Comparison of Magmatic Cu-Ni Deposits in Huangshan Area, East Tianshan and Its Implications for Prospecting
-
摘要:
新疆东天山黄山地区分布有黄山东、黄山西和黄山南等众多铜镍岩浆硫化物矿床,是中国最重要的镍矿产地之一。笔者在前人研究成果基础上,讨论了黄山地区不同含矿岩体成岩成矿过程的异同及地质意义。锆石年龄和岩石地球化学特征表明黄山东、黄山西和黄山南岩体源区性质相似;橄榄石Fo值和母岩浆组分估算显示这些岩体均为高镁玄武岩经历深部结晶分异形成的镁铁–超镁铁质岩体。同位素及微量元素模拟结果表明这些岩体的原生岩浆普遍在深部混染了5%~30%的地壳物质,并发生了深部硫化物熔离。相较于黄山东和黄山西矿床,黄山南矿床100%硫化物中具有较高的Ni、Cu、Pt、Pd含量。模拟计算显示黄山南矿床的R值高于黄山东和黄山西矿床,表明黄山南矿床中与硫化物液相发生反应的硅酸盐岩浆数量更多。橄榄石高Fo值以及硫化物低Cu/Pd值显示黄山南岩体橄榄石结晶和硫化物熔离的时间更早。结合不同岩体的剖面形态及埋深,笔者认为黄山南岩体可能为深部岩浆房与浅部岩浆房的通道。相较于黄山南岩体,黄山东和黄山西岩体可能为岩浆通道上部变宽部位。黄山南岩体底部及深部岩浆通道经历了多阶段持续的侵位–补给和硫化物聚集作用,在深部通道系统变缓处、构造有利空间具有良好的成矿潜力。
-
关键词:
- 锆石 SHRIMP U-Pb 年龄 /
- 镁铁–超镁铁质岩石 /
- 岩浆通道 /
- 黄山铜镍成矿带 /
- 东天山
Abstract:The Huangshan area is the one of the most important ore field of nickel in the East Tianshan area and include the Huangshandong, Huangshanxi and Huangshannan magmatic sulfide Ni-Cu deposits. On the basis of the previous research achievements, we discuss the similarities and differences of the magmatic sulfide Ni-Cu deposits in Huangshan area in this paper. The zircon age and geochemistry characteristics show that Huangshandong, Huangshanxi and Huangshannan intrusions have the similar magmatic sources. The olivine Fo and estimated results indicate that the parental magma of these intrusions is supposed to be high Mg in composition and experienced the early olivine crystallization. The isotope and trace elements data show that the magma of these intrusion was formed by the mixing of a mafic magma derived from a depleted mantle with a granitic melt derived from a juvenile arc crust and occurred sulfide segregation in depth. Compared with the Huangshandong and Huangshanxi deposits, the 100% sulfide of the Huangshannan deposit have the higher contents of Ni, Cu, Pt and Pd. The simulated calculation show that the Huangshannan deposit have the higher R factor than Huangshandong and Huangshanxi deposits, which indicated there are more silicate magmas reacted with the sulfide liquid in the Huangshannan deposit. The high oilvine Fo content and low sulfide Cu/Pd ratio in the Huangshannan intrusion indicate the time of olivine fractional crystallization and sulfide segregation is before the Huangshandong and Huangshanxi deposits. Combined with the profile shapes and cover depth of these intrusions, we suggest that the Huangshannan intrusion can be regarded as magma conduits between magma chamber while the Huangshandong and Huangshanxi intrusions may be the lower part of the magma chambers. The bottom of Huangshan intrusion and the underlying deep magma conduit have experienced multi-stage continuous emplacement, recharge, and sulfide accumulation. These processes indicate favorable ore-forming potential, particularly within the structural space created by the slowing down of the deep channel system.
-
-
图 1 东天山地区地质简图及铜镍硫化物矿床成矿时代分布(底图据王京彬等,2006修)
Figure 1.
图 2 黄山南含矿岩体地质图(a)和纵向投影图(b、c)(b、c据代玉财等, 2013修)
Figure 2.
图 3 黄山东含矿岩体剖面图(a)和黄山西含矿岩体剖面图(b)(据Gao et al., 2013修)
Figure 3.
