降雨诱发黄土滑坡–泥流的规律及阈值曲线研究

王家政, 辛鹏, 曹生鸿, 李先臣, 郭丹丹. 2025. 降雨诱发黄土滑坡–泥流的规律及阈值曲线研究. 西北地质, 58(2): 102-110. doi: 10.12401/j.nwg.2024120
引用本文: 王家政, 辛鹏, 曹生鸿, 李先臣, 郭丹丹. 2025. 降雨诱发黄土滑坡–泥流的规律及阈值曲线研究. 西北地质, 58(2): 102-110. doi: 10.12401/j.nwg.2024120
WANG Jiazheng, XIN Peng, CAO Shenghong, LI Xianchen, GUO Dandan. 2025. Study on Regularity and Threshold Curve of Rain-Induced Loess Landslide-Mudflow. Northwestern Geology, 58(2): 102-110. doi: 10.12401/j.nwg.2024120
Citation: WANG Jiazheng, XIN Peng, CAO Shenghong, LI Xianchen, GUO Dandan. 2025. Study on Regularity and Threshold Curve of Rain-Induced Loess Landslide-Mudflow. Northwestern Geology, 58(2): 102-110. doi: 10.12401/j.nwg.2024120

降雨诱发黄土滑坡–泥流的规律及阈值曲线研究

  • 基金项目: 国家自然科学基金“水力作用下新近纪硬土/软岩质滑带结构重构的过程及效应(42077276)”,中国地质调查局地质调查项目“渭河中上游城镇地质灾害风险调查”(DD20190717)联合资助
详细信息
    作者简介: 王家政(1997−),男,硕士研究生,主要从事滑坡机制方面的研究。E−mail:x17806252143@163.com
    通讯作者: 辛鹏(1984−),男,研究员,主要从事滑坡机制方面的研究。E−mail:xxiinnpp@126.com
  • 中图分类号: P642.22; TU411

Study on Regularity and Threshold Curve of Rain-Induced Loess Landslide-Mudflow

More Information
  • 为研究降雨诱发黄土滑坡-泥流的规律,论文设计了6组室内模型试验,分析了降雨诱发黄土滑坡-泥流的宏观变形过程、水文过程及位移变化规律,探讨了不同降雨强度、单次累计降雨量及坡度对滑坡发展的影响,并建立了发生滑坡及泥流时的阈值曲线。研究表明:在极端降雨条件下,黄土斜坡有滑动及滑动转流动两种破坏模式。当短时强降雨发生时,裂隙化斜坡内张性结构面充水,滑面强度降低,滑体以块体形式滑动,整个滑动过程表现出在长期蠕动中叠加间歇性加速滑动的特征,临界阈值曲线为:I=59D–0.67;当持续性降雨发生时,渐进滑动的斜坡体会出现强裂隙化区域,此区域内孔隙水压力持续升高,富水斜坡体会液化流动,流动过程具有持续高速流动的特征,临界阈值曲线为:E=200–2.5I。

  • 加载中
  • 图 1  物理模型装置和负压计埋设位置

    Figure 1. 

    图 2  E5试验滑动破坏过程

    Figure 2. 

    图 3  E1试验滑动转流动破坏过程

    Figure 3. 

    图 4  E1模型剖面2土壤基质吸力随时间变化关系曲线

    Figure 4. 

    图 5  E3试验1号点位移随时间变化曲线

    Figure 5. 

    图 6  E1试验4号点位移随时间变化曲线

    Figure 6. 

    图 7  E6试验3号点位移随时间变化曲线

    Figure 7. 

    图 8  降雨期间滑动及流动破坏初始时间

    Figure 8. 

    图 9  E5、E4滑动转流动过程

    Figure 9. 

    图 10  滑动阈值曲线

    Figure 10. 

    图 11  泥流阈值曲线

    Figure 11. 

