甘肃省基性–超基性岩时空分布与铜镍硫化物矿资源潜力

张翔, 黄增保, 陈世强, 司豪佳, 徐锡东, 王永强, 李文轩, 刘子锐, 胡妍, 龚振中. 2025. 甘肃省基性–超基性岩时空分布与铜镍硫化物矿资源潜力. 西北地质, 58(4): 69-86. doi: 10.12401/j.nwg.2025089
引用本文: 张翔, 黄增保, 陈世强, 司豪佳, 徐锡东, 王永强, 李文轩, 刘子锐, 胡妍, 龚振中. 2025. 甘肃省基性–超基性岩时空分布与铜镍硫化物矿资源潜力. 西北地质, 58(4): 69-86. doi: 10.12401/j.nwg.2025089
ZHANG Xiang, HUANG Zengbao, CHEN Shiqiang, SI Haojia, XU Xidong, WANG Yongqiang, LI Wenxuan, LIU Zirui, HU Yan, GONG Zhenzhong. 2025. Temporal and Spatial Distribution of Basic-Ultrabasic Rocks and the Resource Potential of Cu-Ni Sulfide Deposit in Gansu Province, China. Northwestern Geology, 58(4): 69-86. doi: 10.12401/j.nwg.2025089
Citation: ZHANG Xiang, HUANG Zengbao, CHEN Shiqiang, SI Haojia, XU Xidong, WANG Yongqiang, LI Wenxuan, LIU Zirui, HU Yan, GONG Zhenzhong. 2025. Temporal and Spatial Distribution of Basic-Ultrabasic Rocks and the Resource Potential of Cu-Ni Sulfide Deposit in Gansu Province, China. Northwestern Geology, 58(4): 69-86. doi: 10.12401/j.nwg.2025089

甘肃省基性–超基性岩时空分布与铜镍硫化物矿资源潜力

  • 基金项目: 甘肃省级基础地质调查项目“甘肃省岩浆型铜镍硫化物矿床成矿作用与预测研究”(〔2024〕76号-39),甘肃省地勘基金资助项目“甘肃省瓜州县铭杨铜镍矿普查”(202004-D03),甘肃省地矿局创新资金项目“甘肃岩浆铜镍硫化物矿床找矿预测研究及勘查实施方案编制”(甘地矿函〔2023〕5号)联合资助。
详细信息
    作者简介: 张翔(1966−),男,正高级工程师,长期从事区域地质与成矿地质研究工作。E−mail: 916685598@qq.com
  • 中图分类号: P587;P618.63

Temporal and Spatial Distribution of Basic-Ultrabasic Rocks and the Resource Potential of Cu-Ni Sulfide Deposit in Gansu Province, China

  • 岩浆铜镍硫化物矿床是西北地区主要的铜镍矿床类型。近年来,甘肃省地矿局在北山、阿尔金山、祁连山等地区针对铜镍硫化物矿床开展了找矿勘查,并取得了一定进展,其成果受到行业高度关注。笔者系统总结了甘肃重要铜镍硫化物矿床研究新进展和红川、大敖包沟等铜镍硫化物矿床找矿亮点,系统梳理和总结了甘肃省基性–超基性岩体(群)时空分布、岩浆型铜镍硫化物矿成矿地质条件、主要矿床类型和典型岩浆铜镍硫化物矿床特征,分析了甘肃省岩浆铜镍硫化物矿床的找矿潜力,划分了找矿远景区,圈定了找矿靶区,提出了找矿方向,为找矿勘查实践和理论研究提供了依据。

  • 加载中
  • 图 1  甘肃省典型铜镍硫化物矿床及基性–超基性岩分布图

    Figure 1. 

    图 2  北祁连西段基性–超基性岩分布图

    Figure 2. 

    图 3  龙首山基性–超基性岩与铜镍矿分布图

    Figure 3. 

    图 4  超镁铁岩Ol′-Ne′-Q′与AFM图

    Figure 4. 

    图 5  岩体稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

    Figure 5. 

    图 6  北山地区基性–超基性岩与铜镍矿分布图(据卜鹏等,2018 修改)

    Figure 6. 

    图 7  成宣基性–超基性岩体稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

    Figure 7. 

    图 8  阿尔金–祁连西段地区基性–超基性岩与铜镍矿分布图

    Figure 8. 

    图 9  岩体稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

    Figure 9. 

    表 1  龙首山超基性岩岩石化学成分及参数表

    Table 1.  Chemical composition and parameters of ultrabasic rocks in Longshou Mountain

