Gravity and Magnetic Field Characteristics in the Covered Area of Eastern Segment of the Qilian Orogenic Belt and the Delineation of the Northern and Central Qilian Tectonic Boundaries
-
摘要:
祁连造山带东段覆盖区处于青藏高原东北缘与阿拉善地块、鄂尔多斯地块交汇地带,亦为秦岭造山带与祁连造山带相互作用的部位,构造格局复杂,目前对该区内北祁连和中祁连构造单元边界的划分仍然值得商榷。笔者采用归一化总水平导数垂向导数(NVDR-THDR)、最小曲率位场分离技术,结合小波多尺度分析对布格重力异常及化极磁力异常进行处理分析,综合区域地质特征推断一级断裂4条,二级断裂54条,一级断裂为构造单元边界。在祁连造山带东段覆盖区,中祁连与北祁连的构造边界以平安–乐都–定西–张家川一线为界,即中祁连北缘断裂所在。中祁连与北祁连之间存在1个一级构造单元—北祁连增生楔,祁连造山带东段覆盖区可划分为北祁连岛弧带、北祁连增生楔和中祁连造山带3个构造单元。
Abstract:The eastern segment of the Qilian orogenic belt is situated at the northeastern edge of the Qinghai-Tibetan Plateau, intersecting with the Alxa Massif and Ordos Massif. This region also serves as a transitional zone between the Qinling orogenic belt and the Qilian orogenic belt. The tectonic framework in this region is highly complex, and the current understanding of the boundaries between the north Qilian and central Qilian tectonic units remains relatively limited. In this study, we applied the normalized vertical derivative of the total horizontal derivative (NVDR-THDR), minimum curvature field separation, and wavelet multi-scale decomposition to process and analyze Bouguer gravity anomalies and the magnetic anomalies reduced to the pole. By integrating regional geological characteristics, we inferred four primary faults and fifty-four secondary faults. The primary faults delineate the boundaries of tectonic units. Specifically, the boundary between the Qilian and North Qilian tectonic units is traced by a linear segment connecting Ping'an-Ledu-Dingxi-Zhangjiachuan, corresponding to the northern edge fault of the Qilian Mountains. Furthermore, there exists a prominent first-class tectonic unit known as the north Qilian accretionary wedge between central Qilian and north Qilian units. The eastern coverage area of the Qilian orogenic belt can be divided into three tectonic units: the northern Qilian island arc belt, the Northern Qilian accretionary wedge, and the central Qilian rogenic belt.
-
-
[1] 陈宣华, 邵兆刚, 熊小松, 等. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 2019, 46(5): 995−1020.
CHEN Xuanhua, SHAO Zhaogang, XIONG Xiaosong, et al. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China,2019,46(5):995−1020.
[2] 程永志, 高锐, 卢占武, 等. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J/OL]. 地学前缘, 2023, 30(05): 314−333.
CHENG Yongzhi, GAO Rui, LU Zhanwu, et al. Deep structure and dynamics of the Eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan plateau[J/OL]. Earth Science Frontiers, 2023, 30(05): 314−333.
[3] 崔浇. 陇中盆地内部活动断裂及其动力学分析[D]. 兰州: 中国地震局兰州地震研究所, 2023.
CUI Jiao. Analysis of Active Faults and Their Dynamics with in the Longzhong Basin[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology, 2023.
[4] 冯晓雯. 北祁连造山带雪水沟岩体锆石定年及地球化学特征研究[D]. 哈尔滨: 哈尔滨师范大学, 2021.
FENG Xiaowen. Zircon dating and geochemical characterization of the Xueshigou pluton in the Northern Qilian orogenic belt[D]. Harbin:Harbin Normal University, 2021.
[5] 冯益民, 吴汉泉. 北祁连山及其邻区古生代以来的大地构造演化初探[J]. 西北地质科学, 1992(2): 61−73.
FENG Yimin, WU Hanquan. Tectonic evolution of north Qilian mountains and its neighbourhood since paleozoic.[J]. Northwest Geoscience,1992(2):61−73.
[6] 郭进京, 赵凤清, 李怀坤, 等. 中祁连东段湟源群的年代学新证据及其地质意义[J]. 中国区域地质, 2000, 19(1): 27−32.
GUO Jinjing,ZHAO Fengqing,LI Huaikun,et al. New chronological evidence of the age of Huangyuan Group in the eastern segment of Mid-Qilian massif and its geological significance[J]. Geological Bulletin of China,2000,19(1):27−32.
