新疆东天山月牙湾铜镍硫化物矿床Sr-Nd-Pb-S同位素特征及其地质意义

周国超, 王玉往, 王京彬, 石煜, 解洪晶, 李德东, 程先锋. 2025. 新疆东天山月牙湾铜镍硫化物矿床Sr-Nd-Pb-S同位素特征及其地质意义. 西北地质, 58(4): 87-101. doi: 10.12401/j.nwg.2024088
引用本文: 周国超, 王玉往, 王京彬, 石煜, 解洪晶, 李德东, 程先锋. 2025. 新疆东天山月牙湾铜镍硫化物矿床Sr-Nd-Pb-S同位素特征及其地质意义. 西北地质, 58(4): 87-101. doi: 10.12401/j.nwg.2024088
ZHOU Guochao, WANG Yuwang, WANG Jingbin, SHI Yu, XIE Hongjing, LI Dedong, CHENG Xianfeng. 2025. Sr-Nd-Pb-S Isotopic Characteristics and Its Geological Significance of the Yueyawan Cu-Ni Sulfide Deposit in East Tianshan, Xinjiang. Northwestern Geology, 58(4): 87-101. doi: 10.12401/j.nwg.2024088
Citation: ZHOU Guochao, WANG Yuwang, WANG Jingbin, SHI Yu, XIE Hongjing, LI Dedong, CHENG Xianfeng. 2025. Sr-Nd-Pb-S Isotopic Characteristics and Its Geological Significance of the Yueyawan Cu-Ni Sulfide Deposit in East Tianshan, Xinjiang. Northwestern Geology, 58(4): 87-101. doi: 10.12401/j.nwg.2024088

新疆东天山月牙湾铜镍硫化物矿床Sr-Nd-Pb-S同位素特征及其地质意义

  • 基金项目: 国家重点研发计划项目子课题“幔源岩浆型成矿系统三维机构与矿体定位机制”(2017YFC0601204)资助。
详细信息
    作者简介: 周国超(1989−),男,博士,讲师,主要从事幔源岩浆成岩与成矿作用研究。E−mail:guochaozhou2008@126.com
  • 中图分类号: P597;P611

Sr-Nd-Pb-S Isotopic Characteristics and Its Geological Significance of the Yueyawan Cu-Ni Sulfide Deposit in East Tianshan, Xinjiang

  • 新疆东天山地区是中国重要的铜镍成矿带,但其含矿岩体的岩浆起源和硫饱和机制存在较大争议,大南湖岛弧带内新发现的月牙湾铜镍硫化物为厘清这些争议提供了新的窗口。月牙湾岩体是多期次岩浆侵位形成的复式岩体,第一期岩浆作用形成辉长岩、橄长岩和橄榄辉长岩,第二期岩浆作用形成基性程度更高的暗色细粒橄榄辉长岩和暗色细粒橄长岩,是主要的赋矿岩相。岩石具有低(87Sr/86Sr)i0.70330.70348),高εNdt)(6.54~8.35)和Pb同位素比值较低((206Pb/204Pb)i=17.828~18.014,(207Pb/204Pb)i=15.446~15.478,(208Pb/204Pb)i=37.495~37.698)的特征,指示月牙湾岩体的形成与塔里木大火成岩省并无直接联系,而是源自亏损地幔,并且受到俯冲物质的交代。硫化物原位δ34S为0.03‰~4.09‰,与卡拉塔格地区石炭纪—二叠纪围岩地层δ34S范围一致,表明在成矿过程中有地壳硫的加入。大南湖岛弧带的镁铁–超镁铁质岩体与康古尔剪切带和中天山地块中的镁铁–超镁铁质岩体具有相似的成岩时代和地球化学特征,剥蚀程度较浅,说明大南湖岛弧带具有较好的铜镍成矿潜力。

  • 加载中
  • 图 1  东天山构造格架及二叠纪镁铁–超镁铁质岩体分布图(据秦克章等,2012修)

    Figure 1. 

    图 2  卡拉塔格地质图(a)(据Deng et al., 2016修)、月牙湾岩体地质图(b) 、 剖面图(c)和ZK402柱状图(d) (据Zhou et al., 2021修)

    Figure 2. 

    图 3  月牙湾岩体不同岩石显微照片

    Figure 3. 

    图 4  月牙湾岩体及有关岩石的Sr-Nd-Pb同位素图解

    Figure 4. 

    图 5  东天山二叠纪镁铁–超镁铁质岩石构造判别图解

    Figure 5. 

    图 6  东天山二叠纪镁铁–超镁铁质岩石Nb-Nb/U (a)(据Chung et al., 2001)和La/Nb-La/Ba (b)(据Fitton et al., 1991)图解

    Figure 6. 

    图 7  东天山月牙湾铜镍硫化物矿石S同位素分布直方图

    Figure 7. 

    图 8  卡拉塔格地区二叠纪岩石地球化学图解

    Figure 8. 

