Quantitative Study of the Early Cretaceous Paleoclimate in Beishan Area, Gansu Province: Based on C-O Isotope Analysis of Reptiles
-
摘要:
为定量查明甘肃省北山地区早白垩世古气温、古降水量等重要古气候指标,在酒泉盆地东北缘北山地区下白垩统采集了恐龙牙齿、鳄类牙齿和龟类背甲有效样品。笔者通过化学实验从牙釉质和龟甲中获取了生物磷灰石,提纯并测得了磷灰石中磷酸根的δ18OP值(‰, V-SMOW)、碳酸根的δ13CC值(‰, V-PDB)。禽龙类牙齿牙釉质的δ18OP值(‰, V-SMOW)为14.627‰~22.137‰,平均值为17.634‰;角龙类牙齿牙釉质的δ18OP值(‰, V-SMOW)为15.532‰~22.668‰,平均值为18.225‰;兽脚龙类牙齿牙釉质的δ18OP值(‰, V-SMOW)为16.915‰~20.763‰,平均值为18.925‰;鳄鱼牙齿牙釉质的δ18OP值(‰, V-SMOW)为16.619‰;龟类背甲δ18OP值(‰, V-SMOW)为15.106‰~16.627‰,平均值为16.061‰。禽龙类牙齿牙釉质的δ13Cc值(‰, V-PDB)为−6.477‰~−1.852‰,平均值为−5.274‰;角龙类牙齿牙釉质的δ13Cc值(‰, V-PDB)为−5.609‰~−2.495‰,平均值为−4.051‰。根据O同位素数据计算得出全年平均古气温为(19.5±3.2)℃,根据C同位素数据计算出全年平均降水量为(605±151)mm/y,表明酒泉地区早白垩世为暖温–亚热带的干燥森林气候,以半干旱–干旱环境为主。
Abstract:In order to quantitatively study important paleoclimatic indicators such as paleotemperature and precipitation of early Cretaceous in Beishan area, Gansu Province, effective samples of dinosaurs' teeth, crocodiles' teeth and turtles' carapace were collected from the Lower Cretaceous in the Beishan area of the northeastern margin of the Jiuquan Basin. Bioapatite was extracted from tooth enamel and tortoiseshell samples by chemical experiments, the δ18OP (‰, V-SMOW) of phosphate and the δ13CC (‰, V-PDB) in apatite have been extracted and measured. The δ18OP (‰, V-SMOW) of Iguanodon tooth enamel is between 14.627‰~22.137‰, the average value is 17.634‰; The δ18OP (‰, V-SMOW) of ceratopsia tooth enamel is between 15.532‰~22.668‰, the average value is 18.225‰; The δ18OP (‰, V-SMOW) of theropod tooth enamel is between 16.915‰~20.763‰, the average value is 18.925‰; The δ18OP (‰, V-SMOW) of crocodiles' tooth enamel is 16.619‰; The δ18OP (‰, V-SMOW) of turtles' carapace is between 15.106‰~16.627‰, the average value is 16.061‰. The δ13Cc (‰, V-PDB) of Iguanodon tooth enamel is between −6.477‰~−1.852‰, the average value is −5.274‰. The δ13Cc (‰, V-PDB) of ceratopsia tooth enamel is between −5.609‰~−2.495‰, the average value is −4.051‰. Based on oxygen isotope data, the annual average paleotemperature is calculated to be (19±3)℃, Based on carbon isotope data, the annual average precipitation is calculated to be (605 ± 151)mm/y, which indicates that the early Cretaceous in Jiuquan area had a warm temperate subtropical dry forest climate, mainly semi-arid to arid environment.
-
Key words:
- Beishan area /
- early Cretaceous /
- paleoclimate /
- carbon and oxygen isotope /
- bioapatite
-
-
图 2 北山地区下白垩统综合地层柱状图(据甘肃省地质矿产局,1989;张茜楠等,2015;Jin et al.,2020;李爱静等,2021编绘)
Figure 2.
图 4 磷酸根提取实验流程图(据Lécuyer et al.,2010修改)
Figure 4.