    样号 岩石名称 产地 氧化物含量(%) 特征参数
    SiO2 MgO Al2O3 Fe2O3 FeO CaO K2O Na2O TiO2 MnO P2O5 LOI 总和 A.R MF FL SI σ A/CNK R1 R2
    LZK265-13 二辉橄
    榄岩
    金川 38.38 27.81 2.20 16.17 3.93 0.22 0.3 0.22 0.13 0.03 8.86 89.39 1.19 98.66 11.68 1.30 0.06 0.49 1305.30 474.90
    LZK265-17 二辉岩 42.24 25.63 5.56 14.59 4.60 0.52 0.77 0.37 0.18 0.05 4.50 94.50 1.25 96.56 19.85 3.20 1.70 0.97 1493.20 627.50
    L05U-01 二辉橄
    榄岩
    37.25 30.56 2.71 11.99 2.91 0.68 0.06 0.22 0.17 0.03 12.17 86.58 1.10 94.63 8.78 5.25 0.01 0.85 1322.00 398.28
    L07U-16 橄榄岩 36.22 32.29 2.31 16.21 1.05 0.23 0.07 0.26 0.16 0.04 9.64 88.84 1.22 98.60 23.86 1.37 0.02 1.67 1087.80 169.38
    L24U-04 橄榄辉
    石岩
    38.88 29.72 2.84 13.40 3.74 0.12 0.12 0.27 0.12 0.03 9.39 89.24 1.13 99.11 9.45 0.86 0.04 0.69 1384.40 461.57
    LB(05)-1 橄榄岩 36.95 33.59 3.42 12.47 2.76 0.83 0.21 0.27 0.13 0.04 8.77 90.68 1.17 93.76 14.80 6.02 0.04 1.06 1161.30 404.05
    R32B-11 含辉橄
    榄岩
    34.92 36.98 1.42 13.96 0.29 0.09 0.04 0.14 0.16 0.03 11.90 88.03 1.24 99.36 38.10 0.63 0.00 3.00 989.82 63.53
    R32B-12 方辉橄
    榄岩
    35.77 35.00 1.44 14.44 0.20 0.11 0.04 0.19 0.18 0.04 12.67 87.41 1.33 99.24 53.19 0.74 0.01 3.32 1066.20 55.261
    Y22U-06 含长二
    辉橄
    榄岩
    36.29 30.24 3.45 17.18 2.17 0.29 0.48 0.28 0.16 0.04 8.14 90.59 1.31 98.34 25.92 1.59 0.09 1.18 1016.70 314.50
    Y13U-05 单辉橄
    榄岩
    36.42 29.27 3.77 16.68 2.29 0.12 0.17 0.15 0.15 0.03 9.15 89.05 1.11 99.27 12.26 0.70 0.02 1.45 1180.70 324.97
    mcq-15 蚀变辉
    石岩
    43.48 24.83 6.09 4.70 6.05 5.56 0.01 0.21 0.57 0.13 0.27 7.50 91.90 1.14 99.91 12.30 0.09 1.27 0.96 1735.10 714.82
    mcq-2 蚀变橄
    榄辉
    石岩
    47.42 24.20 7.63 2.28 8.52 5.88 0.17 0.58 0.37 0.16 0.04 1.37 97.25 1.15 98.45 13.91 1.43 0.20 1.12 1989.60 787.20
    下载: 导出CSV

    表 2  龙首山超基性岩稀土元素含量及各类参数

    Table 2.  Rare earth element content and various parameters of ultrabasic rocks in Longshou Mountain

    样号 岩石名称 产地 元素含量(10−6 特征参数
    La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE ΣLREE ΣHREE LREE/
    HREE
    δEu δCe (La/Yb)N (La/Sm)N (Ce/Yb)N
    LZK265-13 二辉橄榄岩 金川 1.87 4.44 0.59 2.55 0.69 0.22 0.67 0.12 0.7 0.14 0.41 0.06 0.37 0.06 12.89 10.36 2.53 4.09 0.99 1.04 3.41 1.34 4.10
    LZK265-17 二辉岩 8.17 14.1 1.74 6.71 1.49 0.47 1.4 0.23 1.34 0.27 0.78 0.1 0.69 0.1 37.59 32.68 4.91 6.66 0.99 0.92 7.98 2.71 6.98
    L05U-01 二辉橄榄岩 2.49 5.23 0.73 2.96 0.7 0.24 0.68 0.11 0.64 0.13 0.36 0.05 0.36 0.06 14.74 12.35 2.39 5.17 1.06 0.95 4.66 1.76 4.96
    L07U-16 橄榄岩 3.27 6.68 0.94 3.98 0.96 0.27 0.88 0.14 0.86 0.17 0.5 0.07 0.45 0.07 19.24 16.10 3.14 5.13 0.90 0.93 4.90 1.68 5.07
    L24U-04 橄榄辉石岩 1.42 4.1 0.64 2.94 0.88 0.23 0.83 0.15 0.89 0.18 0.5 0.07 0.49 0.07 13.39 10.21 3.18 3.21 0.82 1.05 1.95 0.80 2.86
    LB(05)-1 橄榄岩 1.57 4.7 0.88 4.41 1.11 0.23 0.88 0.14 0.82 0.15 0.46 0.06 0.43 0.06 15.90 12.90 3.00 4.30 0.71 0.98 2.46 0.70 3.73
    R32B-11 含辉橄榄岩 1.62 3.61 0.53 2.3 0.52 0.14 0.47 0.08 0.44 0.09 0.26 0.05 0.24 0.05 10.40 8.72 1.68 5.19 0.87 0.96 4.55 1.54 5.14
    R32B-12 方辉橄榄岩 3.32 5.93 0.76 3.06 0.68 0.16 0.61 0.1 0.57 0.11 0.31 0.05 0.28 0.05 15.99 13.91 2.08 6.69 0.76 0.92 7.99 2.41 7.23
    Y22U-06 含长二辉
    橄榄岩
    3.8 7.79 1.09 4.5 1.04 0.34 0.97 0.16 0.93 0.19 0.52 0.07 0.49 0.07 21.96 18.56 3.40 5.46 1.03 0.94 5.23 1.80 5.43
    Y13U-05 单辉橄榄岩 1.63 3.06 0.45 2.04 0.55 0.2 0.56 0.09 0.61 0.12 0.37 0.05 0.37 0.06 10.16 7.93 2.23 3.56 1.10 0.88 2.97 1.46 2.82
    mcq-15 蚀变辉石岩 4.55 9.85 1.28 5.01 1.26 0.16 1.49 0.25 1.59 0.33 0.97 0.14 0.91 0.13 27.92 22.11 5.81 3.81 0.36 1.00 3.37 1.78 3.70
    mcq-2 蚀变橄榄
    辉石岩
    5.31 11.54 1.4 6.14 1.55 0.49 1.86 0.33 2.01 0.42 1.1 0.17 1.08 0.17 33.57 26.43 7.14 3.70 0.88 1.04 3.31 1.69 3.65
    下载: 导出CSV

    表 3  龙首山超基性岩微量元素含量及各类参数

    Table 3.  Trace element content and various parameters of ultrabasic rocks in Longshou Mountain