    表 1  试验工况

    Table 1.  Test condition

    试验
    编号
    边坡
    角度
    降雨
    强度(mm·h)
    单次累计
    降雨量(mm)
    初始
    孔隙比
    E1 30° 6.19 61.9 0.965
    E2 30° 5.04 80.71 0.983
    E3 60° 6.19 55.7 0.965
    E4 60° 5.04 80.71 0.983
    E5 60° 17.89 148.5 0.965
    E6 60° 16.12 145.1 0.983
    下载: 导出CSV

    表 2  马兰黄土的基本物理参数

    Table 2.  Basic physical parameters of Malan loess

    液限(%) 塑限(%) 湿陷系数 初始质量含水率(%) 初始干密度(g/cm3
    33.5 20.3 0.058 15 1.44
    下载: 导出CSV

    表 3  降雨方案

    Table 3.  Rainfall scheme

    试验编号 降雨次数(次) 降雨持续时间(h) 总降雨量(mm)
    E1 9 10 557.1
    E2 9 16 726.39
    E3 9 9 501.3
    E4 5 16 403.55
    E5 2 8.3 297
    E6 4 9 580.4
    下载: 导出CSV

    表 4  模型试验破坏模式

    Table 4.  Failure mode of model test

    试验编号破坏模式降雨强度(mm/h)
    E1滑动转流动6.19
    E2未发生明显破坏5.04
    E3滑动6.19
    E4滑动转流动5.04
    E5滑动17.89
    E6滑动转流动16.12
    下载: 导出CSV
  • [1]

    陈海霞, 王家鼎. 降雨影响黄土泥流起动的试验研究[J]. 西北大学学报(自然科学版), 2013, 43(3): 447−450.

    CHEN Haixia, WANG Jiading. Experimental research about the rainfall's effects on mudflow initiation[J]. Journal of Northwest UniversityNatural Science Edition,2013,43(3):447−450.

    [2]

    陈伟, 骆亚生, 武彩萍. 人工降雨作用下黄土边坡的室内模型试验研究[J]. 中国农村水利水电, 2013(5): 100−104. doi: 10.3969/j.issn.1007-2284.2013.05.027

    CHEN Wei, LUO Yasheng, WU Caiping. The laboratory model test study of loess slope under the artificial rainfall[J]. China Rural Water and Hydropower,2013(5):100−104. doi: 10.3969/j.issn.1007-2284.2013.05.027

    [3]

    付泉, 党光普, 李致博, 等. 基于分形维数耦合支持向量机和熵权模型的滑坡易发性研究[J]. 西北地质, 2024, 57(6): 255−267.

    FU Quan,DANG Guangpu,LI Zhibo,et al. Study of Landslide Susceptibility Mapping Based on Fractal Dimension Integrating Support Vector Machine with Index of Entropy Model[J]. Northwestern Geology,2024,57(6):255−267.

    [4]

    黄森. 天水市“7.25”群发性降雨滑坡灾害预警模型研究[D]. 西安: 西北大学, 2021.

    HUANG Sen. Study on the early warning model of "7.25" mass rainfall landslide disaster in Tianshui City[D]. Xi'an:Northwest University, 2021.

    [5]

    黄志全, 何鹏. 用有效降雨量监测黄土边坡稳定性的研究[J]. 华北水利水电学院学报, 2007, 28(6): 53−55.

    HUANG Zhiquan, HE Peng. Research of slope stability on effective rainfall[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2007,28(6):53−55.

    [6]

    贾俊, 张茂省, 冯立, 等. 流态破坏型黄土滑坡滑带土临界特征[J]. 西北地质, 2019, 52(2): 136−147.

    JIA Jun, ZHANG Maosheng, FENG Li, et al. Critical characteristics of slip zone soil in loess landslide with flow failure pattern[J]. Northwestern Geology,2019,52(2):136−147.

    [7]

    金艳丽, 戴福初. 饱和黄土的静态液化特性试验研究[J]. 岩土力学, 2008, 29(12): 3293−3298. doi: 10.3969/j.issn.1000-7598.2008.12.021

    JIN Yanli, DAI Fuchu. Experimental investigation of static liquefaction of saturated loess[J]. Rock and Soil Mechanics,2008,29(12):3293−3298. doi: 10.3969/j.issn.1000-7598.2008.12.021

    [8]

    李明, 高维英, 杜继稳. 陕西黄土高原诱发地质灾害降雨临界值研究[J]. 陕西气象, 2010, (5): 1−5. doi: 10.3969/j.issn.1006-4354.2010.05.001

    LI Ming, GAO Weiying, DU Jiwen. Study on the critical value of rainfall induced geological disasters in Loess Plateau of Shaanxi Province[J]. Journal of Shaanxi Meteorology,2010,(5):1−5. doi: 10.3969/j.issn.1006-4354.2010.05.001

    [9]

    李同录, 李颖喆, 赵丹旗, 等. 对水致黄土斜坡破坏模式及稳定性分析原则的思考[J]. 中国地质灾害与防治学报, 2022, 33(2): 25−32.