表 1 黄山南岩体全岩主量、微量元素成分
Table 1. Major and trace element abundances in the Huangshannan intrusion
样品 NH3-1 NH3-2 NH3-4 NH3-5 NH3-6 NH3-7 NH3-8 NH3-9 NH3-10 NH3-12 SiO2 50.96 50.47 51.53 51.35 50.88 49.94 51.36 52.13 51.38 51.60 TiO2 0.60 0.64 0.44 0.34 0.48 0.38 0.47 0.34 0.42 0.46 Al2O3 17.47 18.84 17.70 19.92 14.45 11.52 17.56 19.84 17.02 19.02 Fe2O3 7.24 7.16 6.25 6.39 5.41 9.32 6.73 5.09 6.44 6.32 MnO 0.13 0.12 0.12 0.11 0.11 0.15 0.12 0.10 0.12 0.11 MgO 9.65 9.46 10.06 9.35 10.19 17.65 10.17 8.06 10.84 8.44 CaO 11.36 10.50 11.36 9.80 16.94 9.47 10.55 11.05 11.34 10.46 Na2O 2.40 2.52 2.30 2.55 1.46 1.46 2.70 3.11 2.19 3.24 K2O 0.15 0.25 0.22 0.16 0.07 0.08 0.29 0.27 0.23 0.32 P2O5 0.03 0.04 0.03 0.02 0.01 0.02 0.04 0.01 0.02 0.02 Rb 4.87 7.60 6.46 4.21 1.91 1.85 7.71 8.63 7.91 9.76 Sr 393 421 381 465 309 307 385 473 424 519 Y 10.33 9.35 7.92 5.60 11.06 6.98 8.42 5.79 7.57 6.39 Zr 24.64 25.18 20.81 22.04 16.21 13.75 28.29 10.59 17.09 12.55 Hf 0.75 0.74 0.58 0.55 0.65 0.43 0.74 0.36 0.51 0.43 Nb 0.53 0.64 0.42 0.44 0.14 0.19 0.57 0.24 0.30 0.20 Ta 0.04 0.05 0.03 0.04 0.01 0.02 0.04 0.02 0.02 0.02 Ba 32.65 31.85 34.00 34.41 19.04 13.44 34.19 42.29 1736.00 52.79 La 1.62 1.63 1.41 1.62 0.68 0.78 1.67 0.89 1.14 1.11 Ce 4.36 4.23 3.65 3.97 1.87 1.84 4.17 1.84 2.56 2.44 Pr 0.77 0.74 0.60 0.57 0.45 0.40 0.71 0.37 0.49 0.44 Nd 4.22 4.00 3.20 2.72 2.93 2.28 3.69 2.08 2.84 2.39 Sm 1.38 1.25 1.02 0.78 1.24 0.86 1.18 0.77 1.01 0.87 Eu 0.63 0.60 0.52 0.48 0.53 0.43 0.54 0.49 0.87 0.60 Gd 1.83 1.62 1.36 0.93 1.79 1.11 1.45 0.99 1.80 1.12 Tb 0.32 0.29 0.25 0.16 0.33 0.21 0.26 0.18 0.23 0.20 Dy 2.11 1.90 1.60 1.10 2.26 1.44 1.69 1.18 1.47 1.35 Ho 0.43 0.39 0.33 0.22 0.47 0.29 0.34 0.24 0.31 0.27 Er 1.27 1.15 0.99 0.69 1.34 0.85 1.04 0.70 0.93 0.80 Tm 0.17 0.16 0.15 0.10 0.18 0.12 0.14 0.10 0.13 0.11 Yb 1.02 0.93 0.79 0.60 1.15 0.83 0.95 0.61 0.87 0.71 Lu 0.16 0.15 0.13 0.10 0.16 0.12 0.14 0.09 0.12 0.10 Pb 1.14 2.67 1.45 2.21 1.19 0.89 1.35 2.62 2.90 1.16 Th 0.26 0.23 0.20 0.28 0.07 0.10 0.27 0.11 0.13 0.11 U 0.10 0.17 0.27 0.19 0.04 0.09 0.19 0.16 0.34 0.15 注:主量元素含量为%;微量元素含量为10−6。 表 2 黄山南岩体矿物成分
Table 2. Mineral composition in the Huangshannan intrusion
橄榄石 样号 岩性 测点数
(个)FeO SiO2 MgO MnO CaO NiO Total Fo Ni Ca Mn ZK179-3-1 橄榄辉长岩 6 17.20 39.76 42.62 0.27 0.01 0.11 99.98 81.54 857 64 2106 ZK179-3-2 橄榄辉长岩 8 17.11 39.67 42.78 0.25 0.01 0.12 99.99 81.67 951 64 1944 ZK179-3-3 橄榄辉长岩 10 16.70 39.98 43.41 0.25 0.01 0.09 100.53 82.25 715 64 1959 ZK171-1-1 橄榄辉长岩 9 18.78 39.66 41.40 0.29 0.01 0.13 100.28 79.71 1022 64 2207 ZK171-1-2 橄榄辉长岩 5 18.93 39.66 41.62 0.30 0.01 0.13 100.69 79.67 1053 64 2354 ZK171-1-3 橄榄二辉岩 9 18.94 39.70 41.51 0.24 0.01 0.10 100.59 79.61 802 64 1835 ZK171-1-4 橄榄二辉岩 11 18.53 40.16 41.49 0.23 0.03 0.10 100.58 79.96 770 186 1812 斜长石 样号 岩性 测点数
