409−421.

    [7]

    柳永清, 旷红伟, 彭楠, 等. 山东胶莱盆地白垩纪恐龙足迹与骨骼化石埋藏沉积相与古地理环境[J]. 地学前缘, 2011, 184): 924.

    LIU Yongqing, KUANG Hongwei, PENG Nan, et al. Sedimentary facies of dinosaur trackways and bonebeds in the Cretaceous Jiaolai Basin, easternShandong, China, and their paleogeographical implications[J]. Earth Science Frontiers, 2011, 184): 924.

    [8]

    任文秀, 胡斌, 唐德亮, 等. 北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义[J/OL]. 地球科学, 2022: 1−29. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html.

    REN Wenxiu, HU Bin, TANG Deliang, et al. Palynological assemblage and its significance of the Lower Cretaceous Chijinbao Formation in the Zhongkouzi Basin, Beishan[J/OL]. Earth Science, 2022: 1−29. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html.

    [9]

    谭结. 白垩纪胶莱盆地沉积物源及古气候变化对中国东部海岸山脉的响应[D]. 北京: 中国地质大学(北京), 2020.

    TAN Jie. Responses of Sedimentary Sources and Paleoclimatic Changes of the Cretaceous Jiaolai Basin to Coastal Mountains in Eastern China[D]. Beijing: China University of Geosciences (Beijing), 2020.

    [10]

    王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 122): 1121. doi: 10.3321/j.issn:1005-2321.2005.02.003

    WANG Chengshan, HU Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 122): 1121. doi: 10.3321/j.issn:1005-2321.2005.02.003

    [11]

    王毛毛, 毛广振, 季兴开, 等. 准噶尔盆地北缘黄花沟地区砂岩型铀矿目的层时代、古气候及铀矿化关系[J]. 铀矿地质, 2023, 394): 558568.

    WANG Maomao, MAO Guangzhen, JI Xingkai, et al. Forming Age and Paleoclimate of the Target Layer and Its Relation to Sandstone-type Uranium Mineralization in Huanghuagou Area, Northern Junggar Basin[J]. Uranium Geology, 2023, 394): 558568.

    [12]

    王茜. 甘肃省北山地区早白垩世爬行动物碳氧同位素对古气候的指示[D]. 北京: 中国地质大学(北京), 2015.

    WANG Qian. Paleoclimte inferred from oxygen and carbon isotopes of reptiles in Gansu Province Beishan area during the early Cretaceous[D]. Beijing: China University of Geosciences (Beijing), 2015.

    [13]

    杨国林, 杨帆, 李军, 等. 甘肃酒泉盆地新民堡群植物群特征及其古生态意义[J]. 甘肃高师学报, 2022, 275): 1318. doi: 10.3969/j.issn.1008-9020.2022.05.004

    YANG Guolin, YANG Fan, LI Jun, et al. Characteristics of the Xinminbao Group Flora in Jiuquan Basin, Gansu Province, and Its Paleoecological Significance[J]. Journal of Gansu Normal Colleges, 2022, 275): 1318. doi: 10.3969/j.issn.1008-9020.2022.05.004

    [14]

    玉门油田石油地质志编写组. 玉门油田 中国石油地质志 卷十三[M]. 北京: 石油工业出版社, 1989, 64−435.

    [15]

    张茜楠, 尤海鲁, 李大庆. 甘肃马鬃山地区早白垩世晚期恐龙化石[J]. 地质通报, 2015, 345): 890897. doi: 10.3969/j.issn.1671-2552.2015.05.009

    ZHANG Qiannan, YOU Hailu, LI Daqing. Dinosaurs from late Early Cretaceous in the Mazongshan area, Gansu Province[J]. Geological Bulletin of China, 2015, 345): 890897. doi: 10.3969/j.issn.1671-2552.2015.05.009

    [16]

    Amiot R, Kusuhashi N, Saegusa H, et al. Paleoclimate and ecology of Cretaceous continental ecosystems of Japan inferred from the stable oxygen and carbon isotope compositions of vertebrate bioapatite[J]. Journal of Asian Earth Sciences, 2021, 205: 104602. doi: 10.1016/j.jseaes.2020.104602

    [17]

    Amiot R, Wang X, Zhou Z, et al. Environment and ecology of East Asian dinosaurs during the Early Cretaceous inferred from stable oxygen and carbon isotopes in apatite[J]. Journal of Asian Earth Sciences, 2015, 98: 358370. doi: 10.1016/j.jseaes.2014.11.032

    [18]

    Amiot R, Wang X, Zhou Z, et al. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 10813): 51795183. doi: 10.1073/pnas.1011369108

    [19]