    LI Tonglu, LI Yingzhe, ZHAO Danqi, et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):25−32.

    [10]

    刘德仁, 张文清, 黄新智, 等. 非饱和黄土边坡水热变化过程室内模型试验研究[J]. 岩土力学, 2017, 38(S2): 236−240.

    LIU Deren, ZHANG Wenqing, HUANG Xinzhi, et al. Laboratory model test on water and heat variation process of unsaturated loess slope[J]. Rock and Soil Mechanics,2017,38(S2):236−240.

    [11]

    孟振江, 张凡, 彭建兵, 等. 预设节理条件下降雨型黄土滑坡模型试验研究[J]. 工程地质学报, 2022, 30(5): 1528−1537.

    MENG Zhenjiang, ZHANG Fan, PENG Jianbing, et al. Model test research on rainfall-type loess landslide under preset joint conditions.[J]. Journal of Engineering Geology,2022,30(5):1528−1537.

    [12]

    亓星, 许强, 孙亮, 等. 降雨型黄土滑坡预警研究现状综述[J]. 地质科技情报, 2014, 33(6): 219−225.

    QI Xing, XU Qiang, SUN Liang, et al. Research overview on early warning of precipitation-induced loess landslides[J]. Geological Science and Technology Information,2014,33(6):219−225.

    [13]

    孟晓捷, 郭小鹏, 薛强, 等. 黄土地质灾害评价因子地形起伏度提取最佳尺度研究: 以榆林市米脂县为例[J]. 西北地质, 2024, 57(6): 234−243.

    MENG Xiaojie,GUO Xiaopeng,XUE Qiang,et al. Research on Optimal Scale for Extraction of Relief Amplitude in Loess Geological Hazards Assessment Factors: a Case Study of Mizhi County, Yulin City[J]. Northwestern Geology,2024,57(6):234−243.

    [14]

    孙建中, 王兰民, 门玉明, 等. 黄土学(第3册)[M]. 香港: 香港考古学会, 2012.

    SUN Jianzhong,WANG Lanmin,MEN Yuming,et al. Loessology (Vol. 3)[M]. Hongkong:Hongkong Archaeological Society,2012.

    [15]

    孟晓捷, 张新社, 曾庆铭, 等. 基于加权信息量法的黄土滑坡易发性评价——以1: 5万天水市麦积幅为例[J]. 西北地质, 2022, 55(2): 249−259.

    MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method: Taking 1: 50 000 Map of Maiji District of Tianshui City As an Example[J]. Northwestern Geology,2022,55(2):249−259.

    [16]

    唐亚明, 薛强, 毕俊擘, 等. 降雨入渗诱发黄土滑塌的模式及临界值初探[J]. 地质论评, 2013, 59(1): 97−106. doi: 10.3969/j.issn.0371-5736.2013.01.010

    TANG Yaming, XUE Qiang, BI Junbo, et al. Preliminary study on loess landslide rainfall triggering modes and thresholds[J]. Geological Review,2013,59(1):97−106. doi: 10.3969/j.issn.0371-5736.2013.01.010

    [17]

    唐然, 任穗川, 范宣梅, 等. 大型红层缓倾岩层滑坡形成机制——以川北断渠滑坡为例[J]. 成都理工大学学报(自然科学版), 2024, 51(4): 673−686.

    TANG Ran, REN Suichuan, FAN Xuanmei, et al. Formation mechanism of large-scale red bed gently inclined strata landslide: Taking Duangu landslide in north Sichuan as an example[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(4):673−686.

    [18]

    王家鼎. 高速黄土滑坡的一种机理——饱和黄土蠕动液化[J]. 地质论评, 1992, 38(6): 532−539. doi: 10.3321/j.issn:0371-5736.1992.06.011

    WANG Jiading. A mechanism of high-speed loess landslides-saturated loess creeping liquefaction[J]. Geological Review,1992,38(6):532−539. doi: 10.3321/j.issn:0371-5736.1992.06.011

    [19]

    王豪, 何朝阳, 巨能攀, 等. 多设备多参数联动的滑坡预警方法[J]. 成都理工大学学报(自然科学版), 2024, 51(6): 1057−1069.