(个)Na2O FeO SiO2 K2O CaO Al2O3 Total An Ab Or HN13-2 辉长岩 11 4.71 0.16 54.33 0.46 11.34 27.97 99.11 55.55 41.75 2.70 ZK171-1-2 橄榄辉长岩 6 4.76 0.13 53.66 0.05 11.79 28.28 98.78 57.58 42.10 0.32 HN13-1 辉长岩 5 5.35 0.14 55.92 0.59 10.01 27.02 99.17 49.16 47.41 3.44 ZK179-3-1 橄榄辉长岩 2 3.83 0.07 51.38 0.01 13.48 29.81 98.70 65.99 33.95 0.06 HN13-3 辉长岩 7 5.31 0.18 55.67 0.50 10.40 27.34 99.61 50.47 46.65 2.88 ZK171-1-3 橄榄辉长岩 2 3.99 0.19 52.11 0.10 13.29 29.67 99.48 64.46 34.98 0.56 斜方辉石 样号 岩性 测点数
(个)Na2O FeO SiO2 Cr2O3 MgO MnO CaO Al2O3 TiO2 Total Wo En Fs HN13-2 辉长岩 6 0.04 16.24 54.03 0.15 25.84 0.30 1.25 1.78 0.25 99.97 2.5 72.1 25.4 ZK171-1-2 橄榄辉长岩 10 0.05 14.21 53.87 0.09 26.19 0.30 1.75 2.67 0.35 99.52 3.6 73.9 22.5 HN13-1 辉长岩 4 0.05 16.26 53.98 0.12 24.92 0.32 2.80 1.53 0.23 100.25 5.6 69.1 25.3 ZK179-3-1 橄榄辉长岩 6 0.05 9.94 54.58 0.16 29.37 0.24 1.86 3.66 0.23 100.14 3.7 81.0 15.4 HN13-4 辉长岩 8 0.03 17.90 53.48 0.28 24.13 0.36 1.86 1.70 0.30 100.10 3.8 68.0 28.3 ZK171-1-3 橄榄辉长岩 8 0.02 12.01 55.62 − 29.35 0.26 0.81 2.87 0.03 101.03 1.6 80.0 18.4 单斜辉石 样号 岩性 测点数
(个)Na2O FeO SiO2 Cr2O3 MgO MnO CaO Al2O3 TiO2 Total Wo En Fs HN13-2 辉长岩 7 0.51 7.38 52.23 0.32 14.83 0.18 20.84 2.47 0.73 99.49 44.1 43.7 12.2 HN13-4 辉长岩 5 0.53 8.66 52.03 0.22 14.34 0.18 20.36 2.37 0.58 99.37 43.2 42.4 14.4 ZK171-1-3 橄榄辉长岩 9 0.52 6.36 52.31 0.41 17.88 0.19 16.73 4.27 0.46 99.18 35.9 53.4 10.7 注:主量元素含量为%;微量元素含量为10−6。 表 3 黄山南含矿岩体锆石 SHRIMP U-Pb 测试结果
Table 3. SHRIMP U-Pb data of zircons from the Huangshannan sulfide ore-bearing intrusion
测试点 206Pb* Th U 232Th/238U 207Pb*/235U 206Pb*/238U 206Pb/238U 10−6 10−6 10−6 Ratio ±% Ratio ±% Age(Ma) ±% HN-1 7.8 43.6 199.0 0.23 0.35500 3.3 0.04573 1.8 288.3 ±5.0 HN-2 13.1 71.4 336.8 0.22 0.28900 5.1 0.04505 1.8 284.0 ±4.9 HN-3 8.6 47.3 221.6 0.22 0.28200 9.6 0.04460 1.8 281.3 ±5.1 HN-4 8.5 140.6 217.0 0.67 0.36400 4.7 0.04570 1.8 288.1 ±5.1 HN-5 12.4 66.7 314.8 0.22 0.33190 2.6 0.04582 1.7 288.8 ±4.9 HN-6 10.8 58.0 273.8 0.22 0.30700 5.3 0.04565 1.8 287.8 ±5.0 HN-7 16.0 103.7 409.4 0.26 0.34170 2.5 0.04568 1.7 288.0 ±4.9 HN-8 12.7 75.0 324.3 0.24 0.30800 3.7 0.04520 1.8 285.0 ±4.9 HN-9 13.3 87.9 340.8 0.27 0.32200 3.8 0.04543 1.8 286.4 ±5.0 HN-10 9.5 51.7 241.6 0.22 0.35100 2.9 0.04596 1.8 289.7 ±5.1 HN-11 7.7 48.1 195.9 0.25 0.33100 6.2 0.04532 1.8 285.7 ±5.1 HN-12 10.6 55.9 270.3 0.21 0.31100 4.7 0.04554 2 287.1 ±5.7 HN-13 11.6 71.3 295.3 0.25 0.31300 4.8 0.04547 1.8 286.6 ±5.0 HN-14 13.0 69.9 337.2 0.21 0.32900 3.4 0.04466 1.8 281.7 ±4.9 HN-15 15.0 83.5 388.0 0.22 0.33600 5.3 0.04515 1.9 284.7 ±5.2 表 4 黄山南岩体辉长岩中锆石LA-ICP-MS Lu-Hf同位素结果