    表 1  月牙湾岩体Sr, Nd, Pb同位素数据表

    Table 1.  Sr, Nd, Pb isotope data of the Yueyawan intrusion

    岩石名称 辉长岩 橄长岩 橄榄辉长岩
    样号 YYW7710-7 Y401-1 Y401-6 Y401-13 Y401-14 Y401-20
    Rb (10−6 2.95 2.28 2.9 1.62 2.29 1.49
    Sr (10−6 771 475 487 319 437 520
    87Rb/86Sr 0.01108 0.01390 0.01724 0.01470 0.01517 0.00830
    87Sr/86Sr 0.70346 0.703429 0.703412 0.703537 0.703428 0.703336
    87Sr/86Sr)i 0.70342 0.70337 0.70334 0.70348 0.70337 0.7033
    Nd (10−6 6.9 7.57 9.18 2.68 8.83 6.89
    Sm (10−6 1.71 1.89 2.49 0.622 2.25 1.67
    147Sm/144Nd 0.14983 0.15094 0.16398 0.14031 0.15405 0.14653
    143Nd/144Nd 0.512944 0.512962 0.512985 0.512869 0.512987 0.512951
    143Nd/144Nd)i 0.512668 0.512684 0.512683 0.512611 0.512704 0.512682
    εNd(t 7.65 7.96 7.94 6.54 8.35 7.92
    Th (10−6 0.29 0.18 0.19 0.15 0.20 0.23
    U (10−6 0.05 0.07 0.07 0.08 0.08 0.09
    Pb (10−6 11.2 4.17 4.03 4.23 1.37 2.37
    206Pb/204Pb)i 18.0135 17.9321 17.8593 17.8278 17.8438 17.8551
    207Pb/204Pb)i 15.4780 15.4659 15.4623 15.4557 15.4460 15.4547
    208Pb/204Pb)i 37.6983 37.6149 37.5543 37.5231 37.4947 37.5219
     注:Rb、Sr、Sm、Nd同位素计算参数:λ(Sr)=1.42×10−11 a−1,λ(Nd)=0.654×10−11 a−1,(87Sr/86Sr)CHUR=0.7045,(143Nd/144Nd)CHUR=0.512638; Pb初始同位素计算参数:λ1=1.55125×10−11 a−1,λ2=9.8485×10−11 a−1,λ3=0.49475×10−11 a−1,t=283.4 Ma。
    下载: 导出CSV

    表 2  月牙湾矿床矿石硫化物S同位素组成

    Table 2.  S isotope compositions of the sulfides in Yueyawan intrusion

    序号 样品号 测试矿物 δ34S(VCDT)
    1 402-24-1po-1 磁黄铁矿 2.82
    2 402-24-2po-1 磁黄铁矿 2.73
    3 402-24-3-po-1 磁黄铁矿 2.01
    4 402-24-3pn-1 镍黄铁矿 2.12
    5 402-40-3pn-1 镍黄铁矿 0.03
    6 y1-10-2po-1 磁黄铁矿 4.09
    7 402-40-2cp-1 黄铜矿 2.30
    8 402-24-2cp-1 黄铜矿 1.65
    下载: 导出CSV

    表 3  东天山二叠纪铜镍硫化物矿床特征表

    Table 3.  Main features of the major Cu-Ni sulfide deposits in the Eastern Tianshan

    矿床 岩体面
    积(km2
    岩体
    形态
    赋矿岩
    石组合
    成矿年
    龄(Ma)
    岩石SiO2
    含量(%)
    岩石
    Mg#(%)
    微量元素 δ34S(‰) εNd(t 参考文献
    大南湖岛弧带
    月牙湾 0.53 新月状 橄榄辉长岩–橄长岩 283.4±2.0 33.04~50.26 43~83 富集Rb、Ba、Sr、K,亏损Th、Nb、Ta、Ti 0.03~4.09 6.54~8.35 本文; Sun et al., 2019; Zhou et al. 2021
    白鑫滩 2.1 葫芦状 橄榄辉长岩–辉石橄榄岩 277.9±2.6 40.86~49.56 73~81 富集Rb, Th, U, La; 亏损Nb、Ta、Ti −0.13~0.9 4.2~6.5 王亚磊等,2015; Feng et al., 2018; Deng et al., 2020
    康古尔剪切带
    黄山 1.71 镰刀状 辉长岩–二辉橄榄岩 283.8±3.4 36.61~52.58 60~86 富集Rb、Ba、Sr; 亏损Nb、Ta、Ti −1.8~0.86 5.83~7.46 邓宇峰等,2012; Deng et al., 2015
    黄山东 2.8 菱形 二辉橄榄岩–橄榄辉长岩 282±20 36.1~50.5 44~77 富集Rb、Ba、Th、U 相; 亏损Nb、Ta、Ti −0.79~2.78 6.6~10.5 夏明哲等,2009邓宇峰等,2011Deng et al., 2014
    图拉尔根 <0.01 脉状 二辉岩–二辉橄榄岩 300.5±3.2 24.36~47.8 51~83 富集Rb, Ba、Th; 亏损Nb, Ta −1.3~3.8 3.22~7.17 焦建刚等,2012Xue et al., 2022
    葫芦 0.75 葫芦形 橄榄岩–辉石岩–辉橄岩 283±13 29.67~56.14 42~87 富集Th、U; 亏损Nb、Ta、Ti 1.46~4.87 6.5~7.1 Han et al., 2013; Zhao et al., 2016
    香山西 1.6 菱形 辉长岩–辉石岩–橄榄岩 283±3 39.3~53.4 38~81 富集Th、U; 亏损Nb、Ta、Ti −0.84~2.4 5.9~6.7 Han et al., 2010Shi et al., 2018
    土墩 0.8 椭圆形 二辉橄榄岩 298.4±0.9 37.02~48.96 26~84 富集K、Sr、Ba、U; 亏损Nb、Ta、Ti、P −0.6~0.7 陈继平等,2016
    中天山地块
    白石泉 0.8 不规
    则状
    橄榄岩–橄榄辉石岩 284±8 37.89~51.52 41~83 富集La,U,Zr;亏损Nb,Ta,Ti 1.4~5.4 1.67~7.61 Chai et al., 2008, 陈斌等,2013
    天宇 0.056 脉状 橄榄岩–橄榄辉石岩 290.2±3.4 35.89~53.52 33~81 富集Rb、Ba、Th、U;亏损Nb,Ta,Zr 5.1~8.2 −0.7~5.7 唐冬梅等,2009
    下载: 导出CSV
  • [1]