    WANG Hao, HE Chaoyang, JU Nengpan, et al. A linked multi-device and multi parameter landslide early warning method[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(6):1057−1069.

    [20]

    武彩萍, 骆亚生, 陈伟, 等. 降雨对黄土裸坡坡面形态影响的室内模型试验[J]. 水土保持通报, 2013, 33(1): 115−119.

    WU Caiping, LUO Yasheng, CHEN Wei, et al. Indoor model experiment for rainfall effects on bare loess slope shape[J]. Bulletin of Soil and Water Conservation,2013,33(1):115−119.

    [21]

    辛鹏, 吴树仁, 石菊松, 等. 降雨诱发浅层黄土泥流的研究进展、存在问题与对策思考[J]. 地质论评, 2015, 61(3): 485−493.

    XIN Peng, WU Shuren, SHI Jusong, et al. Comment on the progress in, problems and countermeasure on mudflow induced by rainfall[J]. Geological Review,2015,61(3):485−493.

    [22]

    许领, 戴福初, 闵弘. 黄土滑坡研究现状与设想[J]. 地球科学进展, 2008, 23(3): 236−242. doi: 10.3321/j.issn:1001-8166.2008.03.003

    XU Ling, DAI Fuchu, MIN Hong. Research progress and some thoughts on loess landslides[J]. Advance in Earth Sciences,2008,23(3):236−242. doi: 10.3321/j.issn:1001-8166.2008.03.003

    [23]

    张林梵. 基于时序InSAR的黄土滑坡隐患早期识别—以白鹿塬西南区为例[J]. 西北地质, 2023, 56(3): 250−257.

    ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR: A Case Study of Southwest Bailuyuan[J]. Northwestern Geology,2023,56(3):250−257.

    [24]

    张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4): 530−540. doi: 10.3969/j.issn.1004-9665.2011.04.014

    ZHANG Maosheng, LI Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology,2011,19(4):530−540. doi: 10.3969/j.issn.1004-9665.2011.04.014

    [25]

    张琪, 巨能攀, 张成强, 等. 库水位变化时陡倾软弱顺层岩质滑坡变形机制[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 206−217.

    ZHANG Qi, JU Nengpan, ZHANG Chengqiang, et al. Landslide deformation mechanism of steep weak bedding rock under the variation of reservoir water level[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(2):206−217.

    [26]

    曾昌禄, 李荣建, 关晓迪, 等. 不同雨强条件下黄土边坡降雨入渗特性模型试验研究[J]. 岩土工程学报, 2020, 42(S1): 111−115. doi: 10.11779/CJGE2020S1022

    ZENG Changlu, LI Rongjian, GUAN Xiaodi, et al. Experimental study on rainfall infiltration characteristics of loess slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering,2020,42(S1):111−115. doi: 10.11779/CJGE2020S1022

    [27]

    Bruce J P, Clark R H. Introduction to Hydrometeorology[M]. London: Pergamon Press, 1969.

    [28]

    Fausto, Guzzetti, Silvia, et al. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides,2008,5(1):3−17.

    [29]

    Caine N. The Rainfall Intensity-Duration Control of ShallowLandslides and Debris Flows[J]. Geografiska Annaler: Series A, Physical Geography, 1980, 62: 1−2, 23−27.

    [30]

    Peng J B, Fan Z J, Wu D Z, et al. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China[J]. Engineering Geology, 2015, 186(Null).

    [31]

    Sun Y, Zhang J, Wang H A, et al. Probabilistic thresholds for regional rainfall induced landslides[J]. Computers and geotechnics,2024,166(Feb.):106040.1−106040.9.

    [32]

    Wang S, Gregor I, Wu W. Centrifuge modelling of rainfall-induced slope failure in variably saturated soil[J]. Acta Geotechnica,2021,16(9):2899−2916. doi: 10.1007/s11440-021-01169-x

    [33]

    Zhuang J Q, Iqbal J, Peng J B, et al. Probability prediction model for landslide occurrences in Xi'an, Shaanxi Province, China[J]. Journal of Mountain Science,2014,11(2):345−359. doi: 10.1007/s11629-013-2809-z

  • 加载中

(11)

(4)

计量
  • 文章访问数:  63
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-04-24
修回日期:  2024-12-06
录用日期:  2024-12-11
刊出日期:  2025-04-20

目录