Table 4. Zircons Lu-Hf isotope compositions of olivine gabbro in Huangshannan mafic-ultramafic intrusion
编号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi εHf(t) tDM(Ma) fLu/Hf 1 0.092745 0.001677 0.282939 0.000017 0.282930 11.9 452 −0.95 2 0.106623 0.002024 0.282978 0.000019 0.282967 13.2 399 −0.94 3 0.089222 0.001700 0.282959 0.000018 0.282950 12.6 423 −0.95 4 0.102301 0.001654 0.282911 0.000017 0.282903 10.9 492 −0.95 5 0.095908 0.001864 0.282936 0.000018 0.282926 11.7 459 −0.94 6 0.081085 0.001670 0.282941 0.000015 0.282932 11.9 449 −0.95 7 0.129953 0.002579 0.282973 0.000016 0.282959 12.9 414 −0.92 8 0.102679 0.002289 0.282975 0.000015 0.282962 13.0 407 −0.93 9 0.101556 0.002107 0.282998 0.000016 0.282987 13.9 371 −0.94 10 0.062083 0.001373 0.282981 0.000014 0.282973 13.4 389 −0.96 11 0.078933 0.001772 0.282971 0.000016 0.282961 13.0 407 −0.95 12 0.094601 0.001997 0.282955 0.000016 0.282944 12.4 433 −0.94 13 0.090873 0.002074 0.282947 0.000018 0.282936 12.1 445 −0.94 14 0.098492 0.002384 0.282962 0.000027 0.282950 12.6 426 −0.93 15 0.104552 0.002001 0.282939 0.000018 0.282928 11.8 457 −0.94 表 5 黄山南岩体全岩Sr-Nd同位素组分
Table 5. Sr-Nd isotope composition of wole rock in Huangshannan mafic-ultramafic intrusion
样号 岩性 Rb(10−6) Sr(10−6) 87Rb/86Sr (87Sr/86Sr) (87Sr/86Sr)i HN3-2 角闪橄榄辉石岩 7.60 421.20 0.052247 0.703829 0.703621 HN3-5 角闪辉橄岩 4.21 465.10 0.026223 0.703651 0.703547 HN3-6 辉橄岩 1.91 309.70 0.017849 0.706977 0.706906 HN3-8 角闪辉长岩 7.71 385.30 0.057934 0.703946 0.703715 HN3-10 辉长苏长岩 7.91 424.70 0.053923 0.704215 0.704000 HN3-12 橄长岩 9.76 519.80 0.054363 0.704156 0.703940 样号 岩性 Sm(10−6) Nd(10−6) 147Sm/144Nd 143Nd/144Nd εNd(t) HN3-2 角闪橄榄辉石岩 1.25 4.00 0.190387 0.513083 8.92 HN3-5 角闪辉橄岩 0.78 2.72 0.173735 0.513014 8.16 HN3-6 辉橄岩 1.24 2.93 0.257393 0.513220 9.20 HN3-8 角闪辉长岩 1.18 3.69 0.193700 0.513021 7.59 HN3-10 辉长苏长岩 1.01 2.84 0.216969 0.513092 8.14 HN3-12 橄长岩 0.87 2.39 0.221668 0.513041 6.98 表 6 黄山东、黄山西和黄山南岩体母岩浆成分(%)
Table 6. Compositions of estimated parental magmas(%) for the Huangshannan intrusion
组分 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 来源 黄山南 47.87 0.71 13.3 1.87 10.46 0.28 10.03 12.59 1.71 0.71 0.17 100 本研究 黄山东 53.59 0.86 13.79 1.01 9.38 0.15 10.03 8.26 1.88 0.90 0.15 100 Mao et al., 2014 黄山西 51.20 1.00 15.70 0.90 8.36 0.27 8.711 11.21 1.91 0.50 0.20 100 Mao et al., 2014 -
[1] 代玉财, 马雷, 郗文亮, 等. 新疆哈密市黄山南铜镍矿床地质特征及成因浅谈[J]. 新疆有色金属, 2013, (4): 39−44.