[7] 郭晓玉, 高锐, 高建荣, 等. 青藏高原东北缘马衔山断裂带构造属性的综合研究[J]. 地球物理学报, 2016, 449(2): 89−95.
GUO Xiaoyu,GAO Rui,GAO Shanrong,et al. Lithospheric architecture and deformation of NE Tibet: New insights on the interplay of regional tectonic processes[J]. Earth and Planetary Science Letters,2016,449(2):89−95.
[8] 何世平, 王洪亮, 陈隽璐, 等. 中祁连马衔山岩群内基性岩墙群锆石LA-ICP-MS U-Pb年代学及其构造意义[J]. 地球科学, 2008, 33(1): 35−45.
HE Shiping, WANG Hongliang, CHEN Junlu, et al. LA-ICP-MS U-Pb Zircon Geochronology of Basic Dikes withinMaxianshan Rock Group in the Central Qilian Mountains and Its Tectonic Implications[J]. Earth Science,2008,33(1):35−45.
[9] 侯静, 高国明, 杨滢. 蒙古及邻区重磁异常的小波多尺度分析特征[J]. 云南大学学报(自然科学版), 2020, 42(2): 281−289.
HOU Jing, GAO Guoming, YANG Ying. Wavelet multiscale analysis of gravity and magnetic anomaliesin Mongolia and adjacent regions[J]. Journal of Yunnan University: Natural Sciences Edition,2020,42(2):281−289.
[10] 侯遵泽, 杨文采. 中国重力异常的小波变换与多尺度分析[J]. 地球物理学报, 1997(1): 85−95.
HOU Zunze, YANG Wencai. Wavelet transform and multiscale analysis of gravity anomalies in China[J]. Chinese Journal of Geophysics,1997(1):85−95.
[11] 纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 58(3): 1042−1058.
JI Xiaolin, WANG Wanyin, QIU Zhiyun. The research to the minimum curvature technique for potential field data separation[J]. Chinese Journal of Geophysics,2015,58(3):1042−1058.
[12] 李世金. 祁连造山带地球动力学演化与内生金属矿产成矿作用研究[D]. 长春:吉林大学, 2011.
LI Shijin. Geodynamic Evolution of Qilian Orogenic Belt andMetallogenesis of Endogenous Metals[D]. Changchun:Jilin university, 2011.
[13] 李文辉, 高锐, 王海燕, 等. 六盘山断裂带及其邻区地壳结构[J]. 地球物理学报, 2017, 60(6): 2265−2278.
LI Wenhui, GAO Rui, WANG Haiyan, et al. Crustal structure beneath the Liupanshan fault zone and adjacent regions.[J]. Chinese Journal of Geophysics,2017,60(6):2265−2278.
[14] 梁昭元. 北祁连山早古生代岛弧火山岩地质特征及构造意义[D]. 北京:中国地质大学(北京), 2017.
LIANG Zhaoyuan. Geological characteristics and tectonic significance of EarlyPaleozoic island arc volcanic rocks in the North Qilian Mountains[D]. Beijing:China University of Geosciences, 2017.
[15] 刘芳晓, 王爱国, 王金烁. 西秦岭北缘断裂漳县盆地段浅层人工地震及钻孔联合探测[J]. 中国地震, 2017, 33(2): 311−318. doi: 10.3969/j.issn.1001-4683.2017.02.012
LIU Fangxiao, WANG Aiguo, WANG Jinshuo. Both shallow seismic explorations and composite drilling section detection of buried segment of the fault zone along the north edge of west Qinling mountains in the Zhangxian basin[J]. Earthquake Research in China,2017,33(2):311−318. doi: 10.3969/j.issn.1001-4683.2017.02.012
[16] 孟文, 郭祥云, 李永华, 等. 青藏高原东北缘构造应力场及动力学特征[J]. 地球物理学报, 2022, 65(9): 3229−3251.
MENG Wen, GUO Xiangyun, LI Yonghua, et al. Tectonic stress field and dynamic characteristics in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,2022,65(9):3229−3251.
[17] 孟小红, 石磊, 郭良辉, 等. 青藏高原东北缘重力异常多尺度横向构造分析[J]. 地球物理学报, 2012, 55(12): 3933−3941.
MENG Xiaohong, SHI Lei, GUO Lianghui, et al. Multi-scale analyses of transverse structures based on gravity anomalies in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,2012,55(12):3933−3941.
[18] 潘佳铁, 李永华, 吴庆举, 等. 基于密集流动地震台阵的青藏高原东北缘及邻区Rayleigh波相速度层析成像[J]. 地球物理学报, 2017, 60(6): 2291−2303.