    Angst D, Lécuyer C, Amiot R, et al. Isotopic and anatomical evidence of anherbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems[J]. Naturwissenschaften, 2014, 101: 313322. doi: 10.1007/s00114-014-1158-2

    [20]

    Barral A, Gomez B, Legendre S, et al. Evolution of the carbon isotope composition of atmospheric CO2 throughout the Cretaceous[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 471: 4047. doi: 10.1016/j.palaeo.2017.01.034

    [21]

    Barron E J, Fawcett P J, Peterson W H, et al. A“simulation ”of mid-Cretaceous climate[J]. Paleoceanography, 1995, 10: 953962. doi: 10.1029/95PA01624

    [22]

    Bojar A V, Halas S, Bojar H P, et al. Stable isotope hydrology of precipitation and groundwater of a region with high continentality, South Carpathians, Romania[J]. Carpathian Journal of Earth and Environmental Sciences, 2017, 12: 513524.

    [23]

    Cavalheiro L, Wagner T, Steinig S, et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event[J]. Nature Communications, 2021, 12: 5411. doi: 10.1038/s41467-021-25706-0

    [24]

    Chenery C A, Pashley V, Lamb A L, et al. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite[J]. Rapid Commun. Mass Spectrom, 2012, 26: 309319. doi: 10.1002/rcm.5331

    [25]

    Cormie A B, Luz B, Schwarcz H P. Relationship between the hydrogen and oxygen isotopes of deer bone and their use in the estimation of relative humidity[J]. Geochimica et Cosmochimica Acta, 1994, 58: 34393449. doi: 10.1016/0016-7037(94)90097-3

    [26]

    D’Angela D, Longinelli A. Oxygen isotopes in living mammal’s bone phosphate: Further results[J]. Chemical Geology: Isotope Geoscience section, 1990, 86: 7582. doi: 10.1016/0168-9622(90)90007-Y

    [27]

    Dera G, Neige P, Dommergues J L, et al. Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions[J]. Global and Planetary Change, 2011, 783-4): 92105. doi: 10.1016/j.gloplacha.2011.05.009

    [28]

    Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 2010, 10713): 57385743.

    [29]

    Ehleringer J R, Monson R K. Evolutionary and ecological aspects of photosynthetic pathway variation[J]. Annual Review of Ecology and Systematics, 1993, 24: 411439. doi: 10.1146/annurev.es.24.110193.002211

    [30]

    Erickson G M. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts[J]. Proceedings of the National Academy of Sciences, 1996a, 93: 1462314627. doi: 10.1073/pnas.93.25.14623

    [31]

    Erickson G M. Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts[J]. Journal of Morphology, 1996b, 228: 189194. doi: 10.1002/(SICI)1097-4687(199605)228:2<189::AID-JMOR7>3.0.CO;2-0

    [32]

    Fluteau F, Ramstein G, Besse J, et al. Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247: 357381. doi: 10.1016/j.palaeo.2006.11.016

    [33]

    Fricke H C, Pearson D A. Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota[J]. Paleobiology, 2008a, 34: 534552. doi: 10.1666/08020.1

    [34]

    Fricke H C, Rogers R R, Backlund R, et al. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008b, 266: 1327. doi: 10.1016/j.palaeo.2008.03.030

    [35]

    Grimes S T, Mattey D P, Collinson M E, et al. Using mammal tooth phosphate with freshwater carbonate and phosphate palaeoproxies to obtain mean paleotemperatures[J]. Quaternary Science Reviews, 2004a, 237-8): 967976. doi: 10.1016/j.quascirev.2003.06.023

    [36]

    Grimes S T, Collinson M E, Hooker J J, et al. Distinguishing the diets of coexisting fossil theridomyid and glirid rodents using carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004b, 2081-2): 103119. doi: 10.1016/j.palaeo.2004.02.031

    [37]

    Hasegawa H, Tada R, Jiang X, et al. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse[J]. Clim. Past, 2012, 84): 13231337. doi: 10.5194/cp-8-1323-2012

    [38]

    Hay W W, Floegel S. New thoughts about the Cretaceous climate and oceans[J]. Earth-Science Reviews, 2012, 115: 262272. doi: 10.1016/j.earscirev.2012.09.008

    [39]

    Holdridge L R. Determination of world plant formations from simple climatic data[J]. Science, 1947, 105: 367368. doi: 10.1126/science.105.2727.367

    [40]

    Huber M. Progress in Greenhouse Climate Modeling[J]. The Paleontological Society Papers, 2012, 18: 213262. doi: 10.1017/S108933260000262X

    [41]

    Hyneka S A, Benjamin H, Passey B H, et al. Small mammal carbon isotope ecology across the Miocene–Pliocene boundary, northwestern Argentina[J]. Earth and Planetary Science Letters, 2012, 321–322, 177−188.