DAI Yucai, MA Lei, XI Wenliang, et al. On the Geological Characteristics and Ore Genesis of Huangshannan Ni Deposit, Hami, Xinjiang[J]. Non-ferrous Metal of Xinjiang,2013,(4):39−44.
[2] 邓宇峰, 宋谢炎, 颉炜, 等. 黄山-镜儿泉铜镍成矿带地层时代的厘定及其地质意义探讨[J]. 地质学报, 2021, 95(2): 362−376.
DENG Yufeng, SONG Xieyan, JIE Wei, et al. Determination of sedimentary ages of strata in the Huangshan- Jingerquan mineralization belt and its geological significance[J]. Acta Geologica Sinica,2021,95(2):362−376.
[3] 冯延清, 钱壮志, 徐刚, 等. 东天山二叠纪镁铁-超镁铁质成矿岩体造岩矿物特征及其成因意义[J]. 岩石矿物学杂志, 2017, 36(4): 519−534.
FENG Yanqing, QIAN Zhuangzhi, XU Gang, et al. Features of Rock-Forming Minerals of Permian Mineralized Mafic-Ultramafic Intrusions in East Tianshan and Their Implication for Intrusion Generation[J]. Acta Petrologica et Mineralogica,2017,36(4):519−534.
[4] 高晓峰, 隋清霖, 尤敏鑫, 等. 造山带岩浆铜镍硫化物矿床深部动力学机制探讨[J]. 西北地质, 2025, 58(3): 206−220. doi: 10.12401/j.nwg.2025012
GAO Xiaofeng,SUI Qinglin,YOU Minxin,et al. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts[J]. Northwestern Geology,2025,58(3):206−220. doi: 10.12401/j.nwg.2025012
[5] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595−2604.
HOU Kejun, LI Yanhe, ZOU Tianren, et al. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J]. Acta Petrologica Sinica,2007,23(10):2595−2604.
[6] 毛亚晶, 秦克章, 唐冬梅, 等. 东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用—以黄山铜镍矿床为例[J]. 岩石学报, 2014, 30(6): 1575−1594.
MAO Yajing, QIN Kezhang, TANG Dongmei, et al. Multiple Stages of Magma Emplacement and Mineralization of Eastern Tianshan, Xinjiang: Examplified by the Huangshan Ni-Cu Deposit[J]. Acta Petrologica Sinica,2014,30(6):1575−1594.
[7] 钱壮志, 张江江, 孙涛, 等. 新疆黄山东岩体Hf-Nd同位素特征及其地质意义[J]. 西北地质, 2012, 45(4): 145−154.
QIAN Zhuangzhi, ZHANG Jiangjiang, SUN Tao, et al. Hf-Nd Isotoptic Characteristics of the Huangshandong Mafic-Ultramafic Intrusion, Eastern Xinjiang, and Their Geological Implications[J]. Northwestern Geology,2012,45(4):145−154.
[8] 秦克章, 唐冬梅, 苏本勋, 等. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 2012, 45(4): 83−116.
QIN Kezhang, TANG Dongmei, SUN Benxun, et al. The Tectonic Setting, Style, Basic Frature, Relative Erosion Deee, Ore-Bearing Evaluation Sign, Potential Analysis of Mineralization of Cu-Ni-Bearing Permian Mafic-Ultramafic Complexes, Northern Xinjiang[J]. Northwestern Geology,2012,45(4):83−116.
[9] 宋谢炎. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 2019, 38(4): 699−710.
SONG Xieyan. Research Status and Key Scientific Issues of Magmatic Sulfide Deposits[J]. Ore Deposit Geology,2019,38(4):699−710.
[10] 孙赫. 东天山镁铁-超镁铁岩铜镍硫化物矿床通道式成矿机制与岩体含矿性评价研究[D]. 北京: 中国科学院地质与地球物理研究所, 2009, 1−262.
SUN He. Ore-Forming Mechanism in Conduit System and Ore-Bearing Property Evaluation for Mafic-Ultramafic Complex in eastern Tianshan, Xinjiang[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2009, 1−262.
[11] 王京彬, 徐新. 新疆北部后碰撞构造演化与成矿[J]. 地质学报, 2006, 80(1): 23−31.
WANG Jingbin, XU Xin. Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China[J]. Acta Geological Sinica,2006,80(1):23−31.
[12] 王旋, 曹俊, 张盖之. 造山带铜镍硫化物矿床的岩浆起源: 以东天山黄山南铜镍矿床为例[J]. 地球科学, 2021, 46(11): 3829−3849.
WANG Xuan, CAO Jun, ZHANG Gaizhi. Origin of Ore-Forming Magmas Associated with Ni-Cu Sulfide Deposits in Orogenic Belts: Case Study of Permian Huangshannan Magmatic Ni-Cu Sulfide Deposit, East Tianshan, NW China[J]. Earth Science,2021,46(11):3829−3849.