PAN Jiatie, LI Yonghua, WU Qingju, et al. Phase velocity maps of Rayleigh wave based on a dense coverage and portable seismic array in NE Tibetan plateau and its adjacent regions[J]. Chinese Journal of Geophysics,2017,60(6):2291−2303.
[19] 邵炳松. 祁连山东段及周缘地区岩石圈电性结构研究[D].北京: 中国地质大学(北京), 2017.
SHAO Bingsong. The research on the lithospheric conductivity structure of eastern Qilian mountain and its surrounding regions[D].Beijing: China University of Geosciences, 2017.
[20] 沈旭章, 周元泽, 张元生, 等. 青藏高原东北缘地壳结构变化的地球动力学意义[J]. 地球物理学进展, 2013, 28(5): 2273−2282.
SHENG Xuzhang, ZHOU Yuanze, ZHANG Yuansheng, et al. Geodynamic significance of the crust structure beneath the northeastern margin of Tibet[J]. Progress in Geophysics,2013,28(5):2273−2282.
[21] 汤中立, 白云来. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 1999(2): 78−90.
TANG Zhongli, BAI Yunlai. Ceotectonic framework and metallogenic system in the southwest margin of north China paleocontinent.[J]. Earth Science Frontiers,1999(2):78−90.
[22] 田庆水, 王孟霞, 郑燕, 等. 太要断裂东段覆盖区地球物理特征及推断解释[J]. 西北地质, 2019, 52(3): 253−264.
TIAN Qingshui, WANG Mengxia, ZHENG Yan, et al. Geophysical Characteristics of Loess-covered Area in the Eastern Segment of Taiyao Fault, Xiaoqinling Mountains[J]. Northwestern Geology,2019,52(3):253−264.
[23] 王金荣. 北祁连造山带东段早古生代构造岩浆作用及成矿的研究[D]. 兰州:兰州大学, 2006.
WANG Jinrong. Early Paleaozoie Teetono-magmatism and Mineralization of the eastern section in the North Qilian Orogenic Belt[D]. Lanzhou:Lanzhou university. 2006.
[24] 王永和, 高晓峰, 孙吉明, 等. 西北地区大地构造环境与成矿[M]. 武汉: 中国地质大学出版社, 2019.
WANG Yonghe, GAO Xiaofeng, SUN Jiming, et al. Geotectonic environment and mineralization in Northwest China [M]. Wuhan: China University of Geoscience Press, 2019.
[25] 吴才来, 姚尚志, 杨经绥, 等. 北祁连洋早古生代双向俯冲的花岗岩证据[J]. 中国地质, 2006, 33(6): 1197−1208.
WU Cailai, YAO Shangzhi, YANG Jingsui, et al. Double subduction of the Early Paleozoic North Qilian oceanic plate: Evidence from granites in the central segment of North Qilian,[J]. Geology in China,2006,33(6):1197−1208.
[26] 吴国炜, 熊小松, 高锐, 等. 宽角反射/折射剖面揭示的祁连造山带莫霍面深度[J]. 地球与行星物理论评, 2023, 54(2): 109−119.
WU Guowei, XIONG Xiaosong, GAO Rui, et al. Moho depth of the Qilian orogen revealed by wide-angle reflection/refraction profiles[J]. Reviews of Geophysics and Planetary Physics,2023,54(2):109−119.
[27] 夏林圻, 李向民, 余吉远, 等. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 2016, 43(4): 1087−1138.
XIA Linqi, LI Xiangmin, YU Jiyuan, et al. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China,2016,43(4):1087−1138.
[28] 肖卓, 高原. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构[J]. 地球物理学报, 2017, 60(6): 2213−2225.
XIAO Zhuo, GAO Yuan. Crustal velocity structure beneath the northeastern Tibetan plateau and adjacent regions derived from double difference tomography[J]. Chinese Journal of Geophysics,2017,60(6):2213−2225.
[29] 徐学义, 王洪亮, 陈隽璐, 等. 祁连山及邻区地质图 (1∶
1000000 )及说明书[M]. 北京: 地质出版社, 2019.XU Xueyi, WANG Hongliang, CHEN Junlu, et al. Geological map of Qilian Mountains and its adjacent area (scale 1
∶ 1000000 ), and instructions [M]. Beijing: Geological Publishing House, 2019.[30] 许晨旭. 甘肃静宁南航磁资料处理解释及成矿预测[D]. 北京:中国地质大学(北京), 2020.
XU Chenxu. Aeromagnetic data processing and interpretation andmetallogenic prediction in Jingning south Gansuprovince[D].Beijing: China University of Geosciences, 2020.