    白云来. 新疆哈密黄山—镜儿泉镍铜成矿系统的地质构造背景[J]. 甘肃地质学报, 2000, 2: 17.

    BAI Yunlai. Geotectonic setting of Huangshan-Jingerquan nikel-copper metallogenic system in Hami, Xinjiang[J]. Acta Geologica Gansu, 2000, 2: 17.

    [2]

    陈斌, 贺敬博, 陈长健, 等. 东天山白石泉镁铁-超镁铁杂岩体的Nd-Sr-Os同位素成分及其对岩浆演化的意义[J]. 岩石学报, 2013, 291): 294302.

    CHEN Bin, HE Jingbo, CHEN Changjian, et al. Nd-Sr-Os isotopic data of the Baishiquan mafic-ultramafic complex from East Tianshan, and implications for petrogenesis[J]. Acta Petrologica Sinica, 2013, 291): 294302.

    [3]

    陈继平, 王晖, 廖群安, 等. 东天山土墩铜镍硫化物矿床成岩时代与岩石成因[J]. 地质科技情报, 2016, 356): 4454.

    CHEN Jiping, WANG Hui, LIAO Qunan, et al. Geochronological and Geochemical of Tudun Cu-Ni sulfide Deposits, East Tianshan[J]. Geological Science and Technology Infromation, 2016, 356): 4454.

    [4]

    邓宇峰, 宋谢炎, 陈列锰, 等. 东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究[J]. 岩石学报, 2011, 2712): 36403652.

    DENG Yufeng, SONG Xieyan, CHEN Liemeng, et al. Features of the mantle source of the Huangshanxi Ni-Cu sulfide bearing mafic-ultramafic intrusion, eastern Tianshan[J]. Acta Petrologica Sinica, 2011, 2712): 36403652.

    [5]

    邓宇峰, 宋谢炎, 周涛发, 等. 新疆东天山黄山东岩体橄榄石成因意义探讨[J]. 岩石学报, 2012, 287): 22242234.

    DENG Yufeng, SONG Xieyan, ZHOU Taofa, et al. Correlations between Fo number and Ni content of olivine of the Huangshandong intrusion, eastern Tianshan, Xinjiang, and the genetic significances[J]. Acta Petrologica Sinica, 2012, 287): 22242234.

    [6]

    高晓峰, 隋清霖, 尤敏鑫, 等. 造山带岩浆铜镍硫化物矿床深部动力学机制探讨[J]. 西北地质, 2025, 583): 206220. doi: 10.12401/j.nwg.2025012

    GAO Xiaofeng, SUI Qinglin, YOU Minxin, et al. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts[J]. Northwestern Geology, 2025, 583): 206220. doi: 10.12401/j.nwg.2025012

    [7]

    顾连兴, 张遵忠, 吴昌志, 等. 关于东天山花岗岩与陆壳垂向增生的若干认识[J]. 岩石学报, 2006, 225): 11031120.

    GU Lianxing, ZHANG Zunzhong, WU Changzhi, et al. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China[J]. Acta Petrologica Sinca, 2006, 225): 11031120.

    [8]

    韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 2004, 4922): 23242328. doi: 10.3321/j.issn:0023-074X.2004.22.012

    HAN Baofu, JI Jianqing, SONG Biao, et al. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang and geological implications[J]. Chinese Science Bulletin, 2004, 4922): 23242328. doi: 10.3321/j.issn:0023-074X.2004.22.012

    [9]

    韩春明, 肖文交, 万博, 等. 东天山晚古生代-中生代构造演化和内生金属矿床成矿系列[J]. 岩石学报, 2018, 347): 19141932.

    HAN Chunming, XIAO Wenjiao, WAN Bo, et al. Late Palaeozoic-Mesozoic endogenetic tallogenic series and geodynamic evolution in the East Tianshan Mountains[J]. Acta Petrologica Sinica, 2018, 347): 19141932.

    [10]

    焦建刚, 汤中立, 钱壮志, 等. 东天山地区图拉尔根铜镍硫化物矿床成因及成矿过程[J]. 岩石学报, 2012, 2822): 37723786.

    JIAO Jiangang, TANG Zhongli, QIAN Zhuangzhi, et al. Genesis and metallogenic process of Tulaergen large scale Cu-Ni sulfide deposit in eastern Tianshan area, Xinjiang[J]. Acta Petrologic Sinica, 2012, 2822): 37723786.

    [11]

    刘德权, 唐延龄, 周汝洪. 中国新疆铜矿床和镍矿床[M]. 北京: 地质出版社, 2005, 1−306.

    [12]

    李彤泰. 新疆哈密市黄山基性-超基性岩带铜镍矿床地质特征及矿床成因[J]. 西北地质, 2011, 441): 5460.