[13] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589−1640.
WU Yuanbao,ZHENG Yongfei. The Genetic Mineralogy of Zircon and the Constraint to the Interpretation of U-Pb Age[J]. Chinese Science Bulletin,2004,49(16):1589−1640.
[14] 夏明哲. 新疆东天山黄山岩带镁铁−超镁铁质岩石成因及成矿作用[D]. 西安: 长安大学, 2009.
XIA Mingzhe. The Mafic-ultramafic Intrusions in the Huangshan Region Eastern Tianshan, Xinjiang: Petrogenesis and Mineralization Implication[D].Xian:Chang’an University, 2009.
[15] 肖庆华, 秦克章, 唐冬梅, 等. 新疆哈密香山西铜镍-钛铁矿床系同源岩浆分异演化产物: 矿相学、锆石U-Pb年代学及岩石地球化学证据[J]. 岩石学报, 2010, 26(2): 503−522.
XIAO Qinghua, QIN Kezhang, TANG Dongmei, et al. Xiangshanxi Composite Cu-Ni-Ti-Fe Deposit Belongs to Comagmatic Evolution Product: Evidences from Ore Microscopy, Zircon U-Pb Chronology And Petrological Geochemistry, Hami, Xinjiang, NW China[J]. Acta Petrologica Sinica,2010,26(2):503−522.
[16] 尤敏鑫, 李厚民, 王亚磊. 东天山黄山南镁铁-超镁铁岩体的岩浆演化过程: 矿物学、Sr-Nd同位素特征的指示[J]. 岩石学报, 2018, 34(11): 3422−3432.
YOU Minxin, LI Houmin, WANG Yalei. Magma evolution of Huangshannan mafic-ultramafic intrusion in East Tianshan region: Indication from mineralogy and Sr, Nd isotopic characteristics[J]. Acta Petrologica Sinica,2018,34(11):3422−3432.
[17] 赵云, 杨永强, 柯君君. 含铜镍岩浆起源及硫饱和机制: 以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例[J]. 岩石学报, 2016, 32(7): 2086−2098.
ZHAO Yun, YANG Yongqiang, KE Junjun. Origin of Cu-and Ni-Bearing Magma and Sulfide Saturation Mechanism: A Case Study of Sr-Nd-Pb-S Isotopic Composition and Element Geochemistry on the Huangshannan Magmatic Ni-Cu Sulfide Deposit, Xinjiang[J]. Acta Petrologica Sinica,2016,32(7):2086−2098.
[18] Anders E, Grevesse N. Abundances of The Elements: Meteoritic and Solar[J]. Geochimica et Cosmochimica Acta,1989,53:197−214. doi: 10.1016/0016-7037(89)90286-X
[19] Barnes S J, Godel B, Gurer D, et al. Sulfide-Olivine Fe-Ni Exchange and the Origin of Anomalously Ni Rich Magmatic Sulfides[J]. Economic Geology,2013,108(8):1971−1992. doi: 10.2113/econgeo.108.8.1971
[20] Chai G, Naldrett A J. The Jinchuan Ultramafic Intrusion: Cumulate of a High-Mg Basaltic Magma[J]. Journal of Petrology,1992,33(2):277−303.
[21] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb Ages for the Early Cambrian Time Scale[J]. Journal of the Geological Society,1992,149:171−184. doi: 10.1144/gsjgs.149.2.0171
[22] Deng Y F, Song X Y, Xie W, et al. The Role of external sulfur in triggering sulfide immiscibility at depth: Evidence from the Huangshan-Jingerquan Ni-Cu metallogenic belt, NW China[J]. Economic Geology,2022, 117: 1867−1879.
[23] Gao J F, Zhou M F, Lightfoot P C, et al. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China[J]. Economic Geology,2013,108(8):1833−1848. doi: 10.2113/econgeo.108.8.1833
[24] Gao J F, Wang H H. Permian mafic-ultramafic magmatism and sulfide mineralization in the Central Asian Orogenic Belt: A review[J]. Journal of Asian Earth Sciences, 2024, 264:106071.
[25] Li C S, Zhang Z W, Li W Y, et al. Geochronology, Petrology, and Hf-S Isotope Geochemistry of the Newly Discovered Xiarihamu Magmatic Ni-Cu Sulfide Deposit in the Qinghai-Tibet Plateau, Western China[J]. Lithos,2015,216:224−240.
[26] Li C, Ripley E M. Sulfur Contents at Sulfide-Liquid or Anhydrite Saturation in Silicate Melts: Empirical Equations and Example Applications[J]. Economic Geology,2009,104(3):405−412.