图 5 碳酸根提取实验流程图(改自Koch et al., 1997)
Figure 5.
表 1 测试样本信息及测试结果汇总表
Table 1. Summary of test sample information and test results
样品
编号样品类别 食性 习性 δ18Op(‰,
V-SMOW)δ13Cc(‰,
V-PDB)样品
编号样品类别 食性 习性 δ18Op(‰,
V-SMOW)δ13Cc(‰,
V-PDB)xmb-1(1) 禽龙类恐龙齿根釉质 植食 陆生 18.883 −6.341 xmb-13 角龙类恐龙牙齿釉质 植食 陆生 16.832 −3.312 xmb-1(2) 禽龙类恐龙齿中釉质 植食 陆生 17.870 −5.677 xmb-14 角龙类恐龙牙齿釉质 植食 陆生 16.988 −4.077 xmb-1(3) 禽龙类恐龙齿尖釉质 植食 陆生 16.666 −5.876 xmb-15 角龙类恐龙牙齿釉质 植食 陆生 17.094 −2.495 xmb-2(1) 禽龙类恐龙齿根釉质 植食 陆生 17.713 −6.455 xmb-16 角龙类恐龙牙齿釉质 植食 陆生 15.523 −5.207 xmb-2(2) 禽龙类恐龙齿中釉质 植食 陆生 17.272 −6.247 xmb-17 角龙类恐龙牙齿釉质 植食 陆生 19.373 / xmb-2(3) 禽龙类恐龙齿尖釉质 植食 陆生 16.085 −5.605 xmb-18 兽脚类恐龙牙齿釉质 肉食 陆生 20.736 / xmb-3(1) 禽龙类恐龙齿根釉质 植食 陆生 17.678 −6.278 xmb-19 兽脚类恐龙牙齿釉质 肉食 陆生 17.552 / xmb-3(2) 禽龙类恐龙齿中釉质 植食 陆生 18.345 −5.605 xmb-20 兽脚类恐龙牙齿釉质 肉食 陆生 20.577 / xmb-3(3) 禽龙类恐龙齿尖釉质 植食 陆生 16.453 −6.477 xmb-21 兽脚类恐龙牙齿釉质 肉食 陆生 18.847 / xmb-4 禽龙类恐龙牙齿釉质 植食 陆生 22.137 −4.035 xmb-22 兽脚类恐龙牙齿釉质 肉食 陆生 16.915 / xmb-5 禽龙类恐龙牙齿釉质 植食 陆生 19.335 −3.820 xmb-23 蜥臀目恐龙牙齿釉质 未知 陆生 17.895 / xmb-6 禽龙类恐龙牙齿釉质 植食 陆生 16.643 −4.297 xmb-24 蜥臀目恐龙牙齿釉质 未知 陆生 19.527 / xmb-7 禽龙类恐龙牙齿釉质 植食 陆生 19.105 −1.852 xmb-25 鳄鱼牙齿釉质 肉食 水生/半水生 16.619 / xmb-8 禽龙类恐龙牙齿釉质 植食 陆生 15.696 / xmb-26 水生龟类背甲 杂食 水生/半水生 15.106 / xmb-9 禽龙类恐龙牙齿釉质 植食 陆生 14.627 / xmb-27 水生龟类背甲 杂食 水生/半水生 15.982 / xmb-10 禽龙类恐龙牙齿釉质 植食 陆生 17.847 / xmb-28 水生龟类背甲 杂食 水生/半水生 16.313 / xmb-11 角龙类恐龙牙齿釉质 植食 陆生 19.235 −3.603 xmb-29 水生龟类背甲 杂食 水生/半水生 16.276 / xmb-12 角龙类恐龙牙齿釉质 植食 陆生 22.668 −5.609 xmb-30 水生龟类背甲 杂食 水生/半水生 16.627 / -
[1] 甘肃省地质矿产局. 甘肃省区域地质志[M]. 北京: 地质出版社, 1989, 5−320. [2] doi: 10.3969/j.issn.1000-3657.2004.04.017胡修棉 . 白垩纪“温室”气候与海洋[J]. 中国地质,2004 ,31 (4 ):442 −448 . doi: 10.3969/j.issn.1000-3657.2004.04.017HU Xiumian . Greenhouse climate and ocean during the Cretaceous[J]. Geology in China,2004 ,31 (4 ):442 −448 .[3] doi: 10.19762/j.cnki.dizhixuebao.2021029李爱静, 惠建国, 马国荣, 等 . 甘肃马鬃山地区早白垩世 Carpolithus 化石的研究[J]. 地质学报,2021 ,95 (5 ):1400 −1413 . doi: 10.19762/j.cnki.dizhixuebao.2021029LI Aijing, HUI Jianguo, MA Guorong, et al . Study of Carpolithus from the Lower Cretaceous of Mazongshan, Gansu Province[J]. Acta Geologica Sinica,2021 ,95 (5 ):1400 −1413 .[4] 李成元, 薄海军, 李钢柱, 等 . 川井坳陷砂岩型铀矿含矿地层孢粉组合及古气候意义[J]. 地质学报,2023 ,97 (4 ):1262 −1277 .LI Chengyuan, BO Haijun, LI Gangzhu, et al . Palynomorph assemblage of ore-bearing strata for sandstone-type uranium deposit in Chuanjing depression and its paleoclimatic significance[J]. Acta Geologica Sinica,2023 ,97 (4 ):1262 −1277 .[5] 李大庆. 中国甘肃酒泉地区俞井子盆地早白垩世镰刀龙类恐龙化石[D]. 北京: 中国地质大学(北京), 2008. LI Daqing. Therizinosauroid dinosaurs from the Early Cretaceous of Yujingzi Basin, Jiuquan Area, Gansu Province, China[D]. Beijing: China University of Geosciences (Beijing), 2008. [6] 李涛, 那玉玲, 李云峰, 等. 内蒙古大兴安岭地区下白垩统龙江组孢粉组合及其地质意义[J/OL]. 世界地质, 2023, 42(3): 409−421. LI Tao, NA Yuling, LI Yunfeng, et al. Sporollen assemblage from Lower Cretaceous Longjiang Formation in Greater Khingan Range, Inner Mongolia, and its geological implications[J/OL]. World Geology, 2023, 42(3): 409−421. [7] 柳永清, 旷红伟, 彭楠, 等 . 