    样号 岩石
    名称
    产地 元素含量(10−6 特征参数
    Y Hf Zr V Sc Cr Co Ni Cu Nb Ba Ta Pb Th U Hf/Th Zr/Y Hf/Ta
    LZK265-17 二辉橄
    榄岩
    金川 7.2 0.96 38.9 62.2 17.9 2574 148 2362 1118 1.85 153 0.15 16.7 0.79 0.16 1.22 5.40 6.4
    L05U-01 二辉岩 3.6 0.67 27.1 34.8 8.02 3417 106 1276 552 0.91 92.3 0.07 7.65 0.34 0.11 1.97 7.53 9.57
    L07U-16 二辉橄
    榄岩
    4.82 0.74 30.9 43 9.32 3976 192 4317 2220 1.41 16.8 0.09 18.5 0.32 0.08 2.31 6.41 8.22
    L24U-04 橄榄岩 4.95 0.93 33.9 49.3 15.4 3185 152 4039 2335 1.06 6.07 0.07 8.74 0.41 0.09 2.27 6.85 13.29
    LB(05)-1 橄榄辉
    石岩
    4.49 0.69 28.1 31.8 7.21 3570 152 2574 989 1.54 90.5 0.11 7.16 1.05 0.18 0.66 6.26 6.27
    R32B-11 橄榄岩 2.47 0.46 20.8 15.6 6.42 3663 134 1203 59.9 0.77 9.22 0.05 6.09 0.17 0.06 2.71 8.42 9.20
    R32B-12 含辉橄
    榄岩
    3.09 0.69 30.6 15.3 6.86 2944 140 1399 80.6 1.1 9.02 0.07 6.15 0.24 0.07 2.88 9.90 9.86
    Y22U-06 方辉橄
    榄岩
    5.17 0.72 29.6 34.8 10.4 2922 254 6790 1640 1.6 285 0.1 16.6 0.41 0.09 1.76 5.73 7.2
    Y13U-05 含长二
    辉橄
    榄岩
    3.64 0.52 20.2 32.3 9.88 3198 252 7199 2381 0.45 34.1 0.07 11.8 0.23 0.05 2.26 5.55 7.43
    mcq-15 单辉橄
    榄岩
    8.94 0.854 24.3 139.8 17.1 4501 93.8 1525 38.1 2.041 15.21 0.319 2.99 1.317 1.015 0.65 2.72 2.68
    mcq-2 蚀变辉
    石岩
    10.85 1.233 39.42 125 17.99 2565 92 1539 75.34 1.7 9.361 0.167 3.3 1.625 0.55 0.76 3.63 7.38
    下载: 导出CSV

    表 4  黑山泥盆世基性–超基性岩石化学特征表

    Table 4.  Chemical characteristics of Heishan Devonian basic-ultrabasic rocks.

    样号岩石类型化学成分(%)
    SiO2TiO2Al2O3Fe2O3FeOMnOCaOMgOK2ONa2O
    ZH002
    中细粒斜长角闪辉橄岩
    40.990.505.6813.469.340.163.4228.320.360.84
    ZH01542.640.425.5011.718.140.163.0129.430.370.74
    ZH02242.020.677.8412.558.060.143.8620.920.961.08
    ZH02841.540.162.2612.689.680.181.2939.360.160.40
    YQ-2中细粒角闪辉长岩60.640.8314.611.564.720.201.201.720.458.00
    YQ-651.730.6016.242.633.980.214.037.321.701.85
    YQ-1150.791.0916.193.782.170.118.939.651.003.20
    YQ-1中细粒橄榄角闪辉长岩49.330.7011.311.176.260.2510.658.730.452.20
    YQ-1349.790.5410.684.883.500.169.388.300.732.60
    YQ-4中粗粒含长角闪橄榄岩41.530.286.044.806.020.257.9516.330.351.48
    YQ-538.110.135.734.816.360.289.9816.980.150.90
    YQ-1042.260.376.253.886.820.293.0829.300.130.43
    YQ-1443.660.437.942.946.240.155.1830.130.050.43
    KQ-438.630.223.544.008.960.193.7529.810.200.68
    KQ-636.540.162.456.155.160.184.2024.710.750.95
    KQ-740.390.314.902.9610.400.192.6134.690.180.33
    YQ-9角闪橄榄岩41.240.253.692.378.480.301.9835.710.180.20
    YQ-3角闪辉石橄榄岩37.670.193.607.843.800.243.0731.570.280.63
    YQ-1641.140.214.471.1111.040.212.4035.900.050.43
    YQ-1741.640.396.482.389.040.190.9833.580.050.10
    YQ-15单辉橄榄岩40.460.285.991.549.680.192.1033.720.180.53
    KQ-5斜长角闪橄榄岩40.560.467.205.0010.080.183.0827.890.330.63
    下载: 导出CSV

    表 5  成宣二叠世基性–超基性岩主量元素含量(%)及特征表

    Table 5.  Major element content (%) and characteristics of of the Chenxuan Permian basic-ultrabasic rocks

    岩石名称 SiO2 Na2O MgO Al2O3 P2O5 K2O CaO
    辉石橄榄岩 42.33 1.89 19.25 13.37 0.10 0.58 6.91
    橄榄辉石岩 43.42 1.95 20.20 12.51 0.08 0.29 6.55
    辉石橄榄岩 42.41 2.05 18.23 13.54 0.09 0.90 6.77
    岩石名称 TiO2 MnO Fe2O3 FeO LOI Mg# m/f
    辉石橄榄岩 0.35 0.05 1.92 8.92 2.47 0.76 3.27
    橄榄辉石岩 0.32 0.06 2.19 8.19 2.22 0.78 3.18
    辉石橄榄岩 0.34 0.05 1.82 7.82 1.22 0.77 3.10
    下载: 导出CSV

    表 6  成宣二叠世基性–超基性岩微量元素(10−6)特征表

    Table 6.  Trace element(10−6) characteristics of the Chenxuan Permian basic-ultrabasic rocks

    样号 岩石名称 Rb K Ba Th U Nb La Ce Sr
    YSQ-1 辉石橄榄岩 129 5036 1340 17.9 4.4 12.6 28 53.7 661
    YSQ-2 橄榄辉石岩 178 2534 1610 18.5 4 11.8 24.6 48.1 514
    YSQ-3 辉石橄榄岩 116 7971 1590 15.5 3.12 11 22.6 49.1 632
    样号 岩石名称 Nd P Zr Hf Sm Ti Y Yb Lu
    YSQ-1 辉石橄榄岩 24 459 135 3.8 4.54 2210 14.4 1.38 0.216
    YSQ-2 橄榄辉石岩 21.3 349 114 3.33 4.06 2010 12.9 1.24 0.193
    YSQ-3 辉石橄榄岩 22.9 423 98 2.78 4.39 2170 13.9 1.26 0.183
    下载: 导出CSV