[27] Li C, Ripley E M. The Giant Jinchuan Ni-Cu- (PGE) Deposit: Tectonic Setting, Magma Evolution, Ore Genesis, and Exploration Implications[J]. Reviews in Economic Geology,2011,17:163−180.
[28] Lightfoot P C, Keays R R. Siderophile and Chalcophile Metal Variations in Flood Basalts from the Siberian Trap, Noril’sk Region: Implications for the Origin of the Ni-Cu-PGE Sulfide Ores[J]. Economic Geology,2005,100(3):439−462. doi: 10.2113/gsecongeo.100.3.439
[29] Mao Y J, Barnes S J, Qin K Z, et al. Rapid Orthopyroxene Growth Induced by Silica Assimilation: Constraints from Sector-Zoned Orthopyroxene, Olivine Oxygen Isotopes and Trace Element Variations in the Huangshanxi Ni-Cu Deposit, Northwest China[J]. Contributions to Mineralogy and Petrology,2019,174(4):1−24.
[30] Mao Y J, Qin K Z, Barnes S J, et al. Genesis of the Huangshannan High-Ni Tenor Magmatic Sulfide Deposit in the Eastern Tianshan, Northwest China: Constraints from PGE Geochemistry and Os-S Isotopes[J]. Ore Geology Reviews,2017,90:591−606. doi: 10.1016/j.oregeorev.2017.05.015
[31] Mao Y J, Qin K Z, Li C, et al. A modified Genetic Model for the Huangshandong Magmatic Sulfide Deposit in the Central Asian Orogenic Belt, Xinjiang, Western China[J]. Mineralium Deposita,2015,50:65−82. doi: 10.1007/s00126-014-0524-5
[32] Mao Y J, Qin K Z, Li C, et al. Petrogenesis and Ore Genesis of The Permian Huangshanxi Sulfide Ore-Bearing Mafic–Ultramafic Intrusion in the Central Asian Orogenic Belt, Western China[J]. Lithos,2014,201(1):111−125.
[33] Mao Y J, Qin K Z, Tang D M, et al. Crustal Contamination and Sulfide Immiscibility History of the Permian Huangshannan Magmatic Ni–Cu Sulfide Deposit, East Tianshan, NW China[J]. Journal of Asian Earth Sciences,2016,129:22−37. doi: 10.1016/j.jseaes.2016.07.028
[34] Mao Y J, Qin K Z, Tang D M. Revisiting the age and emplacement process of the Huangshandong Ni–Cu deposit in the Central Asian Orogenic belt, northwestern China: Implications for multiple magma extractions from a short–lived staging magma chamber[J]. Lithos,2018,320-321:583−591. doi: 10.1016/j.lithos.2018.08.001
[35] Mao Y J, Schoneveld L, Barnes S J, et al. Coupled Li-P Zoning and Trace Elements of Olivine from Magmatic Ni-Cu Deposits: Implications for Postcumulus Re-Equilibration in Olivine[J]. Journal of Petrology,2022,63(3):1−22.
[36] Mao Y J, Zheng X Y, Pan T, et al. Redox-controlled olivine-sulfide equilibration of the Shitoukengde Ni-Cu deposit in Qinghai-Tibet Plateau and its implications[J]. Mineralium Deposita,2024,59:577−599. doi: 10.1007/s00126-023-01215-6
[37] Mavrogenes J A, O’neill H S C. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas[J]. Geochimica et Cosmochimica Acta,1999,63:1173−1180. doi: 10.1016/S0016-7037(98)00289-0
[38] Mungall J E, Brenan J M. Partitioning of Platinum-Group Elements and Au Between Sulfide Liquid and Basalt and the Origins of Mantle-Crust Fractionation of the Chalcophile Elements[J]. Geochimica et Cosmochimica Acta,2014,125(1):265−289.
[39] Naldrett A J. Fundamentals of Magmatic Sulfide Deposits[J]. Reviews in Economic Geology,2011,17:1−50.
[40] O’neill H S C, Mavrogenes J A. The Sulfate Capacities of Silicate Melts[J]. Geochimica et Cosmochimica Acta,2022,334:368−382. doi: 10.1016/j.gca.2022.06.020
[41] Roeder P, Emslie R. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology,1970,29(4):275−289. doi: 10.1007/BF00371276
[42] Ripley E M, Li C. Metallic Ore Deposits Associated with Mafic to Ultramafic Igneous Rocks. Processes and Ore Deposits of Ultramafic-Mafic Magmas Through Space and Time[M]. Amsterdam: Elsevier, 2018. Doi: 10.1016/B978-0-12-811159-8.00004-4.
[43] Ripley E M, Brophy J G, Li C. Copper Solubility in a Basaltic Melt and Sulfide Liquid/Silicate Melt Partition Coefficients of Cu and Fe[J]. Geochimica et Cosmochimica Acta,2002,66(15):2791−2800.
