基于多源遥感数据的矿山生态环境监测技术研究:以陕北煤炭基地某生产矿山为例

马露, 陈莹, 蔺楠. 2025. 基于多源遥感数据的矿山生态环境监测技术研究:以陕北煤炭基地某生产矿山为例. 西北地质, 58(2): 91-101. doi: 10.12401/j.nwg.2024110
引用本文: 马露, 陈莹, 蔺楠. 2025. 基于多源遥感数据的矿山生态环境监测技术研究:以陕北煤炭基地某生产矿山为例. 西北地质, 58(2): 91-101. doi: 10.12401/j.nwg.2024110
MA Lu, CHEN Ying, LIN Nan. 2025. Research on Mine Ecological Environment Monitoring Technology Based on Multi-source Remote Sensing Data: A Case Study in Northern Shaanxi Coal Base. Northwestern Geology, 58(2): 91-101. doi: 10.12401/j.nwg.2024110
Citation: MA Lu, CHEN Ying, LIN Nan. 2025. Research on Mine Ecological Environment Monitoring Technology Based on Multi-source Remote Sensing Data: A Case Study in Northern Shaanxi Coal Base. Northwestern Geology, 58(2): 91-101. doi: 10.12401/j.nwg.2024110

基于多源遥感数据的矿山生态环境监测技术研究:以陕北煤炭基地某生产矿山为例

  • 基金项目: 陕西省秦创原矿山环境修复治理与智能化监测“科学家+工程师”队伍(2022KXJ-087)。
详细信息
    作者简介: 马露(1983−),女,硕士,高级工程师,主要从事国土空间生态修复研究工作。E−mail:cyyy961@163.com
  • 中图分类号: P237

Research on Mine Ecological Environment Monitoring Technology Based on Multi-source Remote Sensing Data: A Case Study in Northern Shaanxi Coal Base

  • 矿产资源的开发会对周边生态环境产生负面作用,影响当地居民的生产生活。相比传统的矿山生态环境地面监测手段,遥感技术具有宏观性、动态性和经济性等优势,其高波谱分辨率、高空间分辨率及高时间分辨率,能全方位动态反映矿山生态问题现状与发展趋势。陕北煤炭基地是中国重要的煤炭能源基地之一,本研究选择其中一座生产矿山作为研究区,综合运用光学遥感和雷达遥感技术,精准捕捉煤矿开采活动所诱发的地面塌陷、土地损毁以及地表水体、植被状况等区域要素特征;针对重点监测区,进一步引入无人机遥感技术,实现对地裂缝、不稳定边坡等局部要素的精细化监测与识别,系统构建了数据获取、数据处理、遥感解译、数据分析等全流程矿山生态环境遥感监测技术体系。研究结果表明,多源遥感技术凭借卓越的全局视野、宏观分析能力及强大的数据追溯性,在矿山生态环境监测领域展现出了无可替代的优势,应用成效显著。在此基础上,提出了未来矿山生态环境监测预警智能体系“多网融合+实时监测+智能作业+任务协同+全面感知+自主决策”的发展方向。

  • 加载中
  • 图 1  研究区位置示意图

    Figure 1. 

    图 2  采矿引发的地裂缝和不稳定边坡

    Figure 2. 

    图 3  数据处理流程(引自《SARscape产品白皮书——2022年》)

    Figure 3. 

    图 4  地质安全隐患遥感解译标志(数据源:无人机正射影像)

    Figure 4. 

    图 5  土地损毁遥感解译标志(数据源:GF-2)

    Figure 5. 

    图 6  地表水体遥感解译标志(数据源:GF-2)

    Figure 6. 

    图 7  形变速率图(20220109~20220918)

    Figure 7. 

    图 8  累积形变量图(20220109~20220918)

    Figure 8. 

    图 9  XB004形变区的InSAR、光学影像及等值线图

    Figure 9. 

    图 10  XB004形变区工作面走向剖线及特征点时序剖线

    Figure 10. 