    表 7  成宣二叠世镁铁–超镁铁岩稀土元素含量(10−6)特征表

    Table 7.  Rare earth element (REE)(10−6) content characteristics of the Chenxuan Permian basic-ultrabasic rocks

    样号 岩石名称 La Ce Pr Nd Sm Eu Gd Tb
    YSQ-1 辉石橄榄岩 28 53.7 6.37 24 4.54 1.26 3.66 0.52
    YSQ-2 橄榄辉石岩 24.6 48.1 5.65 21.3 4.06 1.14 3.16 0.47
    YSQ-3 辉石橄榄岩 22.6 49.1 5.94 22.9 4.39 1.18 3.44 0.50
    样号 岩石名称 Dy Ho Er Tm Yb Lu Y
    YSQ-1 辉石橄榄岩 2.64 0.51 1.43 0.217 1.38 0.216 14.4
    YSQ-2 橄榄辉石岩 2.35 0.46 1.3 0.192 1.24 0.193 12.9
    YSQ-3 辉石橄榄岩 2.49 0.47 1.37 0.194 1.26 0.183 13.9
    样号 岩石名称 ΣREE LREE HREE LREE/HREE (La/Yb)N δEu δCe
    YSQ-1 辉石橄榄岩 128.5 117.9 10.58 11.14 14.55 0.94 0.99
    YSQ-2 橄榄辉石岩 114.2 104.9 9.37 11.19 14.23 0.97 1.00
    YSQ-3 辉石橄榄岩 116.0 106.1 9.91 10.71 12.87 0.93 1.04
    下载: 导出CSV

    表 8  大敖包沟含矿镁铁–超镁铁岩岩石地球化学特征表

    Table 8.  Geochemical characteristics of ore-bearing mafic-ultramafic rocks in the Da'aobaogou area

    样号 DAG06 DAG07 DAG08 DAG10 DAG11 DAG14 DAG15 DAG17 DAG18
    岩性 橄榄辉石岩 辉石岩 辉长岩
    SiO2 47.4 45.5 45.3 44.2 49.1 46.5 45.3 48.8 47.3
    TiO2 0.20 0.21 0.20 0.43 0.23 0.24 0.20 0.45 0.59
    Al2O3 3.55 3.42 3.88 10.70 3.28 3.78 4.25 15.55 16.05
    FeOT 11.47 13.06 12.03 5.99 12.07 11.92 11.57 8.81 8.80
    MnO 0.16 0.16 0.16 0.08 0.17 0.16 0.15 0.15 0.14
    MgO 28.2 30.0 29.10 21.30 29.60 28.70 28.30 8.49 9.27
    CaO 3.91 3.00 4.00 11.10 2.76 4.12 3.99 12.55 11.90
    Na2O 0.45 0.47 0.55 1.44 0.47 0.56 0.40 2.67 2.17
    K2O 0.23 0.36 0.38 0.20 0.39 0.43 0.10 0.99 1.40
    P2O5 0.05 0.04 0.04 0.03 0.04 0.05 0.04 0.03 0.05
    LOI 4.50 3.63 4.29 4.26 1.83 3.53 5.28 1.17 1.64
    Total 100.17 99.85 99.93 99.73 99.94 99.99 99.58 99.66 99.31
    m/f 4.53 4.28 4.47 6.10 4.54 4.45 4.51 1.73 1.89
    Mg# 0.86 0.85 0.86 0.92 0.86 0.86 0.86 0.73 0.75
    下载: 导出CSV