[44] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry,2003,3:1−64.
[45] Saunders A D, Norry M J,Tarney J. Origin of MORB and Chemically-Depleted Mantle Reservoirs: Trace Element Constraints[J]. Journal of Petrology, 1988, Special Lithosphere Issue:415−445.
[46] Song X Y, Deng Y F, Xie W, et al. Prolonged basaltic magmatism and short-lived magmatic sulfide mineralization in orogenic belts[J]. Lithos,2021,390−391:106114. doi: 10.1016/j.lithos.2021.106114
[47] Song X Y, Xie W, Deng Y F, et al. Processes of magmatic sulfide mineralization of the Huangshan-Jingerquan Ni-Cu metallogenic belt, NW China: Insights from reviews of chalcophile elements[J]. Ore Geology Reviews,2023,158:105−456.
[48] Su B X, Qin K Z, Sakyi P A, et al. U-Pb Ages and Hf-O Isotopes of Zircons from Late Paleozoic Mafic-Ultramafic Units in the Southern Central Asian Orogenic Belt: Tectonic Implications and Evidence for an Early-Permian Mantle Plume[J]. Gondwana Research,2011,20(2):516−531.
[49] Sun T, Qian Z Z, Deng Y F, et al. PGE and Isotope (Hf-Sr-Nd-Pb) Constraints on the Origin of the Huangshandong Magmatic Ni-Cu Sulfide Deposit in the Central Asian Orogenic Belt, Northwestern China[J]. Economic Geology,2013,108:1849−1864. doi: 10.2113/econgeo.108.8.1849
[50] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics in Ocean Basalt: Implication for Mantle Composition and Processes: Magmatism in The Ocean Basins[M]. London: Geological Society, Special Publication, 1989, 42: 313−345.
[51] Tang Q, Li C, Ripley E M, et al. Sr-Nd-Hf-O isotope constraints on crustal contamination and mantle source variation of three Fe-Ti-V oxide ore deposits in the Emeishan large igneous province[J]. Geochimica et Cosmochimica Acta,2021,292:364−381. doi: 10.1016/j.gca.2020.10.006
[52] Williams I S, Claesson S. Isotope Evidence for the Precambrian Province and Caledonian Metamorphism of High Grade Paragneiss from the Seve Nappes, Scandinavian Caledonides, Ⅱ. Ion Microprobe Zircon U-Th-Pb[J]. Contributions to Mineralogy and Petrology,1987,97:205−217. doi: 10.1007/BF00371240
[53] Williams I S. U-Th-Pb Geochronology by Ion Microprobe. in McKibben, M. A. and Shanks, W. C. (eds) Applications of Microanalytical Techniques to Understanding Mineralizing Processes[J]. Reviews in Economic Geology,1998,7:1−35.
[54] Xiao W J, Zheng Y F, Hou Z Q, et al. Tectonic Framework and Phanerozoic geologic evolution of China[J]. Society of Economic Geologists Special Publications,2019,22:21−102.
[55] Xue S C, Li C, Qin K Z, et al. Geochronological, Mineralogical and Geochemical Studies of Sulfide Mineralization in the Podong Maficultramafic Intrusion in Northern Xinjiang, Western China[J]. Ore Geology Reviews,2018,101:688−699. doi: 10.1016/j.oregeorev.2018.08.017
[56] Xue S C, Wang Q F, Deng J, et al. Mechanism of organic matter assimilation and its role in sulfidesaturation of oxidized magmatic ore-forming system: insights from C-S-Sr-Nd isotopes of the Tulaergen deposit in NW China[J]. Mineralium Deposita,2022,57:1123−1141. doi: 10.1007/s00126-021-01087-8
[57] Zhang M, Li C, Fu P, et al. The Permian Huangshanxi Cu-Ni Deposit in Western China: Intrusive-Extrusive Association, Ore Genesis, and Exploration Implications[J]. Mineralium Deposita,2011,46(2):153−170. doi: 10.1007/s00126-010-0318-3
[58] Zhao Y, Xue C J, Zhao X B, et al. Magmatic Cu–Ni sulfide mineralization of the Huangshannan mafic–untramafic intrusion, Eastern Tianshan, China[J]. Journal of Asian Earth Sciences,2015,105:155−172. doi: 10.1016/j.jseaes.2015.03.031
[59] Zhao Y, Xue C, Zhao X, et al. Origin of Anomalously Ni-Rich Parental Magmas And Genesis of the Huangshannan Ni–Cu Sulfide Deposit, Central Asian Orogenic Belt, Northwestern China[J]. Ore Geology Reviews,2016,77:57−71. doi: 10.1016/j.oregeorev.2016.02.003
-