    图 11  研究区土地损毁现状图

    Figure 11. 

    图 12  研究区植被覆盖度图

    Figure 12. 

    表 1  遥感数据源一览表

    Table 1.  List of remote sensing data sources

    数据类型 数据源 空间分辨率(m) 特点及用途
    合成孔径雷达 Sentinel-1 5×20 全天候、全天时、空间覆盖连续,
    用于监测地面塌陷范围及沉降量
    高分卫星遥感 GF-1 2 获取方便、成本低,GF-1主要用于监测植被状况,
    GF-2用于监测地表水体、土地损毁范围和程度等
    GF-2 0.8
    无人机遥感 1∶1000航空摄影 0.1 分辨率高,灵活机动,主要用于监测地裂缝、
    崩塌、滑坡和不稳定边坡等点上要素
    下载: 导出CSV

    表 2  月度形变信息

    Table 2.  Monthly deformation information

    月份 SAR成像时间 影像间隔时间(d) A区域最大
    形变量(m)
    B区域最大
    形变量(m)
    1 20220109_20220202 24 −0.025 −0.041
    2 20220202_20220226 24 −0.030 −0.045
    3 20220226_20220403 36 −0.039 −0.046
    4 20220403_20220427 24 −0.031 −0.039
    5 20220427_20220602 36 −0.059 −0.041
    6~7 20220602_20220801 60 −0.030 −0.049
    8~9 20220801_20220918 48 −0.044 −0.028
    下载: 导出CSV

    表 3  植被覆盖度分级统计情况

    Table 3.  Vegetation coverage classification statistics

    序号 分级 植被覆盖度(%) 面积(hm2 比例(%)
    1 高覆盖度 ≥70 0.0126 0
    2 较高覆盖度 50~70 1483.08 26.41
    3 中等覆盖度 30~50 3913.307 69.70
    4 较低覆盖度 10~30 1.4217 0.03
    5 低覆盖度 <10 0.0215 0
    建设用地、水体 216.9214 3.86
    合计 5614.7642 100
    下载: 导出CSV
  • [1]

    陈国良, 时洪涛, 汪云甲, 等. 矿山地质环境“天—空—地—人”协同监测与多要素智能感知[J]. 金属矿山, 2023(1): 9−16.

    CHEN Guoliang, SHI Hongtao, WANG Yunjia, et al. Integrated Space-Air-Ground-Human Monitoring and Multiple Parameters Intelligence Sensing of Mine Geological Environment[J]. Metal Mine,2023(1):9−16.

    [2]

    范立民. 论矿山地质环境监测体系[J]. 陕西地质, 2017, 35(1): 61−64. doi: 10.3969/j.issn.1001-6996.2017.01.012

    FAN Limin. Monitoring System of Mining Geo-Environment[J]. Geology of Shaanxi,2017,35(1):61−64. doi: 10.3969/j.issn.1001-6996.2017.01.012

    [3]

    高俊华, 邹联学, 龙欢, 等. 基于遥感动态监测的吉林省矿山地质环境及生态修复变化特征分析[J]. 自然资源遥感, 2022, 34(3): 240−248.

    GAO Junhua, ZOU Lianxue, LONG Huan, et al. Analysis on characteristics of mine geological environment and ecological restoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources,2022,34(3):240−248.

    [4]

    黄登冕, 张聪, 姚晓军, 等. 矿山环境遥感监测研究进展[J]. 遥感技术与应用, 2022, 37(5): 1043−1055.

    HUANG Dengmian, ZHANG Cong, YAO Xiaojun, et al. Research Progress of Mine Environment Remote Sensing Monitoring[J]. Remote Sensing Technology and Application,2022,37(5):1043−1055.

    [5]

    韩海辉, 王艺霖, 任广利, 等. 几种高光谱分析法在蚀变矿物信息提取中的对比分析——以北山老金厂为例[J]. 西北地质, 2020, 53(4): 223−234.