    表 9  大敖包沟含矿岩体微量元素分析测试结果(10−6

    Table 9.  Trace element(10−6) analysis results of the Da'aobaogou rock body

    样号 DAG 06 DAG 07 DAG 08 DAG 10 DAG 11 DAG 14 DAG 15 DAG 17 DAG18
    岩性 橄榄辉石岩 辉石岩 辉长岩
    Li 3.7 6.6 11 6.1 6.6 9.1 3.2 11.8 14.2
    Be 0.25 0.16 0.23 0.25 0.19 0.23 0.25 0.56 0.96
    Sc 20 16.2 18.7 20.9 18.8 19.4 17.8 44.1 36.2
    Ga 4.91 4.6 5.06 11.55 4.94 5.12 5.3 15.55 16.4
    Rb 8.3 13.1 13.5 3.6 14.9 16 3.4 22 33.7
    Sr 56.1 95.7 118 125.5 70.8 92 99.7 256 272
    Y 5.4 4.5 5.1 8.7 4.5 5.7 5 10.9 11.8
    Zr 26.2 27.9 30 41.5 28.7 34.2 20.3 10.6 9
    Nb 1.4 1.3 1.2 1.3 1.3 1.5 1.3 1.7 3.4
    Cs 2.5 0.67 3.24 0.37 1.71 2.71 2.07 0.98 3.04
    Ba 84.1 110 108.5 48.5 115.5 126.5 23.8 120.5 154.5
    La 7 6.4 6.7 6.8 6.1 7.4 7 8.1 5.6
    Ce 13.55 12.35 13.1 14.4 11.7 14.7 13.4 16.2 12
    Pr 1.74 1.39 1.43 1.65 1.3 1.67 1.47 2.15 1.59
    Nd 6.5 5.7 5.4 6.8 5 6.9 5.4 8.7 7
    Sm 1.36 1.03 1.09 1.63 0.89 1.37 1.17 2.05 1.91
    Eu 0.33 0.32 0.32 0.49 0.26 0.37 0.32 0.74 0.68
    Gd 1.27 1.03 1.06 1.58 0.92 1.23 1.05 2.18 2.34
    Tb 0.14 0.15 0.14 0.21 0.1 0.15 0.14 0.32 0.35
    Dy 1.08 0.78 0.89 1.34 0.75 1.04 0.84 2.1 2.59
    Ho 0.2 0.17 0.16 0.3 0.15 0.21 0.17 0.41 0.53
    Er 0.55 0.5 0.55 0.79 0.49 0.57 0.47 1.34 1.63
    Tm 0.11 0.11 0.1 0.13 0.09 0.14 0.1 0.18 0.27
    Yb 0.58 0.43 0.46 0.72 0.42 0.54 0.48 1.22 1.48
    Lu 0.08 0.08 0.07 0.12 0.08 0.08 0.08 0.18 0.26
    Hf 0.7 0.7 0.8 1.5 0.7 0.9 0.6 0.4 0.5
    Ta 0.08 0.07 0.07 0.09 0.08 0.09 0.07 0.17 0.21
    Ti 1440 1230 1180 2490 1370 1380 1200 3310 4100
    Pb 1.7 1.8 2 4.4 2 2.1 2.1 5.3 4.8
    Bi 0.01 0.01 0.01 0.13 0.02 0.01 0.03 0.03 0.09
    Th 1.4 1.3 1.3 1.1 1.4 1.5 1.5 1.6 0.9
    U 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.3
    V 84 66 71 69 79 76 69 197 202
    Cr 741 761 646 15 923 654 601 416 63
    Co 102.5 131 118.5 29.5 111.5 111 114 42.9 43.7
    Ni 691 1250 909 304 825 769 812 102 154.5
    Cu 79.7 169.5 121 163 116.5 63.3 99.9 28.9 98.2
    ΣREE 34.49 30.44 31.47 36.96 28.25 36.37 32.09 45.87 38.23
    LREE/HREE 7.60 8.37 8.17 6.12 8.42 8.18 8.64 4.78 3.05
    (La/Yb)N 8.16 10.06 9.84 6.38 9.81 9.26 9.85 4.49 2.56
    δEu 0.76 0.94 0.90 0.92 0.87 0.85 0.87 1.06 0.98
    δCe 0.89 0.94 0.95 0.98 0.94 0.95 0.94 0.90 0.93
    La/Sm 5.15 6.21 6.15 4.17 6.85 5.40 5.98 3.95 2.93
    Th/Ta 17.50 18.57 18.57 12.22 17.50 16.67 21.43 9.41 4.29
    Nb/U 4.67 6.50 6.00 6.50 4.33 5.00 6.50 11.33 10.67
    Ce/Pb 7.97 6.86 6.55 3.27 5.85 7.00 6.38 3.06 2.50
    Ta/Yb 0.14 0.16 0.15 0.13 0.19 0.17 0.15 0.14 0.14
    Hf/Ta 8.75 10.00 11.43 16.67 8.75 10.00 8.57 2.35 2.38
    下载: 导出CSV
  • [1]

    白云来, 张汉成, 李卫红, 等. 论甘肃北山中部铜镍成矿系统的构造背景[J]. 甘肃地质学报, 2002, 112): 2944.

    BAI Yunlai, ZHANG Hancheng, LI Weihong, et al. On the geotectonic background of the nickel-copper metallogenic system of the central beishan mountains in Gansu China[J]. Acta Geologica Gansu, 2002, 112): 2944.

    [2]

    卜鹏, 徐思超, 刘孜. 新疆东天山坡一铜镍矿地质特征及找矿远景分析[J]. 世界有色金属, 201820): 9396+98.

    BU Peng, XU Sichao, LIU Zi. Geological characteristics and prospecting potential analysis of a copper-nickel deposit in Dongtianshan, Xinjiang[J]. Prospecting Technology, 201820): 9396+98.

    [3]

    段俊, 甘肃龙首山地区藏布台镁铁-超镁铁质岩体岩石成因及成矿潜力[D]. 西安: 长安大学, 2012.

    DUAN Jun, Petrogenesis and Metallogenic Potential of Zangbutai Mafic-Ultramafic Intrusion in Longshoushan, Gansu province[D]. Xi’an: Chang’an University, 2012.

    [4]

    龚振中, 杨镇熙, 周登峰, 等. 北祁连西段红川铜镍矿超基性岩体锆石U-Pb年龄[J]. 中国地质, 2024, 511): 364365. doi: 10.12029/gc20230823002

    GONG Zhenzhong, YANG Zhenxi, ZHOU Dengfeng, et al. Zircon U-Pb age of the ultrabasic intrusion of Hongchuan copper-nickel deposit in the west of the Northern Qilianshan Orogenic[J]. Geology in China, 2024, 511): 364365. doi: 10.12029/gc20230823002

    [5]

    康鸿杰, 苏欣, 王永豪, 等. 塔里木板块东南缘敦煌地块内大敖包沟铜镍矿化镁铁-超镁铁质岩年代学、岩石地球化学研究[J]. 矿物岩石地球化学通报, 2024, 436): 12391254. doi: 10.3724/j.issn.1007-2802.20240114

    KANG Hongjie, SU Xin, WANG Yonghao, et al. Geochronology and geochemistry of Cu-Ni mineralized mafic ultramafic rocks in the Daaobaogou deposit of the Dunhuang Block in the southeastern margin of the Tarim Plate. Bulletin of Mineralogy[J]. Petrology and Geochemistry, 2024, 436): 12391254. doi: 10.3724/j.issn.1007-2802.20240114

    [6]

    高晓峰, 隋清霖, 尤敏鑫, 等. 造山带岩浆铜镍硫化物矿床深部动力学机制探讨[J]. 西北地质, 2025, 583): 206220. doi: 10.12401/j.nwg.2025012

    GAO Xiaofeng, SUI Qinglin, YOU Minxin, et al. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts[J]. Northwestern Geology, 2025, 583): 206220. doi: 10.12401/j.nwg.2025012

    [7]

    黄增保. 甘肃大道尔吉铬铁矿矿床成矿岩体地球化学特征及其研究意义[D]. 成都: 成都理工大学, 2012.

    HUANG Zengbao, Geochemical characteristics and significances of the Dadao Erji chromite deposit ore-forming rock in Gansu province [D]. Chengdu: Chengdu University of Technology, 2012.

    [8]

    姜常义, 郭娜欣, 夏明哲, 等. 塔里木板块东北部坡一镁铁质-超镁铁质层状侵入体岩石成因[J]. 岩石学报, 2012, 287): 22092223.

    JIANG Changyi, GUO Naxin, XIA Mingzhe, et al. Petrogenesis of the Poyi mafic ultramafic layered intrusion, NE Tarim Plate[J]. Acta Petrologica Sinica, 2012, 287): 22092223.