    [42]

    IAEA-WMO. Global network of isotopes in precipitation[EB/OL]. The GNIP Database, 2016. Accessible at: http://www-naweb.iaea.org/napc/ih/index.html.

    [43]

    Jin P, Ji L, Ma B, et al. Early Cretaceous palynology and paleoclimate of the Hanxia-Hongliuxia Area, Jiuxi Basin, China[J]. Review of Palaeobotany and Palynology, 281: 104259. https://doi.org/10.1016/j.revpalbo.2020.104259.

    [44]

    Koch P L, Tuross N, Fogel M L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite[J]. Journal of Archaeological Science, 1997, 24: 417429. doi: 10.1006/jasc.1996.0126

    [45]

    Kolodny Y, Luz B, Navon O. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game[J]. Earth and Planetary Science Letters, 1983, 64: 398404. doi: 10.1016/0012-821X(83)90100-0

    [46]

    Lécuyer C, Amiot R, Touzeau A, et al. Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations[J]. Chemical Geology, 2013, 3476): 217226. doi: 10.1016/j.chemgeo.2013.03.008

    [47]

    Lécuyer C, Balter V, Martineau F, et al. Oxygen isotope fractionation between apatite-bound carbonate and water determined from controlled experiments with synthetic apatites precipitated at 10-37 ℃[J]. Geochimica et Cosmochimica Acta, 2010, 747): 20722081. doi: 10.1016/j.gca.2009.12.024

    [48]

    Miller K G, Wight J D, Fairbanks R D. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion[J]. Journal of Geophysical Research, 1991, 96: 68296848. doi: 10.1029/90JB02015

    [49]

    Passey B H, Robinson T F, Ayliffe L K, et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals[J]. Journal of Archaeological Science, 2005, 32: 14591470. doi: 10.1016/j.jas.2005.03.015

    [50]

    Rey K, Amiot R, Fourel F, et al. Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa[J]. Gondwana Research, 2016, 37: 384396. doi: 10.1016/j.gr.2015.09.008

    [51]

    Royer A, Lécuyer C, Montuire S, et al. What does the oxygen isotope composition of rodent teeth record?[J]. Earth and Planetary Science Letters, 2013, 361: 258271. doi: 10.1016/j.jpgl.2012.09.058

    [52]

    Shuo C, Jing M, Laiming Z. Quantitative reconstruction of Early Cretaceous dune morphology in the Ordos paleo-desert and its paleoclimatic implications[J]. Frontiers in Earth Science, 2023. doi:10.3389/FEART.2023.1142034.

    [53]

    Straight W H, Barrick R E, Eberth D A. Reflections of surface water, seasonality and climate in stable oxygen isotopes from tyrannosaurid tooth enamel[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 206: 239256. doi: 10.1016/j.palaeo.2004.01.006

    [54]

    Takashima R, Nishi H, Huber B T, et al. Greenhouse[J]. Oceanography, 2006, 19: 82. doi: 10.5670/oceanog.2006.07

    [55]

    Tang F, Luo Z, Zhou Z, et al. Biostratigraphy and palaeoenvironment of the dinosaur-bearing sediments in Lower Cretaceous of Mazongshan area, Gansu Province, China[J]. Cretaceous Research, 2001, 22: 115129. doi: 10.1006/cres.2000.0242

    [56]

    Tütken T. The diet of sauropod dinosaurs: implications from carbon isotope analysis of teeth, bones, and plants, in: Klein N, Remes K, Sander M (Eds.). Biology of the Sauropod Dinosaurs: Understanding the Life of Giants[M]. Bloomington: Indiana University Press, 2011, 57−79.

    [57]

    Zazzo A, Lécuyer C, Mariotti A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions[J]. Geochimica et Cosmochimica Acta, 2004a, 68: 112.

    [58]

    Zazzo A, Lécuyer C, Sheppard SMF, et al. Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel[J]. Geochimica et Cosmochimica Acta, 2004b, 68: 22452258. doi: 10.1016/j.gca.2003.11.009

    [59]

    Zhang L, Yan D, Yang S, et al. Evolution of the Middle Jurassic paleoclimate: Sedimentary evidence from coal-bearing strata in the Santanghu Basin, NW China[J]. Journal of Asian Earth Sciences, 2023, 242: 105495. doi: 10.1016/j.jseaes.2022.105495

  • 加载中

(8)

(1)

计量
  • 文章访问数:  303
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2022-11-08
修回日期:  2024-07-25
录用日期:  2024-07-29
刊出日期:  2024-12-20

目录