山东胶莱盆地白垩纪恐龙足迹与骨骼化石埋藏沉积相与古地理环境[J]. 地学前缘,2011 ,18 (4 ):9 −24 .LIU Yongqing, KUANG Hongwei, PENG Nan, et al . Sedimentary facies of dinosaur trackways and bonebeds in the Cretaceous Jiaolai Basin, easternShandong, China, and their paleogeographical implications[J]. Earth Science Frontiers,2011 ,18 (4 ):9 −24 .[8] 任文秀, 胡斌, 唐德亮, 等. 北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义[J/OL]. 地球科学, 2022: 1−29. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html. REN Wenxiu, HU Bin, TANG Deliang, et al. Palynological assemblage and its significance of the Lower Cretaceous Chijinbao Formation in the Zhongkouzi Basin, Beishan[J/OL]. Earth Science, 2022: 1−29. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html. [9] 谭结. 白垩纪胶莱盆地沉积物源及古气候变化对中国东部海岸山脉的响应[D]. 北京: 中国地质大学(北京), 2020. TAN Jie. Responses of Sedimentary Sources and Paleoclimatic Changes of the Cretaceous Jiaolai Basin to Coastal Mountains in Eastern China[D]. Beijing: China University of Geosciences (Beijing), 2020. [10] doi: 10.3321/j.issn:1005-2321.2005.02.003王成善, 胡修棉 . 白垩纪世界与大洋红层[J]. 地学前缘,2005 ,12 (2 ):11 −21 . doi: 10.3321/j.issn:1005-2321.2005.02.003WANG Chengshan, HU Xiumian . Cretaceous world and oceanic red beds[J]. Earth Science Frontiers,2005 ,12 (2 ):11 −21 .[11] 王毛毛, 毛广振, 季兴开, 等 . 准噶尔盆地北缘黄花沟地区砂岩型铀矿目的层时代、古气候及铀矿化关系[J]. 铀矿地质,2023 ,39 (4 ):558 −568 .WANG Maomao, MAO Guangzhen, JI Xingkai, et al . Forming Age and Paleoclimate of the Target Layer and Its Relation to Sandstone-type Uranium Mineralization in Huanghuagou Area, Northern Junggar Basin[J]. Uranium Geology,2023 ,39 (4 ):558 −568 .[12] 王茜. 甘肃省北山地区早白垩世爬行动物碳氧同位素对古气候的指示[D]. 北京: 中国地质大学(北京), 2015. WANG Qian. Paleoclimte inferred from oxygen and carbon isotopes of reptiles in Gansu Province Beishan area during the early Cretaceous[D]. Beijing: China University of Geosciences (Beijing), 2015. [13] doi: 10.3969/j.issn.1008-9020.2022.05.004杨国林, 杨帆, 李军, 等 . 甘肃酒泉盆地新民堡群植物群特征及其古生态意义[J]. 甘肃高师学报,2022 ,27 (5 ):13 −18 . doi: 10.3969/j.issn.1008-9020.2022.05.004YANG Guolin, YANG Fan, LI Jun, et al . Characteristics of the Xinminbao Group Flora in Jiuquan Basin, Gansu Province, and Its Paleoecological Significance[J]. Journal of Gansu Normal Colleges,2022 ,27 (5 ):13 −18 .[14] 玉门油田石油地质志编写组. 玉门油田 中国石油地质志 卷十三[M]. 北京: 石油工业出版社, 1989, 64−435. [15] doi: 10.3969/j.issn.1671-2552.2015.05.009张茜楠, 尤海鲁, 李大庆 . 甘肃马鬃山地区早白垩世晚期恐龙化石[J]. 地质通报,2015 ,34 (5 ):890 −897 . doi: 10.3969/j.issn.1671-2552.2015.05.009ZHANG Qiannan, YOU Hailu, LI Daqing . Dinosaurs from late Early Cretaceous in the Mazongshan area, Gansu Province[J]. Geological Bulletin of China,2015 ,34 (5 ):890 −897 .[16] doi: 10.1016/j.jseaes.2020.104602Amiot R, Kusuhashi N, Saegusa H, et al . Paleoclimate and ecology of Cretaceous continental ecosystems of Japan inferred from the stable oxygen and carbon isotope compositions of vertebrate bioapatite[J]. Journal of Asian Earth Sciences,2021 ,205 :104602 .