    [9]

    姜常义, 凌锦兰, 周伟, 等. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 2015, 314): 11171136.

    JIANG ChangYi, LING Jinlan, ZHOU Wei, et al. Petrogenesis of the Xiarihamu Ni bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment[J]. Acta Petrologica Sinica, 2015, 314): 11171136.

    [10]

    刘聪. 北山造山带成宣含铜镍矿镁铁-超镁铁质岩体成因研究[D].兰州: 兰州大学. 2024.

    LIU Cong. Genetic study on the Chengxuan Cu-Ni sulfide ore-bearing mafic-ultramafic intrusion in the Beishan orogenic belt[D]. Lanzhou: Lanzhou University, 2024.

    [11]

    李奇祥, 廖群安, 三金柱, 等. 新疆哈密四顶黑山地区镁铁质-超镁铁岩特征及其构造意义[J]. 地质科技情报, 2010, 294): 1420.

    LI Qixiang, LIAO Qun’an, SAN Jinzhu, et al. Characteristics and Tectonic Significances of the Mafic-Ultramafic Rocks from Sidingheishan Area in Hami Xinjiang[J]. Geological Science and Technology Information, 2010, 294): 1420.

    [12]

    黎彤. 化学元素的地球丰度[J]. 地球化学, 19763): 167174. doi: 10.3321/j.issn:0379-1726.1976.03.004

    LI Tong. Terrestrial Abundance of Chemical Elements[J]. Geochimica, 19763): 167174. doi: 10.3321/j.issn:0379-1726.1976.03.004

    [13]

    李文渊, 汤中立, 郭周平, 等. 阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征[J]. 岩石矿物学杂志, 2004, 232): 117127. doi: 10.3969/j.issn.1000-6524.2004.02.003

    LI Wenyuan, TANG Zhongli, GUO Zhouping, et al. Petrogenetic epoch and geochemical characteristics of mafic-ultramafic rocks on the southern margin of Alxa massif in northern China[J]. Acta Petrologica et Mineralogica, 2004, 232): 117127. doi: 10.3969/j.issn.1000-6524.2004.02.003

    [14]

    李文渊. 中国西北部成矿地质特征及找矿新发现[J]. 中国地质, 2015, 423): 365380. doi: 10.3969/j.issn.1000-3657.2015.03.001

    LI Wenyuan. Metallogenic geological characteristics and newly discovered orebodies in Northwest China[J]. Geology in China, 2015, 423): 365380. doi: 10.3969/j.issn.1000-3657.2015.03.001

    [15]

    李文渊, 张照伟, 王亚磊, 等. 新疆北部晚古生代大规模岩浆作用与成矿耦合关系研究[M]. 北京: 科学出版社, 2019, 1−324.

    [16]

    李文渊, 王亚磊, 钱兵, 等. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 2020, 272): 276293.

    LI Wenyuan. WANG Yalei, QIAN Bing, et al. Discussion on the formation of magmatic Cu-Ni-Co sulfide desposits in margin of Tarim Block[J]. Earth Science Frontiers, 2020, 272): 276293.

    [17]

    李文渊. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报, 2022, 285): 793820. doi: 10.12090/j.issn.1006-6616.20222810

    LI Wenyuan. Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper-nickel-cobalt sulfide deposits in China[J]. Journal of Geomechanics, 2022, 285): 793820. doi: 10.12090/j.issn.1006-6616.20222810

    [18]

    李献华, 苏犁, 宋彪, 等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 2004, 494): 420422.

    LI Xianhua, SU Li, SONG Biao, et al. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin, 2004, 494): 420422.

    [19]

    毛景文, 杨建民, 屈文俊, 等. 新疆黄山东铜镍硫化物矿Re-Os同位素测定及其地球动力学意义[J]. 矿床地质, 2002, 214): 323330.

    MAO Jingwen, YANG Jianmin, QU Wenjun, et al. Re-Os Dating of Cu-Ni Sulfide Ores from Huangshandong Deposit in Xinjiang and Its Geodynamic Significance[J]. Mineral Deposits, 2002, 214): 323330.

    [20]

    孟繁聪, 张建新, 郭春满, 等. 大岔大坂MOR型和SZZ型蛇绿岩对北祁连洋演化的制约[J]. 岩石矿物学杂志, 2010, 295): 453466. doi: 10.3969/j.issn.1000-6524.2010.05.001

    MENG Fancong, ZHANG Jianxin, GUO Chunman, et al. straints on the evolution of the North Qilian ocean basin: MOR-type and SSZ-type ophiolites from Dachadaban[J]. Acta Petrologica et Mineralogic, 2010, 295): 453466. doi: 10.3969/j.issn.1000-6524.2010.05.001

    [21]

    任文秀, 黄增保, 王军, 等. 东天山玉石山蛇绿混杂岩带辉长岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 兰州大学学报: 自然科学版, 2020, 565): 690701.

    REN Wenxiu, HUANG Zengbao, WANG Jun, et al. Zircon U-Pb age based on LA-ICP-MS and its tectonic significance in the Yushishan ophiolitic melange[J]. Journal of Lanzhou University, Natural Sciences, 2020, 565): 690701.

    [22]

    史仁灯, 杨经绥, 吴才来, 等. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J]. 地质学报, 2004, 785): 649657. doi: 10.3321/j.issn:0001-5717.2004.05.009

    SHI Rendeng, YANG Jingsui, WU Cailai, et al. First SHRIMP Dating for the Formation of the Late Sinian Yushigou Ophiolite, North Qilian Mountains[J]. Acta Geologica Sinica, 2004, 785): 649657. doi: 10.3321/j.issn:0001-5717.2004.05.009

    [23]

    汤中立, 任端进, 薛增瑞, 等. 中国镍矿床[M]. 北京: 地质出版社, 1989, 104−123.