    LI Tongtai. Geological Features and Metallogenesis of Cu-Ni Deposit in Basic-to-Ultrabasic Zone of Huangshan, Hami Area[J]. Northwestern Geology, 2011, 441): 5460.

    [13]

    刘德权, 唐延龄, 周汝洪. 新疆北部古生代地壳演化与成矿系列[J]. 矿床地质, 1992, 114): 307314.

    LIU Dequan, TANG Yanling, ZHOU Ruhong. Evolution of Palaeozoic crust and metallogenic series in northern Xinjiang[J]. Mineral Deposits, 1992, 114): 307314.

    [14]

    吕晓强, 毛启贵, 郭娜欣, 等. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re-Os同位素测定及其地质意义[J]. 地球科学, 2020, 459): 34753486.

    LV Xiaoqiang, MAO Qigui, GUO Naxin, et al. Re-Os Isotopic Dating of Pyrrhotite from Yueyawan Cu-Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance[J]. Earth Science, 2020, 459): 34753486.

    [15]

    刘隆, 杜辉, 唐小平, 等. 东天山红石岗南地区隐伏地质体磁异常特征及其找矿指示[J]. 西北地质, 2025, 583): 97107. doi: 10.12401/j.nwg.2024101

    LIU Long, DU Hui, TANG Xiaoping, et al. Characteristics of Magnetic Anomalies and Geological Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China[J]. Northwestern Geology, 2025, 583): 97107. doi: 10.12401/j.nwg.2024101

    [16]

    马瑞士, 舒良树, 孙家齐. 东天山构造演化与成矿[M]. 北京: 地质出版社, 1997, 1−202.

    [17]

    毛启贵, 肖文交, 韩春明, 等. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约[J]. 岩石学报, 2006, 221): 153162. doi: 10.3321/j.issn:1000-0569.2006.01.016

    MAO Qigui, XIAO Wenjiao, HAN Chunming, et al. Zircon U-Pb age, geochemistry of the Baishiquan mafic-ultramafic complex in the eastern Tianshan, Xinjiang Province: Constraints on the closure of the Paleo-Asian Ocean[J]. Acta Petrologica Sinica, 2006, 221): 153162. doi: 10.3321/j.issn:1000-0569.2006.01.016

    [18]

    秦克章, 唐冬梅, 苏本勋, 等. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 2012, 454): 83116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    QIN Kezhang, TANG Dongmei, SU Benxun, et al. The Tectonic setting, style, basic feature, relative erosion degree, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, northern Xinjiang[J]. Northwestern Geology, 2012, 454): 83116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    [19]

    三金柱. 黄山—镜儿泉铜镍矿带区域成矿规律探讨——以图拉尔根铜镍矿为例[J]. 西北地质, 2012, 454): 176184. doi: 10.3969/j.issn.1009-6248.2012.04.016

    SAN Jinzhu. An Approach to Regional Metallogenic Regularities of Cu-Ni Ore belt in Huangshan-Jingerquan in Xinjiang, China: A Case for Tulaergen Cu-Ni Deposits[J]. Northwestern Geology, 2012, 454): 176184. doi: 10.3969/j.issn.1009-6248.2012.04.016

    [20]

    石煜, 王玉往, 王京彬, 等. 东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩‒成矿作用机制: 来自斜长石成分的约束[J]. 地球科学, 2022, 479): 32443257. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209009

    SHI Yu, WANG Yuwang, WANG Jingbin, et al. Petrogenesis and Metallogenesis Mechanism of the Ore-Bearing Ultramafic Rocks from the Huangshandong and Huangshanxi Ni-Cu Sulfide Deposits, Eastern Tianshan: Constraints from Plagioclase Compositions[J]. Earth Science, 2022, 479): 32443257. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209009

    [21]

    宋谢炎, 邓宇峰, 颉炜, 等. 新疆黄山-镜儿泉铜镍硫化物成矿带岩浆通道成矿特征及其找矿意义[J]. 矿床地质, 2022, 416): 11081123.

    SONG Xieyan, DENG Yufeng, XIE Wei, et al. Ore-forming processes in magma plumbing systems and significances for prospecting of Huangshan-Jingerquan Ni-Cu sulfide metallogenetic belt, Xinajiang, NW China[J]. Mineral Deposits, 2022, 416): 11081123.

    [22]

    宋谢炎, 胡瑞忠, 陈列锰. 中国岩浆铜镍硫化物矿床地质特点及其启示[J]. 南京大学学报 (自然科学), 2018, 5402): 221235.

    SONG Xieyan, HU Ruizhong, CHEN Liemeng. Characteristics and inspirations of the Ni-Cu sulfide deposits in China[J]. Journal of Nanjing University (Natural Science), 2018, 5402): 221235.

    [23]

    唐冬梅, 秦克章, 孙赫, 等. 天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征: 对东疆镁铁-超镁铁质岩体源区和成因的制约[J]. 岩石学报, 2009, 25: 817831.

    TANG Dongmei, QIN Kezhang, SUN He, et al. Lithological chronological and geochemical characteristics of Tianyu Cu-Ni deposit, East Tianshan: Constraints on source and genesis of mafic-ultramafic intrusions in East Xinjiang[J]. Acta Petrologica Sinica, 2009, 25: 817831.

    [24]

    唐冬梅, 秦克章, 薛胜超, 等. 吐哈盆地早二叠世玄武岩原始岩浆性质: 来自熔融包裹体成分的制约[J]. 岩石学报, 2017, 332): 339353.