    HAN Haihui, WANG Yilin, REN Guangli, et al. A Comparative Analysis of Several Hyperspectral Methods in the Extraction of Altered Minerals: A Case Study of Laojinchang in Beishan Area[J]. Northwestern Geology,2020,53(4):223−234.

    [6]

    韩海辉, 李健强, 易欢, 等. 遥感技术在西北地质调查中的应用及展望[J]. 西北地质, 2022a, 55(3): 155−169.

    HAN Haihui, LI Jianqiang, YI Huan, et al. Application and Prospect of Remote Sensing Technology in Geological Survey of Northwest China[J]. Northwestern Geology,2022a,55(3):155−169.

    [7]

    韩海辉, 张转, 任广利, 等. 一种快速识别基性—超基性岩的新方法——基性度遥感指数法[J]. 西北地质, 2022b, 55(2): 71−81.

    HAN Haihui, ZHANG Zhuan, REN Guangli, et al. A New Method for Fast Identification of Basic—ultrabasic Rocks—Basic Degree Index from Remote Sensing Image[J]. Northwestern Geology,2022b,55(2):71−81.

    [8]

    韩亚超, 高子弘, 杨达昌, 等. 我国城市水体数量与质量遥感调查应用现状与建议[J]. 城市地质, 2022, 17(4): 485−492. doi: 10.3969/j.issn.1007-1903.2022.04.013

    HAN Yachao, GAO Zihong, YANG Dachang, et al. Review and suggestions of remote sensing survey of urban water bodies quantity and quality in our country[J]. Urban Geology,2022,17(4):485−492. doi: 10.3969/j.issn.1007-1903.2022.04.013

    [9]

    廉旭刚, 韩雨, 刘晓宇, 等. 无人机低空遥感矿山地质灾害监测研究进展及发展趋势[J]. 金属矿山, 2023(1): 17−29.

    LIAN Xugang, HAN Yu, LIU Xiaoyu, et al. Study Progress and Development Trend of Mine Geological Disaster Monitoring by UAV Low-altitude Remote Sensing[J]. Metal Mine,2023(1):17−29.

    [10]

    蔺楠, 陈莹, 马露, 等. 陕北煤炭基地矿山生态修复成效评估体系构建与实现[J]. 西北地质, 2023, 56(3): 89−97. doi: 10.12401/j.nwg.2023085

    LIN Nan, CHEN Ying, MA Lu, et al. Construction and Implementation of Evaluation System for Ecological Restoration Effectiveness of Mines in Northern Shaanxi Coal Base[J]. Northwestern Geology,2023,56(3):89−97. doi: 10.12401/j.nwg.2023085

    [11]

    李诗雨. 基于长时序InSAR的金属矿山地表形变监测技术研究[D]. 重庆: 重庆大学, 2022.

    LI Shiyu. Research on Surface Deformation Monitoring Technology of Metal Mines based on Long-Time-Series InSAR[D]. Chongqing:Chongqing University, 2022.

    [12]

    苗旭, 李九一, 宋小燕等. 2000-2020年鄂尔多斯市植被NDVI变化格局及归因分析[J]. 水土保持研究, 2022, 29(3): 300−305. doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203040

    MIAO Xu, LI Jiuyi, SONG Xiaoyan, et al. Analysi on Change Pattern and Attribution of Vegetation NDVI in Ordos City from 2000 to 2020[J]. Research of Soil and Water Conservation,2022,29(3):300−305. doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203040

    [13]

    王凤娟. 论遥感影像在矿山地质环境监测治理方面的应用[J]. 世界有色金属, 2020(12): 264−265. doi: 10.3969/j.issn.1002-5065.2020.12.121

    WANG Fengjuan. Discussion on the application of remote sensing image in mine geological environment monitoring and treatment[J]. World Nonferrous Metals,2020(12):264−265. doi: 10.3969/j.issn.1002-5065.2020.12.121

    [14]