    [24]

    汤中立, 杨杰东, 徐士进, 等. 金川含矿超铁镁岩的Sm-Nd定年[J]. 科学通报, 1992, 3710): 918920. doi: 10.1360/csb1992-37-10-918

    TANG Zhongli, YANG Jiedong, XU Shijin, et al. Sm-Nd Dating of the Jinchuan Ore-Bearing Ultramafic Rocks[J]. Chinese Science Bulletin, 1992, 3710): 918920. doi: 10.1360/csb1992-37-10-918

    [25]

    汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995, 1−209.

    [26]

    汤中立, 钱壮志, 姜常义, 等. 中国镍铜铂岩浆硫化物矿床与成矿预测[M]. 北京: 地质出版社, 2006, 1−304.

    [27]

    田毓龙, 武栓军, 孟蓉, 等. 金川超镁铁质岩体LA-ICP-MS锆石U-Pb年龄[J]. 矿物学报, 2007, 27: 211217. doi: 10.3321/j.issn:1000-4734.2007.02.017

    TIAN Yulong, WU Shuanjun, MENG Rong. et al. LA-ICPMS Zircon U-Pb age of the Jinchuan ultramafic intrusion[J]. Acta Mineralogica Sinica, 2007, 27: 211217. doi: 10.3321/j.issn:1000-4734.2007.02.017

    [28]

    王国强, 李向民, 徐学义, 等. 甘肃新疆交界地区四顶黑山镁铁质-超镁铁质岩的锆石U-Pb年龄及地质意义[J]. 地质通报, 2012, 3112): 20462051.

    WANG Guoqiang, LI Xiangmin, XU Xueyi, et al. Zircon U-Pb ages of Sidingheishan mafic-ultramafic rocks in Xinjiang-Gansu border area and their geological significance[J]. Geological Bulletin of China, 2012, 3112): 20462051.

    [29]

    王军, 李小强, 梁明宏, 等. 阿尔金山东段阿克塞蛇绿岩地质地球化学特征及形成时代[J]. 地质通报, 2018, 374): 559569.

    WANG Jun, LI Xiaoqiang, LIANG Minghong, et al. Age and geochemistry of Aksay ophiolite in East Altun Moun-tains[J]. Geological Bulletin of China, 2018, 374): 559569.

    [30]

    王小红, 杨建国, 王磊, 等. 地质物化探综合方法在甘肃北山红柳沟铜镍矿的应用[J]. 西北地质, 2023, 566): 254261. doi: 10.12401/j.nwg.2023150

    WANG Xiaohong, YANG Jianguo, WANG Lei, et al. The Application Effect of Geological Geophysical and Geochemical Exploration Comprehensive Method in Hongliugou Copper–Nickel Deposit, Beishan, Gansu Province[J]. Northwestern Geology, 2023, 566): 254261. doi: 10.12401/j.nwg.2023150

    [31]

    王学银, 王党琦, 丁书宏, 等. 甘肃省金昌市白家嘴子矿区镍铜矿资源储量核实报告[R].甘肃省地质矿产勘查开发局第四地质矿产勘查院, 2017.

    [32]

    王磊, 杨建国, 王小红等. 甘肃北山大山头南基性-超基性杂岩体SHRIMP锆石U-Pb定年及其地质意义[J]. 岩石矿物学杂志, 2015, 345): 697705. doi: 10.3969/j.issn.1000-6524.2015.05.008

    WANG Lei, YANG Jianguo, WANG Xiaohong, et al. Zircon SHRIMP U-Pb age of Dashantounan basic-ultrabasic intrusion complex in the Beishan Mountain, Gansu Province[J]. Acta Petrologica et Mineralogica, 2015, 345): 697705. doi: 10.3969/j.issn.1000-6524.2015.05.008

    [33]

    宋谢炎. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 2019, 384): 699710.

    SONG Xieyan. Current research status and important issues of magmatic sulfide deposits[J]. Mineral Deposits, 2019, 384): 699710.

    [34]

    谢燮, 杨建国, 王小红, 等. 甘肃北山红柳沟铜镍矿化基性-超基性岩体SHRIMP锆石U-Pb年龄及其地质意义[J]. 中国地质, 2015, 422): 396405. doi: 10.3969/j.issn.1000-3657.2015.02.003

    XIE Xie, YANG Jianguo, WANG Xiaohong, et al. Zircon SHRIMP U-Pb dating of Hongliugou mafic-ultramafic complex in the Beishan area of Gansu Province and its geological significance[J]. Geology in China, 2015, 422): 396405. doi: 10.3969/j.issn.1000-3657.2015.02.003

    [35]

    谢燮, 杨建国, 张东阳, 等. 甘肃北山铭杨镁铁-超镁铁岩体锆石U-Pb年龄、地球化学特征及其地质意义[J]. 西北地质, 2024, 571): 179195.

    XIE Xie, YANG Jianguo, ZHANG Dongyang, et al. Geochemistry and Zircon U–Pb Dating of the Mingyang Mafic–Ultramafic Rock Complex in Beishan Area of Gansu and Its Prospecting Significance[J]. Northwestern Geology, 2024, 571): 179195.

    [36]

    夏小洪, 宋述光. 北祁连山肃南九个泉蛇绿岩形成年龄和构造环境[J]. 科学通报, 2010, 5515): 14651477.

    XIA Xiaohong, SONG Sunguang. Forming age and tectono-petrogenises of the Jiugequan ophiolite in the North Qilian Mountain, NW China[J]. Chinese Science Bulletin, 2010, 5515): 14651477.

    [37]

    夏小洪, 孙楠, 宋述光, 等. 北祁连西段熬油沟-二只哈拉达坂蛇绿岩的形成环境和时代[J]. 北京大学学报(自然科学版), 2012, 485): 757769.

    XIA Xiaohong, SUN Nan, SONG Shuguang, et al. Age and Tectonic Setting of the Aoyougou- Erzhihaladaban Ophiolite in the Western North Qilian Mountains, NW China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 485): 757769.