[17] doi: 10.1016/j.jseaes.2014.11.032Amiot R, Wang X, Zhou Z, et al . Environment and ecology of East Asian dinosaurs during the Early Cretaceous inferred from stable oxygen and carbon isotopes in apatite[J]. Journal of Asian Earth Sciences,2015 ,98 :358 −370 .[18] doi: 10.1073/pnas.1011369108Amiot R, Wang X, Zhou Z, et al . Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates[J]. Proceedings of the National Academy of Sciences of the United States of America,2011 ,108 (13 ):5179 −5183 .[19] doi: 10.1007/s00114-014-1158-2Angst D, Lécuyer C, Amiot R, et al . Isotopic and anatomical evidence of anherbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems[J]. Naturwissenschaften,2014 ,101 :313 −322 .[20] doi: 10.1016/j.palaeo.2017.01.034Barral A, Gomez B, Legendre S, et al . Evolution of the carbon isotope composition of atmospheric CO2 throughout the Cretaceous[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2017 ,471 :40 −47 .[21] doi: 10.1029/95PA01624Barron E J, Fawcett P J, Peterson W H, et al . A“simulation ”of mid-Cretaceous climate[J]. Paleoceanography,1995 ,10 :953 −962 .[22] Bojar A V, Halas S, Bojar H P, et al . Stable isotope hydrology of precipitation and groundwater of a region with high continentality, South Carpathians, Romania[J]. Carpathian Journal of Earth and Environmental Sciences,2017 ,12 :513 −524 .[23] doi: 10.1038/s41467-021-25706-0Cavalheiro L, Wagner T, Steinig S, et al . Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event[J]. Nature Communications,2021 ,12 :5411 .[24] doi: 10.1002/rcm.5331Chenery C A, Pashley V, Lamb A L, et al . The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite[J]. Rapid Commun. Mass Spectrom,2012 ,26 :309 −319 .[25] doi: 10.1016/0016-7037(94)90097-3Cormie A B, Luz B, Schwarcz H P . Relationship between the hydrogen and oxygen isotopes of deer bone and their use in the estimation of relative humidity[J]. Geochimica et Cosmochimica Acta,1994 ,58 :3439 −3449 .[26] doi: 10.1016/0168-9622(90)90007-YD’Angela D, Longinelli A . Oxygen isotopes in living mammal’s bone phosphate: Further results[J]. Chemical Geology: Isotope Geoscience section,1990 ,86 :75 −82 .[27] doi: 10.1016/j.gloplacha.2011.05.009Dera G, Neige P, Dommergues J L, et al . Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions[J]. Global and Planetary Change,2011 ,78 (3-4 ):92 −105 .[28] Diefendorf A F, Mueller K E, Wing S L, et al . Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences,2010 ,107 (13 ):5738 −5743 .[29] doi: 10.1146/annurev.es.24.110193.002211Ehleringer J R, Monson R K . Evolutionary and ecological aspects of photosynthetic pathway variation[J]. Annual Review of Ecology and Systematics,1993 ,24 :411 −439 .[30] doi: 10.1073/pnas.93.25.14623Erickson G M . Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts[J]. Proceedings of the National Academy of Sciences,1996a ,93 :14623 −14627 .[31] doi: 10.1002/(SICI)1097-4687(199605)228:2<189::AID-JMOR7>3.0.CO;2-0Erickson G M . Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts[J]. Journal of Morphology,1996b ,228 :189 −194 .[32] doi: 10.1016/j.palaeo.2006.11.016Fluteau F, Ramstein G, Besse J, et al . Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007 ,247 :357 −381 .[33] doi: 10.1666/08020.1Fricke H C, Pearson D A . Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota[J]. Paleobiology,2008a ,34 :534 −552 .[34] doi: 10.1016/j.palaeo.2008.03.030Fricke H C, Rogers R R, Backlund R, et al . Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2008b ,266 :13 −27 .[35] doi: 10.1016/j.quascirev.2003.06.023Grimes S T, Mattey D P, Collinson M E, et al . Using mammal tooth phosphate with freshwater carbonate and phosphate palaeoproxies to obtain mean paleotemperatures[J]. Quaternary Science Reviews,2004a ,23 (7-8 ):967 −976 .[36] doi: 10.1016/j.palaeo.2004.02.031Grimes S T, Collinson M E, Hooker J J, et al . Distinguishing the diets of coexisting fossil theridomyid and glirid rodents using carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004b ,208 (1-2 ):103 −119 .[37] doi: 10.5194/cp-8-1323-2012Hasegawa H, Tada R, Jiang X, et al . Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse[J]. Clim. Past,2012 ,8 (4 ):1323 −1337 .[38] doi: 10.1016/j.earscirev.2012.09.008Hay W W, Floegel S . New thoughts about the Cretaceous climate and oceans[J]. Earth-Science Reviews,2012 ,115 :262 −272 .[39] doi: 10.1126/science.105.2727.367Holdridge L R . Determination of world plant formations from simple climatic data[J]. Science,1947 ,105 :367 −368 .[40] doi: 10.1017/S108933260000262XHuber M . Progress in Greenhouse Climate Modeling[J]. The Paleontological Society Papers,2012 ,18 :213 −262 .[41] Hyneka S A, Benjamin H, Passey B H, et al. Small mammal carbon isotope ecology across the Miocene–Pliocene boundary, northwestern Argentina[J]. Earth and Planetary Science Letters, 2012, 321–322, 177−188. [42] IAEA-WMO. Global network of isotopes in precipitation[EB/OL]. The GNIP Database, 2016. Accessible at: http://www-naweb.iaea.org/napc/ih/index.html. [43] Jin P, Ji L, Ma B, et al. Early Cretaceous palynology and paleoclimate of the Hanxia-Hongliuxia Area, Jiuxi Basin, China[J]. Review of Palaeobotany and Palynology, 281: 104259. https://doi.org/10.1016/j.revpalbo.2020.104259. [44] doi: 10.1006/jasc.1996.0126Koch P L, Tuross N, Fogel M L . The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite[J]. Journal of Archaeological Science,1997 ,24 :417 −429 .[45] doi: 10.1016/0012-821X(83)90100-0Kolodny Y, Luz B, Navon O . Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game[J]. Earth and Planetary Science Letters,1983 ,64 :398 −404 .[46] doi: 10.1016/j.chemgeo.2013.03.008Lécuyer C, Amiot R, Touzeau A, et al . Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations[J]. Chemical Geology,2013 ,347 (6 ):217 −226 .[47] doi: 10.1016/j.gca.2009.12.024Lécuyer C, Balter V, Martineau F, et al . Oxygen isotope fractionation between apatite-bound carbonate and water determined from controlled experiments with synthetic apatites precipitated at 10-37 ℃[J]. Geochimica et Cosmochimica Acta,2010 ,74 (7 ):2072 −2081 .[48] doi: 10.1029/90JB02015Miller K G, Wight J D, Fairbanks R D . Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion[J]. Journal of Geophysical Research,1991 ,96 :6829 −6848 .[49] doi: 10.1016/j.jas.2005.03.015Passey B H, Robinson T F, Ayliffe L K, et al . Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals[J]. Journal of Archaeological Science,2005 ,32 :1459 −1470 .[50] doi: 10.1016/j.gr.2015.09.008Rey K, Amiot R, Fourel F, et al . Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa[J]. Gondwana Research,2016 ,37 :384 −396 .[51] doi: 10.1016/j.jpgl.2012.09.058Royer A, Lécuyer C, Montuire S, et al . What does the oxygen isotope composition of rodent teeth record?[J]. Earth and Planetary Science Letters,2013 ,361 :258 −271 .[52] Shuo C, Jing M, Laiming Z. Quantitative reconstruction of Early Cretaceous dune morphology in the Ordos paleo-desert and its paleoclimatic implications[J]. Frontiers in Earth Science, 2023. doi:10.3389/FEART.2023.1142034. [53] doi: 10.1016/j.palaeo.2004.01.006Straight W H, Barrick R E, Eberth D A . Reflections of surface water, seasonality and climate in stable oxygen isotopes from tyrannosaurid tooth enamel[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004 ,206 :239 −256 .[54] doi: 10.5670/oceanog.2006.07Takashima R, Nishi H, Huber B T, et al . Greenhouse[J]. Oceanography,2006 ,19 :82 .[55] doi: 10.1006/cres.2000.0242Tang F, Luo Z, Zhou Z, et al . Biostratigraphy and palaeoenvironment of the dinosaur-bearing sediments in Lower Cretaceous of Mazongshan area, Gansu Province, China[J]. Cretaceous Research,2001 ,22 :115 −129 .[56] Tütken T. The diet of sauropod dinosaurs: implications from carbon isotope analysis of teeth, bones, and plants, in: Klein N, Remes K, Sander M (Eds.). Biology of the Sauropod Dinosaurs: Understanding the Life of Giants[M]. Bloomington: Indiana University Press, 2011, 57−79. [57] Zazzo A, Lécuyer C, Mariotti A . Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions[J]. Geochimica et Cosmochimica Acta,2004a ,68 :1 −12 .[58] doi: 10.1016/j.gca.2003.11.009Zazzo A, Lécuyer C, Sheppard SMF, et al . Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel[J]. Geochimica et Cosmochimica Acta,2004b ,68 :2245 −2258 .[59] doi: 10.1016/j.jseaes.2022.105495Zhang L, Yan D, Yang S, et al . Evolution of the Middle Jurassic paleoclimate: Sedimentary evidence from coal-bearing strata in the Santanghu Basin, NW China[J]. Journal of Asian Earth Sciences,2023 ,242 :105495 . -