    TANG Dongmei, QIN Kezhang, XUE Shengchao, et al. Nature of primitive magmas of Early Permian basalts in Tuha basin, Xinjiang: Constraints from melt inclusions[J]. Acta Petrologica Sinica, 2017, 332): 339353.

    [25]

    王京彬, 徐新. 新疆北部后碰撞构造演化与成矿[J]. 地质学报, 2006, 801): 2331. doi: 10.3321/j.issn:0001-5717.2006.01.003

    WANG Jingbin, XU Xin. Post-collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China[J]. Acta Geologica Sinica, 2006, 801): 2331. doi: 10.3321/j.issn:0001-5717.2006.01.003

    [26]

    王亚磊, 张照伟, 尹希文, 等. 东天山三宫铜镍矿化岩体年代学、岩石地球化学特征及对Cu-Ni找矿的启示[J]. 地球学报, 2016, 376): 699710.

    WANG Yalei, ZHANG, Zhaowei, YIN Xiwen, et al. Chronological and geochemical characteristics of Sangong Cu-Ni mineralization intrusion in Eastern Tianshan of Xinjiang and their implications for Cu-Ni mineralization[J]. Acta Geosciences Sinica, 2016, 376): 699710.

    [27]

    王亚磊, 张照伟, 尤敏鑫, 等. 东天山白鑫滩铜镍矿锆石U-Pb年代学、地球化学特征及对Ni-Cu找矿的启示[J]. 中国地质, 2015, 423): 452467. doi: 10.3969/j.issn.1000-3657.2015.03.005

    WANG Yalei, ZHANG Zhaowei, YOU Minxin, et al. Chronological and geochemical characteristics of the Baixintan Ni-Cu deposit in Eastern Tianshan Mountains, Xinjiang, and their implications for Ni-Cu mineralization[J]. Geology in China, 2015, 423): 452467. doi: 10.3969/j.issn.1000-3657.2015.03.005

    [28]

    王玉往, 王京彬, 王莉娟, 等. 新疆香山铜镍钛铁矿区两个镁铁-超镁铁岩系列及特征[J]. 岩石学报, 2009, 254): 888900.

    WANG Yuwang, WANG Jingbin, WANG Lijuan, et al. Characteristics of two mafic-ultramafic rock series in the Xiangshan Cu-Ni-(V) Ti-Fe ore district, Xinjiang[J]. Acta Petrologica Sinica, 2009, 254): 888900.

    [29]

    夏林圻, 李向民, 夏祖春, 等. 天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 2006, 391): 149. doi: 10.3969/j.issn.1009-6248.2006.01.001

    XIA Linqi, LI Xiangmin, XIA Zuchun, et al. Carboniferous-Permian rift-related volcanism and mantle plume in the Tianshan, Northwestern China[J]. Northwestern Geology, 2006, 391): 149. doi: 10.3969/j.issn.1009-6248.2006.01.001

    [30]

    夏明哲. 新疆东天山黄山岩带镁铁-超镁铁质岩石成因及成矿作用[D]. 西安: 长安大学, 2009, 1−157.

    XIA Mingzhe. The mafic-ultramafic intrusions in the Huangshangdong region, erstern Tianshan, Xinjiang: Petrogenesis and mineralization implication[D]. Xi’an: Chang’an University, 2009, 1−157.

    [31]

    夏明哲, 姜常义, 钱壮志, 等. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因[J]. 岩石学报, 2010, 268): 24132430.

    XIA Mingzhe, JIANG Changyi, QIAN Zhuagnzhi, et al. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2010, 268): 24132430.

    [32]

    颉炜, 宋谢炎, 聂晓勇, 等. 新疆坡十铜镍硫化物含矿岩体岩浆源区特征及构造背景探讨[J]. 地学前缘, 2011, 183): 189200.

    XIE Wei, SONG Xieyan, NIE Xiaoyong, et al. Features of the mantle source and tectonic setting of the Poshi Ni-Cu sulfide-bearing intrusion, Xinjiang, China[J]. Earth Science Frontiers, 2011, 183): 189200.

    [33]

    薛胜超. 新疆坡北二叠纪杂岩体岩浆过程、镍成矿作用及地球背景[D]. 北京: 中国科学院大学, 2016.

    XUE Shengchao. Magmatic process, nickel mineralization and geodynamic background of Permian Pobei mafic-ultramafic complex, Xinjiang[D]. Beijing: University of Chinese Academy of Sciences, 2016.

    [34]

    于明杰. 东天山卡拉塔格矿集区梅岭铜锌(金)矿床成矿作用[D]. 北京: 中国地质大学(北京), 2016.

    YU Mingjie. Metallogeneses in relation to the Meiling Cu-Zn (Au) deposit in the Kalatage ore concentration area, Eastern Tianshan Mountain, Xinjiang, NW China[D]. Beijing: China University of Geosciences, 2016.

    [35]

    尹希文. 新疆香山铜镍硫化物矿床岩浆深部过程与找矿方向探讨[J]. 西北地质, 2015, 483): 2230.

    YIN Xiwen. Magma Deep Process and Prospecting Direction of Xiangshan Ni-Cu deposit, Eastern Tianshan, Xinjiang[J]. Northwestern Geology, 2015, 483): 2230.

    [36]

    张照伟, 钱兵, 王亚磊, 等. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力[J]. 西北地质, 2021, 541): 8299.

    ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Geological Characteristics and Prospecting Potential of Magmatic Ni-Cu Sulfide Deposits in Northwest China[J]. Northwestern Geology, 2021, 541): 8299.

    [37]

    赵冰冰, 邓宇峰, 周涛发, 等. 东天山白鑫滩含铜镍矿镁铁-超镁铁岩体的岩石成因: 年代学、岩石地球化学和Sr-Nd同位素证据[J]. 岩石学报, 2018, 349): 27332753.

    ZHAO Bingbing, DENG Yufeng, ZHOU Taofa, et al. Petrogenesis of the Baixintan Ni-Cu sulfide-bearing mafic-ultramafic intrusion, East Tianshan: Evidence from geochronology, petrogeochemistry and Sr-Nd isotope[J]. Acta Petrologica Sinca, 2018, 349): 27332753.

    [38]

    赵云, 杨永强, 柯君君. 含铜镍岩浆起源及硫饱和机制: 以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例[J]. 岩石学报, 2016, 327): 20862098.

    ZHAO Yun, YANG Yongqiang, KE Junjun. Origin of Cu and Ni bearing magma and sulfide saturation mechanism: A case study of Sr-Nd-Pb-S isotopic composition and element geochemistry on the Huangshannan magmatic Ni-Cu sulfide deposit, Xinjiang[J]. Acta Petrologica Sinca, 2016, 327): 20862098.

    [39]

    周国超, 王玉往, 石煜, 等. 东天山卡拉塔格地区镁铁质岩体年代学、岩石地球化学研究[J]. 岩石学报, 2019, 3510): 31893212.

    ZHOU Guochao, WANG Yuwang, SHI Yu, et al. Geochronology and geochemistry of mafic intrusions in the Kalatag area, eastern Tianshan[J]. Acta Petrologica Sinica, 2019, 3510): 31893212.

    [40]

    Barnes S J, Lightfoot P. The formation of magmatic nickel-coper-PGE sulfide deposits[J]. Economic Geology, 2005, 190: 135154.

    [41]

    Chai Fengmei, Zhang Zhaochong, Mao Jingwen, et al. Geology, petrology and geochemistry of the Baishiquan Ni-Cu- bearing mafic-ultramafic intrusions in Xinjiang, NW China: Implications for tectonics and genesis of ores[J]. Journal of Asian Earth Sciences, 2008, 32: 218235. doi: 10.1016/j.jseaes.2007.10.014

    [42]

    Chung Sunlin, Wang Kuolung, Crawford A J, et al. High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas[J]. Lithos, 2001, 59: 153170. doi: 10.1016/S0024-4937(01)00067-6

    [43]

    Deng Yufeng, Song Xieyan, Chen Liemeng, et al. Geochemistry of the Huangshandong Ni-Cu deposit in northwestern China: Implications for the formation of magmatic sulfide mineralization in orogenic belts[J]. Ore Geology Reviews, 2014, 56: 181198. doi: 10.1016/j.oregeorev.2013.08.012

    [44]

    Deng Yufeng, Song Xieyan, Hollings P, et al. Role of asthenosphere and lithosphere in the genesis of the Early Permian Huangshan mafic-ultramafic intrusion in the Northern Tianshan, NW China[J]. Lithos, 2015, 277: 241254.

    [45]

    Deng Yufeng, Yuan Feng, Hollings P, et al. Magma generation and sulfide saturation of Permian mafic-ultramafic intrusions from the western part of the Northern Tianshan in NW China: implicaitons for Ni-Cu mineralization[J]. Mineralium Deposita, 2020, 557): 515534.

    [46]

    Deng Yufeng, Song Xieyan, Xie Wei, et al. The Role of External Sulfur in Triggering Sulfide Immiscibility at Depth: Evidence from the Huangshan-Jingerquan Ni-Cu Metallogenic Belt, NW China[J]. Economic Geology, 2022, 1178): 18671879. doi: 10.5382/econgeo.4928

    [47]

    Deng Xiaohua, Wang Jingbin, Pirajno F, et al. Re-Os dating of chalcopyrite from selected mineral deposits in the Kalatag district in the eastern Tianshan orogen, China[J]. Ore Geology Reviews, 2016, 77: 7281. doi: 10.1016/j.oregeorev.2016.01.014

    [48]

    Eckstrand O, Grinenko L, Krouse H, et al. Preliminary data on sulphur isotopes and Se/S ratios, and the source of sulphur in magmatic sulphides from the Fox River Sill, Molson Dykes and Thompson nickel deposits, northern Manitobal[J]. Current Research Part: C, Geological Survey of Canada, 1989, 89-1C, 235-242.

    [49]

    Feng Yanqing, Qian Zhuangzhi, Duan Jun, et al. Geochronological and geochemical study of the Baixintan magmatic Ni-Cu sulphide deposit: New implications for the exploration potential in the western part of the East Tianshan nickel belt (NW China)[J]. Ore Geology Reviews, 2018, 95: 366381. doi: 10.1016/j.oregeorev.2018.02.023

    [50]

    Fitton G J, James D, Leeman W P. Basic magmatism associated with late Cenozoic extension in the Western United States: Compositional variations in space and time[J]. Journal of Geophysical Research, 1991, 96B8): 1369313711. doi: 10.1029/91JB00372

    [51]

    Gao Jianfeng, Zhou Meifu, Lightfoot P C, et al. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China[J]. Economic Geology, 2013, 1088): 18331848. doi: 10.2113/econgeo.108.8.1833

    [52]

    Griffiths R W, Campbell I H. Stirring and structure in mantle starting plumes[J]. Earth and Planetary Letters, 1990, 991-2): 6678.