[31] 杨江海, 杜远生, 徐亚军. 北祁连东段景泰地区下古生界两套砂岩微量元素和稀土元素特征及其构造意义[J]. 古地理学报, 2008(4): 395−408.
YANG Jianghai, DU Yuansheng, XU Yajun. Two suits of sandstones in the Lower Paleozoic at Jingtai, eastern North Qilian: Trace and rare earth elements characteristics and tectonic setting[J]. Journal of Palaeogeography,2008(4):395−408.
[32] 袁道阳, 刘百篪, 才树华, 等. 兰州马衔山北缘断裂带的新活动特征研究[J]. 地震地质, 2002, 24(3): 315−323.
YUAN Daoyang, LIU Baichi, CAI Shuhua, et al. Principal Features of Recentof the Active Northern Marginal Fault of Maxianshan Mountains, Lanzhou, Gansu Province[J]. Seis-mology and Geology,2002,24(3):315−323.
[33] 詹艳, 杨皓, 赵国泽, 等. 青藏高原东北缘海原构造带马东山阶区深部电性结构特征及其构造意义[J]. 地球物理学报, 2017, 60(6): 2371−2384.
ZHAN Yan, YANG Hao, ZHANG Guoze, et al. Deep electrical structure of crust beneath the Madongshan step area at the Haiyuan fault in the northeastern margin of Tibetan plateau and tectonic implications[J]. Chinese Journal of Geophysics,2017,60(6):2371−2384.
[34] 张永奇, 韩美涛, 张恩会, 等. 渭河盆地及邻区重力异常小波多尺度分解与解释[J]. 地震研究, 2022, 45(1): 75−87.
ZHANG Yongqi, HAN Meitao, ZHANG Enhui, et al. Multi-scale Wavelet Decomposition and Interpretation of Gravity Anomalies in the Weihe Basin and Its Adjacent Areas[J]. Journal of Seismological Research,2022,45(1):75−87.
[35] 朱小辉, 陈丹玲, 冯益民, 等. 祁连山地区花岗质岩浆作用及构造演化[J]. 地学前缘, 2022, 29(2): 241−260.
ZHU Xiaohui, CHEN Danling, FENG Yimin, et al. Granitic magmatism and tectonic evolution in the Qilian Mountain Range[J]. Earth Science Frontiers,2022,29(2):241−260.
[36] 祝意青, 梁伟锋, 郝明, 等. 青藏高原东北缘近期重力与地壳形变综合分析与研究[J]. 地震地质, 2017, 39(4): 768−779.
ZHU Yiqing, LIANG Weifeng, HAO Ming, et al. The comprehenxive analysis and research of recent gravity and crustal deformation in northeastern edge of the Tibetan plateau[J]. Seismology and Geology,2017,39(4):768−779.
[37] Fu D, Huang B, Kusky T M, et al. A middle Permian ophiolitic mélange belt in the Solonker suture zone, western Inner Mongolia, China: Implications for the evolution of the Paleo‐Asian Ocean[J]. Tectonics,2018,37(5):1292−1320. doi: 10.1029/2017TC004947
[38] Gehrels G, Kapp P, DeCelles P, et al. Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen[J]. Tectonics, 2011, 30(5).
[39] Song S, Niu Y, Su L, et al. Tectonics of the north Qilian orogen, NW China[J]. Gondwana Research,2013,23(4):1378−1401. doi: 10.1016/j.gr.2012.02.004
[40] Wang W, Pan Y, Qiu Z. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics,2009,6(3):226−233. doi: 10.1007/s11770-009-0026-x
[41] Xiao W J, Windley B F, Yong Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences,2009,35(3-4):323−333. doi: 10.1016/j.jseaes.2008.10.001
[42] Xin Z, Han J, Gao R, et al. Electrical structure of the eastern segment of the Qilian orogenic belt revealed by 3-D inversion of magnetotelluric data: New insights into the evolution of the northeastern margin of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences,2021,210:104707. doi: 10.1016/j.jseaes.2021.104707
[43] Yao L, Hang Y, Qiang L, et al. Tectonic boundaries in the South China Sea from aeromagnetic signature[J]. Journal of Oceanology and Limnology,2023,41(2):550−561. doi: 10.1007/s00343-022-2043-z
[44] Ye Z, Gao R, Li Q, et al. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters,2015,426:109−117. doi: 10.1016/j.jpgl.2015.06.024
[45] Zhang Z, Bai Z, Klemperer S L, et al. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation[J]. Tectonophysics,2013,606:140−159. doi: 10.1016/j.tecto.2013.02.040
-