    [38]

    相振群, 陆松年, 李怀坤, 等. 北祁连西段熬油沟辉长岩的锆石SHRIMP U-Pb 年龄及地质意义[J]. 地质通报, 2007, 2612): 16861691. doi: 10.3969/j.issn.1671-2552.2007.12.023

    XIANG Zhenqun, LU Songnian, LI Huaikun, et al. SHRIMP U-Pb zircon age of gabbro in Aoyougou in the western segment of the North Qilian Mountains, China and its geological implications[J]. Geological Bulletin of China, 2007, 2612): 16861691. doi: 10.3969/j.issn.1671-2552.2007.12.023

    [39]

    杨建国, 王磊, 王小红, 等. 甘肃北山地区黑山铜镍矿化基性–超基性杂岩体锆石SHRIMP U-Pb定年及其地质意义[J]. 地质通报, 2012, 312−3): 448454.

    YANG Jianguo, WANG Lei, WANG Xiaohong, et al. Zircon SHRIMP U-Pb dating of Heishan mafic-ultramafic complex in the Beishan area of Gansu Province and its geological significance[J]. Geological Bulletin of China, 2012, 312−3): 448454.

    [40]

    杨建国, 王磊, 谢燮, 等. 甘肃北山怪石山铜镍矿化基性‒超基性杂岩体锆石SHRIMP U-Pb同位素定年及其意义[J]. 大地构造与成矿学, 2016, 401): 98108.

    YANG Jianguo, WANG Lei, XIE Xie, et al. SHRIMP Zircon U-Pb Age and its Signification of Guaishishan Mafic-ultramafic Complex in Beishan Mountains, Gan Province[J]. Geotectonica et Metallogenia, 2016, 401): 98108.

    [41]

    杨胜洪, 陈江峰, 屈文俊, 等. 金川铜镍硫化物矿床的Re-Os年龄及其意义[J]. 地球化学, 2007, 361): 2736.

    YANG Shenghong, CHEN Jiangfeng, QU Wenjun, et al. Re-Os “ages” of Jinchuan copper-nickel sulfide deposit and their signifiance[J]. Geochimica, 2007, 361): 2736.

    [42]

    赵斌斌, 俞胜, 陈世强, 等. 甘肃北山造山带南缘发现岩浆熔离型铜镍硫化物矿化类型[J/OL]. 地质论评, 2024, 1−6.

    ZHAO Binbin, YU Sheng, CHEN Shiqiang,et al. The discovery of magma liquation-type Cu-Ni sulfide mineralization in Gansu Province on the southern margin of Beishan Orogenic Belt[J/OL]. Geological Review, 2024, 1−6.

    [43]

    张宗清, 杜安道, 唐索寒, 等. 金川铜镍矿床年龄和源区同位素地球化学特征[J]. 地质学报, 2004, 783): 359365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    ZHANG Zongqing, DU Andao, TANG Suohan, et al. Age of the Jinchuan Copper-Nickel Deposit and Isotopic Geochemical Feature of Its Source[J]. Acta Geologica Sinica, 2004, 783): 359365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    [44]

    Arndtn T, Czamanskegk, Walkerrj, et al. Geochemistry and origin of the intrusive hosts of the Noril'sk-Talnakh Cu–Ni-PG Esulf-idedeposits[J]. Economic Geology, 2003, 983): 495515.

    [45]

    Horan M F, Walker R J, Fedorenko V A, et al. Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources[J]. Geochimica et Cosmochimica Acta, 1995, 5924): 51595168. doi: 10.1016/0016-7037(96)89674-8

    [46]

    Keays R, Ihlenfeld C, Mcinnes B, et al. Re-Os isotope dating of the Jinchuan Ni-Cu-PGE sulfide deposit, China[J]. IGCP, 2004: 41−42.

    [47]

    Naldrett A J. Magmatic sulfide deposits[M]. Oxford: Oxford University Presss, 1989, 1−196.

    [48]

    Naldrett A J. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. Berlin: Springer, 2004, 1−727.

    [49]

    Pirajno F. Ore deposits and mantle plumes[M]. London: Springer, 2000, 1−540.

    [50]

    Qin K Z, Su B X, Sakyi P A, et al. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Ma mantle plume[J]. American Journal of Science, 2011, 3113): 237260. doi: 10.2475/03.2011.03

    [51]

    Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilian Orogen, NW China[J]. Gondwana Research, 2013, 23: 13781401. doi: 10.1016/j.gr.2012.02.004

    [52]

    Su B X, Qin K Z, Sakyi P A, et al. Geochronologic-petrochemical studies of the Hongshishan mafic-ultramafic intrusion, Beishan area, Xinjiang (NW China): petrogenesis and tectonic implications[J]. International Geology Review, 2012, 54: 270289.

    [53]

    Su S G, Deng JF, Tang ZL, et al. Mineralization characteristics of platinum group elements in Jinchuan Cu-Ni PGE deposit[D]. Hong Kong: The University of Hong Kong, 2004: 43−47.

    [54]

    Tang D M, Qin K Z, Li C S et al. Zircon dating, Hf–Sr–Nd–Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic–ultramafic intrusion in the Central Asian Orogenic Belt, NW China[J]. Lithos, 2011, 126: 8498.

    [55]

    Yang G, Du A D, Qu W J, et al. Pt-Os and Re-Os dating of ores from Jinchuan Cu-Ni PGE deposit a world class Ni deposit[J]. Mineralium Deposita, 2004: 1−56.

    [56]

    Xie W, Song X Y, Deng Y F, et al. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt[J]. Lithos, 2012, 144: 209230.

    [57]

    Xue S C, Qin K Z, Li C, et al. Geochronological, petrological, and geochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the northeast rim of the Tarim craton, western China[J]. Economic Geology, 2016a, 111: 14651484.

    [58]

    Xue S C, Li C, Qin K Z, et al. A non-plume model for the Permian protracted (266-286 Ma) basaltic magmatism in the Beishan-Tianshan region, Xinjiang, Western China[J]. Lithos, 2016b, 256: 243249.

    [59]

    Xue S C, LI C, WANG Q F, et al. Geochronology, petrology and Sr-Nd-Hf-S isotope geochemistry of the newly-discovered Qixin magmatic Ni-Cu sulfide prospect, southern Central Asian Orogenic Belt, NW China[J]. Ore Geology Reviews, 2019, 111: 103002.

  • 加载中

(9)

(9)

计量
  • 文章访问数:  39
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-12-17
修回日期:  2025-04-08
录用日期:  2025-04-08
刊出日期:  2025-08-20

目录