    [53]

    Han Chunming, Xiao Wenjiao, Zhao Guochun, et al. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization[J]. Lithos, 2010, 120: 547567. doi: 10.1016/j.lithos.2010.09.019

    [54]

    Han Chunming, Xiao Wenjiao, Zhao Guochun, et al. SIMS U-Pb zircon dating and Re-Os isotopic analysis of the Hulu Cu-Ni deposit, eastern Tianshan, Central Asian Orogenic Belt, and its geological significance[J]. Journal of Geosciences, 2013, 583): 251270.

    [55]

    Haughton D R, Roeder P L, Skeinner B J. Solubility of sulfur in mafic magmas[J]. Economic Geology, 1974, 69: 451467. doi: 10.2113/gsecongeo.69.4.451

    [56]

    Jahn BM, Wu Fuyuan, CHEN Bin. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic[J]. Royal Society of Edinburgh: Earth Science, 2000, 91: 181193.

    [57]

    Li C, Naldrett A J, Ripley E M. Critical factors for the formation of a nickel-copper deposit in an evolved magma system: from a comparison of the Pants Lake and Voisey’s Bay sulfide occurrences in Labrador, Canada[J]. Mineralium Deposita, 2001, 361): 8692.

    [58]

    Li C, Ripley E M, Naldrett A J. Compositional variation of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia: Implications for ore-forming processes in dynamic magma conduits[J]. Economic Geology, 2003, 98: 6986.

    [59]

    Li C, Ripley E M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits[J]. Mineralium Deposita, 2005, 40, 218-230.

    [60]

    Li Chaofeng, Chu Z Y, Guo Jinghui, et al. A rapid single column separation scheme for highprecision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry[J]. Analytical Methods, 2015, 7: 47934802. doi: 10.1039/C4AY02896A

    [61]

    Li Chaofeng, Li Xianhua, Li Qiuli, et al. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J]. Analytica Chimica Acta, 2012, 727: 5460. doi: 10.1016/j.aca.2012.03.040

    [62]

    Liu Yannan, Samaha N T, Baker D R. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts[J]. Geochimica et Cosmochimica Acta, 2007, 717): 17831799.

    [63]

    Liu Yuegao, Li Wenyuan, Jia Q Z, et al. The Dynamic Sulfide Saturation Process and a Possible Slab Break-off Model for the Giant Xiarihamu Magmatic Nickel Ore Deposit in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China[J]. Economic Geology, 2018, 1136): 13831417. doi: 10.5382/econgeo.2018.4596

    [64]

    Mao Jingwen, Pirajno F, Zhang Zhaochong, et al. A review of the Cu-Ni sulfide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences, 2008, 32: 184203. doi: 10.1016/j.jseaes.2007.10.006

    [65]

    Mao Qigui, Xiao Wenjiao, Windley B F, et al. Early Permian subduction-related transtension in the Turpan Basin, East Tianshan (NW China): implications for accretionary tectonics of the southern Altaids[J]. Geological Magazine, 2019. https://doi.org/10.1017/S0016756819001006.

    [66]

    Mao Yajing, Qin Kezhang, Tang Dongmei, et al. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China[J]. Journal of Asian Earth Sciences, 2016, 129: 2237. doi: 10.1016/j.jseaes.2016.07.028

    [67]

    Mavrogenes J A, O'neill HSC. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas[J]. Geochimica et Cosmochimica Acta, 1999, 637-8): 11731180.

    [68]

    Mc Donough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 1203-4): 223253.

    [69]

    Naldrett A J. From the mantle to the bank: the life of a Ni-Cu-(PGE) sulfide deposit[J]. South African Journal of Geology, 2010, 113: 132. doi: 10.2113/gssajg.113.1-1

    [70]

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contrib Mineral Petrol, 1979, 69: 3347.

    [71]

    Pirajno F, Mao Jingwen, Zhang Zhaochong, et al. The association of mafic-ultramafic intrusions and A-type magmatism in the Tianshan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits[J]. Journal of Asian Earth Sciences, 2008, 322-4): 165183. doi: 10.1016/j.jseaes.2007.10.012

    [72]

    Qin Kezhang, Su Benxun, Sakyi P A, et al. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultrmafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NWChina): Constraints on a ca. 280Ma mantle plume[J]. American Journal of Science, 2011, 3113): 237260. doi: 10.2475/03.2011.03

    [73]

    Qin K Z, Zhang L C, Xiao W J, et al. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China[A]. In: Mao J W, Goldfarb R J, Seltmann R, et al. (Eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan[C]. London Geological Society, 2003, 10: 227−248.

    [74]

    Ripley em, Li C. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis[J]? Economic Geology, 2013, 108, 45−58.

    [75]

    Saunders A D, Storey M, Kent R W, et al. Consequences of plume lithosphere interactions[A]. In: Storey B C, Alabaster T, Pankhurst R J (Eds.). Magmatism and the Cause of Continental Breakup[C]. London, Geological Society of Special Publication, 1992, 68: 41−60.