    吴松. 无人机航空摄影测量在矿山动态监测中的应用[J]. 能源与节能, 2023(2): 173−176. doi: 10.3969/j.issn.2095-0802.2023.02.047

    WU Song. Application of UAV Aerial Photogrammetry in Mine Dynamic Monitoring[J]. Energy and Energy Conservation,2023(2):173−176. doi: 10.3969/j.issn.2095-0802.2023.02.047

    [15]

    徐友宁, 武征, 赵子长. 西北地区矿产资源开发的环境地质问题及其类型[J]. 西北地质, 2001, 34(2): 28−33. doi: 10.3969/j.issn.1009-6248.2001.02.005

    XU Youning, WU Zheng, ZHAO Zichang. The Problems of Environmental Geology and Database for Mining in Northwestern China[J]. Northwestern Geology,2001,34(2):28−33. doi: 10.3969/j.issn.1009-6248.2001.02.005

    [16]

    徐友宁. 矿山环境地质与地质环境[J]. 西北地质, 2005, 38(4): 108−112. doi: 10.3969/j.issn.1009-6248.2005.04.016

    XU Youning. Mine Environmental geology and geological environment[J]. Northwestern Geology,2005,38(4):108−112. doi: 10.3969/j.issn.1009-6248.2005.04.016

    [17]

    徐友宁, 李玉武, 张江华, 等. 宁夏石嘴山采煤塌陷区地质环境治理模式研究[J]. 西北地质, 2015, 48(4): 183−189. doi: 10.3969/j.issn.1009-6248.2015.04.018

    XU Youning, LI Yuwu, ZHANG Jianghua, et al. Treatment Model on Geo-Environment in the Coal Mine Collapse Area of Shizuishan City, Ningxia[J]. Northwestern Geology,2015,48(4):183−189. doi: 10.3969/j.issn.1009-6248.2015.04.018

    [18]

    徐友宁, 张江华, 何芳, 等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129−139.

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology,2022,55(3):129−139.

    [19]

    杨金中, 聂洪峰, 荆青青. 初论全国矿山地质环境现状与存在问题[J]. 国土资源遥感, 2017, 29(2): 1−7.

    YANG Jinzhong, NIE Hongfeng, JING Qingqing. Preliminary analysis of mine geo-environment status and existing problems in China[J]. Remote Sensing for Land and Resources,2017,29(2):1−7.

    [20]

    郑志琴. 基于D-InSAR技术的矿区地表沉陷监测及其数据处理研究[D]. 西安: 西安科技大学, 2015.

    ZHENG Zhiqin. Surface Subsidence Monitoring and Data Processing Research of Mining Area Based on D-InSAR Technology[D]. Xi’an: Xi’an University of Science and Technology, 2015.

    [21]

    Chen W, Li X, He H. A review of fine-scale land use and land cover classification in open-pit mining areas by re-mote sensing techniques[J]. Remote Sensing,2017,10(2):10010015−10010033.

    [22]

    Gallwey J, Robiati C, Coggan J, et al. A Sentinel-2 based multispectral convolutional neural network for detecting arti-sanal small-scale mining in Ghana: Applying deep learning toshallow mining[J]. Remote Sensing of Environment,2020,248:111970−111984. doi: 10.1016/j.rse.2020.111970

    [23]

    Johansen K, Erskine P, Mccabe M. Using unmanned aerial vehicles to assess the rehabilitation performance of open cut coal mines[J]. Journal of Cleaner Production,2019,209:819−833. doi: 10.1016/j.jclepro.2018.10.287

    [24]

    Li L, Zhang R, Sun J, et al. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm[J]. Journal of Environmental Health Science and Engineering,2021,19(1):401−414. doi: 10.1007/s40201-021-00613-0

  • 加载中

(12)

(3)

计量
  • 文章访问数:  78
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2023-09-08
修回日期:  2024-07-25
录用日期:  2024-11-25
刊出日期:  2025-04-20

目录