    [76]

    Shi Yu, Wang Yuwang, Wang Jingbin, et al. Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China[J]. Journal of Earth Science, 2018, 293): 520536. doi: 10.1007/s12583-017-0969-4

    [77]

    Song Xieyan, Xie Wei, Deng Yufeng, et al. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China[J]. Lithos, 2011, 127: 128143. doi: 10.1016/j.lithos.2011.08.011

    [78]

    Still P, Umruh D M, Tatsumoto. Pb, Sr, Nd and Hf isotopic evidence of multiple for Oahu, Hawwii basalt[J]. Nature, 1983, 304: 2529. doi: 10.1038/304025a0

    [79]

    Su Benxun, Qin Kezhang, Sakyi P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 202−3): 516531. doi: 10.1016/j.gr.2010.11.015

    [80]

    Sun Tao, Qian Zhuangzhi, Deng Yufeng, et al. PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, Northwestern China[J]. Economic Geology, 2013, 108: 18491864. doi: 10.2113/econgeo.108.8.1849

    [81]

    Sun Yan, Wang Jingbin, Lv Xiaoqiang, et al. Geochronology, petrogenesis and tectonic implications of the newly discovered Cu-Ni sulfide-mineralized Yueyawan gabbroic complex, Kalatag district, northwestern Eastern Tianshan, NW China[J]. Ore Geology Review, 2019, 109: 589614.

    [82]

    Tang Dongmei, Qin Kezhang, Su Benxun, et al. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Oorogenic Belt, NW China, traced from geochemical and isotopic signatures[J]. Lithos, 2013, 170: 144163.

    [83]

    Taylor S R, Mclennan S M. The continental crust: its composition and evolution[M]. London: Blackwell Scientific Publications, 1985, 1-312.

    [84]

    Wang Yuwang, Wang Jingbin, Wang Lijuan, et al. Metallogenic series related to Permian mafic complex in North Xinjiang: Post-collisional stage or mantle plume result?[J]. Acta Geologica Sinica, 2008, 824): 788795.

    [85]

    Wendlandt R F. Sulfide saturation of basalt and andesite melts at high pressures and temperatures[J]. American Mineralogist, 1982, 679-10): 877885.

    [86]

    Windley B F, Allen M B, Zhang C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, Central Asia[J]. Geology, 1990, 18: 128131.

    [87]

    Wykes J L, O’neill HSC, Mavrogenes J A. The Effect of FeO on the Sulfur Content at Sulfide Saturation (SCSS) and the Selenium Content at Selenide Saturation of Silicate Melts[J]. Journal of Petrology, 2015, 56: 14071424. doi: 10.1093/petrology/egv041

    [88]

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Teritary volcanic province[J]. Earth and Planetary Science Letters, 1990, 50: 1130.

    [89]

    Xiao Wenjiao, Windley B F, Allen M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 234): 13161341. doi: 10.1016/j.gr.2012.01.012

    [90]

    Xiao Wenjiao, Zhang Lianchang, Qin Kezhang, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304: 370395. doi: 10.2475/ajs.304.4.370

    [91]

    Xue Shengchao, Wang Qingfei, Deng Jun, et al. Mechanism of organic matter assimilation and its role in sulfide saturation of oxidized magmatic ore-forming system: insights from C-S-Sr-Nd isotopes of the Tulaergen deposit in NW China[J]. Mineralium Deposita, 2022, 57: 11231141. doi: 10.1007/s00126-021-01087-8

    [92]

    Yuan Feng, Zhou Taofa, Zhang Dayu, et al. Siderophile and chalcophile metal variations in basalts: Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China[J]. Ore Geology Reviews, 2012, 45: 515. doi: 10.1016/j.oregeorev.2011.04.003

    [93]

    Zhao Yun, Xue Chunji, Zhao Xiaobo, et al. Variable mineraliztion processes during the formation of the Permian Hulu Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Journal of Asian Earth Sciences, 2016, 126: 113. doi: 10.1016/j.jseaes.2016.04.021

    [94]

    Zhao Yun, Liu Shengao, Xue Chunji, et al. Copper isotope fractionation in magmatic Ni–Cu mineralization systems associated with the variation of oxygen fugacity in silicate magmas[J]. Geochimica et Cosmochimica Acta, 2022, 338.

    [95]

    Zhou Guochao, Wang Yuwang, Shi Yu, et al. Petrogenesis and sulfide saturation of the Yueyawan Cu-Ni sulfide deposit in Eastern Tianshan, NW China[J]. Ore Geology Review. 202, 139: 104596.

    [96]

    Zhou Guochao, Wang Yuwang, Wang Jingbin, et al. Petrogenesis and Economic Potential of the Sangong Mafic-Ultramafic Intrusion in the Eastern Tianshan, Central Asian Orogenic Belt: Constraints from Mineral, Whole-Rock, and PGE Geochemistry[J]. Journal of Earth Science, 2024, 35: 850–865.

    [97]

    Zhou Meifu, Lesherr C M, Yang Z X, et al. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 2093-4): 233257. doi: 10.1016/j.chemgeo.2004.05.005

    [98]

    Zhou Meifu, Zhao Junhong, Jiang Changyi, et al. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NWChina: Implications for a possible Permian large igneous province[J]. Lithos, 2009, 113: 583594. doi: 10.1016/j.lithos.2009.06.027

  • 加载中

(8)

(3)

计量
  • 文章访问数:  42
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-10-30
修回日期:  2024-07-25
录用日期:  2024-09-12
刊出日期:  2025-08-20

目录